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Polymorphonuclear myeloid derived suppressor cells (PMN-MDSC) are pathologically activated 

neutrophils that are critically important for the regulation of immune responses in cancer. They 

contribute to the failure of cancer therapies and are associated with poor clinical outcomes. 

Despite the recent advances in understanding of the PMN-MDSC biology, the mechanisms 

responsible for pathological activation of neutrophils are not well defined, which limits selective 

targeting of these cells. Here, we report that mouse and human PMN-MDSC exclusively up-

regulate fatty acid transporter protein 2 (FATP2). Over-expression of FATP2 in PMN-MDSC was 

controlled by GM-CSF, through the activation of STAT5 transcription factor. Deletion of FATP2 

abrogated the suppressive activity of PMN-MDSC. The main mechanism of FATP2 mediated 

suppressive activity involved uptake of arachidonic acid (AA) and synthesis of prostaglandin E2 

(PGE2). The selective pharmacological inhibition of FATP2 abrogated the activity of PMN-MDSC 

and substantially delayed tumor progression. In combination with check-point inhibitors it blocked 

tumor progression in mice. Thus, FATP2 mediates acquisition of immune suppressive activity by 

PMN-MDSC and represents a new target to selectively inhibit the functions of PMN-MDSC and 

improve the effect of cancer therapy.

Polymorphonuclear myeloid derived suppressor cells (PMN-MDSC) are pathologically 

activated neutrophils that accumulate in many diseases. These cells are critically important 

for the regulation of immune responses in cancer, promotion of tumor progression, and 

metastases, and their presence correlates with poor prognosis and negative response to 

immunotherapy1–4. Despite the fact that neutrophils and PMN-MDSC share same origin and 

the same differentiation pathways, PMN-MDSC have distinct genomic and biochemical 

features and are immunosuppressive2. The mechanisms responsible for pathological 

activation of neutrophils are not well defined, which limits selective targeting of these cells. 

We asked whether changes in lipid metabolism could contribute to pathological activation of 

PMN-MDSC. An accumulation of lipids in cancer has been shown in macrophages5–7, 

dendritic cells (DC)8–11, and total population of MDSC where it was associated with 

suppressive activity12. Here, we report a specific role of the fatty acid (FA) transport protein 

2 (FATP2) in regulation of PMN-MDSC function.

FATP2 is selectively overexpressed by PMN-MDSC and controls their 

suppressive activity

We evaluated total lipid levels in CD11b+Ly6CloLy6G+PMN-MDSC from spleens of tumor-

bearing (TB) mice and neutrophils (PMN) with the same phenotype from spleens of tumor-

free mice in transplantable models of EL-4 lymphoma, LLC lung carcinoma, and CT26 

colon carcinoma as well as genetically engineered model (GEM) of pancreatic cancer 

(KPC). PMN-MDSC in all tested models showed substantially higher amounts of lipids than 

control PMN (Extended data Fig. 1a). Tumor explant supernatant (TES) promoted 

accumulation of lipids in PMN differentiated in vitro from bone marrow (BM) 

hematopoietic progenitor cells (HPC) (Extended data Fig. 1b). LC/MS lipidomics analysis 

of triglycerides (TG), the major component of lipid droplets13 revealed that PMN-MDSC 

from spleen of TB mice had significantly more TG, than PMN from control mice (Extended 

data Fig. 1c). This effect was particularly robust (~8-fold) in TG containing arachidonic acid 

(AA). A similar analysis was performed in CD11b+Ly6ChiLy6G− M-MDSC from TB mice 

Veglia et al. Page 2

Nature. Author manuscript; available in PMC 2019 October 17.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



and monocytes with the same phenotype from tumor-free mice. In all tested models, M-

MDSC had markedly increased lipid accumulation (Extended data Fig 1d).

Previous studies demonstrated that lipid accumulation in DCs was mediated by up-

regulation of scavenger receptor CD2048–10. However, whereas the accumulation of lipids 

was abrogated in CD204 deficient (Msr1−/−) DCs, it was not affected in PMN (Extended 

data Fig. 1e). These results were confirmed in vivo using BM chimeras of Msr1−/− and wild-

type (WT) mice. Lack of CD204 did not abrogate lipid uptake by PMN-MDSC (Extended 

data Fig. 1f) and did not cancel their suppressive activity (Extended data Fig. 1g). Several 

membrane proteins have been implicated in trafficking of lipids, including CD206, CD36, 

FA binding proteins and FA transport proteins (FATP). The FATP family includes six 

members (FATP1–6), also known as solute carrier 27 (SLC27). FATP acts as long-chain FA 

transporter and an acyl-CoA synthetase (ACS)14–16. ACS converts free long-chain FA into 

fatty acyl-CoA esters, which can be used in many metabolic processes, including FA 

synthesis, oxidation, and complex lipid synthesis. We compared the expression of genes 

potentially involved in lipid uptake between PMN-MDSC from EL4 TB mice and control 

PMN using the gene expression array described previously17. PMN-MDSC had a much 

higher expression of slc27a2, which encodes FATP2. This was confirmed by qPCR (Fig. 1a). 

No up-regulation of other transporters and receptors involved in lipid accumulation was 

detected (Extended data Fig. 1h). In contrast to PMN-MDSC, M-MDSC showed a barely 

detectable expression of slc27a2 in the same TB mice (Fig. 1b). DCs, spleen and tumor 

associated macrophages (TAM) had undetectable and CD8+ T cells very low expression of 

slc27a2 (Fig. 1c). Increased amount of FATP2 protein was confirmed by Western blot in 

PMN-MDSC isolated from spleens of TB mice (Extended data Fig. 2a) or generated in vitro 

with TES (Extended data Fig. 2b).

Next, we asked whether FATP2 might regulate the functionality of PMN-MDSC. To this 

end, we analyzed the function of PMN-MDSC isolated from slc27a2−/− mice. These mice 

were originally generated on SV129 background. Therefore, we established a syngeneic 

sarcoma (F244) in slc27a2−/− and WT mice. Tumors were spontaneously rejected in FATP2 

KO mice (Extended data Fig. 2c). Slc27a2−/− mice were then backcrossed for 10 generations 

to C57BL/6 background. We found that in these mice, the growth of LLC and EL4 tumors 

was markedly slower than in WT mice (Fig. 1d). To test whether that effect was mediated by 

hematopoietic cells, we established BM chimeras by reconstituting lethally irradiated 

recipient congenic mice with WT or FATP2 KO BM cells. Tumors established in mice 

reconstituted with FATP2 KO BM cells grew substantially slower than did tumors in mice 

reconstituted with WT BM cells (Fig. 1e). Depletion of CD8+ T cells LLC or EL4 TB mice 

completely abrogated the antitumor activity observed in FATP2 KO mice (Fig. 1f). To 

confirm a specific role of FATP2 depletion in PMN in the observed antitumor effect, we 

generated slc27a2fl/fl mice and crossed them with S100A8-cre mice to target the deletion to 

PMN (Extended data Fig. 2d). In the absence of FATP2 in PMN, the tumor grew markedly 

slower than in control mice (Fig. 1g). Loss of FATP2 did not affect the functionality of 

CD8+ T cells (Extended data Fig. 2e).

Since the functionality of PMN-MDSC depends on tumor burden, we compared PMN-

MDSC from WT and FATP2 KO TB mice depleted of CD8 T cells, which allow for the 
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analysis of mice with the same tumor size. In both, spleens and tumors of FATP2 KO mice, 

PMN-MDSC lost the ability to suppress antigen-specific CD8+ T cell responses (Fig. 1h). In 

contrast, the suppressive activity of M-MDSC (Extended data Fig. 2f) or TAM (Extended 

data Fig. 2g) was not affected.

Expression of slc27a4, which encodes FATP4 was slightly up-regulated in PMN-MDSC 

(Extended data Fig. 1i). However, in contrast to FATP2 KO mice, no difference in tumor 

growth and suppressive function of PMN-MDSC were found between WT and FATP4 KO 

TB mice (Extended data Fig. 2h,i). CD36 has been shown to affect the lipid accumulation in 

different myeloid cells. Since tumors in CD36 KO mice may grow slower than in WT mice 

and growth depends on CD8 T cells12, we analyzed the lipid levels in PMN-MDSC from 

CD36 KO and WT mice with CD8 T cell depletion. We found no difference in lipid 

accumulation in KO and WT PMN-MDSC (Extended data Fig. 2j,k).

Whole genome RNAseq was performed on spleen PMN-MDSC isolated from WT and 

FATP2 KO TB mice. Deletion of FATP2 resulted in significant changes in 1119 genes 

(FRD<5%, at least 2-fold) with 37 genes showing dramatic changes of at least 5-fold 

(Extended data Fig. 3a). There was an overall predominance of genes downregulated in 

FATP2 KO (Extended data Fig. 3b). Enrichment analysis of significantly affected genes 

using Ingenuity Pathway Analysis revealed that PMN-MDSC from FATP2 KO mice had a 

marked decrease of pro-inflammatory genes (Extended data Fig. 3c).

FATP2 regulates uptake of arachidonic acid and PGE2 synthesis by PMN-

MDSC

We then investigated the role of FATP2 in regulating lipid accumulation by PMN-MDSC. 

Experiments were performed with PMN-MDSC isolated from WT and FATP2 KO LLC TB 

mice with depleted CD8+ T cells. LC-MS analysis revealed a lower the total amounts of TG 

in FATP2 KO spleen PMN-MDSC than in WT PMN-MDSC and especially TG containing 

C20:4 AA (Fig. 2a). Polyunsaturated FA (PUFA), AA, C18:2 linoleic acid (LA), C22:5 

eicosapentaenoic and C22:6 docosahexaenoic (DHA) FA were markedly reduced (Fig. 2b, 

Extended data 4a). No differences in the total content of cholesterol esters (CE) or 

arachidonoyl-containing CE were found (Extended data 4b). The presence of free AA and 

LA was decreased (Extended data 4c). The total content of phospholipids (PL) was not 

changed (Extended data Fig. 4d), whereas many molecular species of arachidonoyl-

containing PL were markedly reduced (Fig. 2c, Extended data Fig. 4e). Thus, genetic 

elimination of FATP2 caused selective depletion of AA-containing species of PL. These 

finding are consistent with the previous observation that although FATP2 is not a selective 

transporter for AA, its overexpression favors increased uptake and trafficking of AA16.

We next employed a method of stable isotope labeling using deuterated AA, (AAd11) and 

high mass accuracy/high resolution LC-MS with MS/MS fragmentation analysis to directly 

trace uptake of exogenously added AAd11 by PMN-MDSC from WT and FATP2 KO LLC 

TB mice. We detected significantly lower amounts of AAd11, as well as labeled PGE2d11 

in FATP2 KO PMN-MDSC compared to WT PMN-MDSC (Fig. 2d). We also observed 

significant reduction of AAd11-containing PL (Fig. 2e, Extended Table 1). This was 
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consistent with the markedly reduced amounts of the total (unlabeled) free AA and its 

metabolite PGE2 (Extended data Fig. 4b), as well as unlabeled AA-containing PL (Extended 

data Fig. 4d). No significant differences were observed in the total amounts of palmitic acid 

(16:0), oleic acid (18:1), LA (18:2), alpha-linolenic acid (18:3), docosapentaenoic acid 

(22:5), and DHA (22:6) (Extended data Fig. 4 b).

Next, we asked whether lack of FATP2 affected metabolic activity of PMN-MDSC. Spleen 

PMN-MDSC deficient in FATP2 did not show changes in OXPHOS (Extended data Fig. 5a) 

and glycolysis (Extended data Fig. 5b) compared to WT PMN-MDSC. We studied FA 

oxidation (FAO) in more detail using incorporation of 13C16-palmitate to TCA. No 

differences in labeled metabolites were found between WT and FATP2 KO PMN-MDSC 

(Extended data Fig. 5c). Neither splenic nor tumor PMN-MDSC from FATP2 KO mice 

showed changes in the expression of cpt1a, hadha, or acadm, major enzymes involved in 

FAO (Extended data Fig. 5d). There were also no differences in the uptake of the major 

nutrients between WT and FATP2 KO PMN-MDSC (Extended data Fig. 6). Taken together, 

these data indicate that lack of FATP2 does not affect FAO in PMN-MDSC.

AA is a key precursor of PGE2, which was implicated in the suppressive activity of MDSC 

in cancer18–21 and PMN-MDSC from neonates22. We therefore sought to investigate 

whether FATP2 regulates the suppressive functions of PMN-MDSC through the 

accumulation of AA and the subsequent production and release of PGE2. Using LC/MS 

(Extended data Fig. 7a) and ELISA (Extended data Fig. 7b) we confirmed that PMN-MDSC 

produced and released significantly higher amount of PGE2 than control PMN. This was 

associated with higher expression of ptges, prostaglandin E synthase, a key enzyme in the 

synthesis of PGE2 (Extended data Fig. 7c). PMN-MDSC from FATP2 KO TB mice release 

significantly less PGE2 than WT PMN-MDSC (Fig. 2f). This was consistent with 

significantly lower amount of intracellular PGE2 in FATP2 deficient PMN-MDSC than in 

WT cells (Extended data Fig. 7b). Consistent with a reduced amount of substrate the 

expression of genes involved in PGE2 synthesis, ptgs2 and ptges, were lower in FATP2 KO 

PMN-MDSC than in WT PMN-MDSC (Extended data Fig. 7d). No difference was found 

between WT and KO PMN-MDSC in the expression of genes commonly associated with 

MDSC activity, arg1, nos2 (Extended data Fig. 7e). We transduced HPC with scl27a2-gfp or 

control lentivirus and differentiated to PMN in the presence of GM-CSF. Overexpression of 

slc27a2 (Fig. 2g) resulted in increased production of PGE2 in GFP+ PMN as compared to 

GFP− PMN (Fig. 2h).

To test whether AA could drive the accumulation of suppressive PMN, we generated PMN 

from HPC in the presence of GM-CSF and AA and found that addition of AA favored the 

expansion of PMN-MDSC (Extended data Fig. 7f) that suppressed antigen specific T cell 

responses (Fig.2i). This suppressive activity was associated with a higher production of 

PGE2 (Fig.2j), increased expression of nox2, but not arg1 or nos2 (Extended data Fig. 7g). 

To verify the specific role of PGE2 in AA inducible suppressive activity of neutrophils, we 

generated PMN from COX2 deficient (ptgs2−/−) HPC. In the absence of COX2 PGE2 

synthesis was decreased (Fig. 2k). The presence of AA during PMN differentiation from 

ptgs2−/− HPC was not able to generate suppressive PMN-MDSC (Fig. 2l). Together, these 
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data suggested that FATP2 controls suppressive activity of PMN-MDSC via increased 

uptake of AA and synthesis of PGE2.

Slc27a2 promoter has a binding site for the transcription factor STAT5 (http://

jaspar.genereg.net). STAT5 can be activated by GM-CSF, which plays a critical role in 

myelopoiesis and expansion of MDSC23. To explore whether GM-CSF might control 

slc27a2 expression through STAT5 activation we treated PMN isolated from BM of tumor 

free mice with GM-CSF for 2 hrs. As expected, it caused a dose-dependent activation of 

STAT5 (pSTAT5) (Extended data Fig. 7h). This activation was associated with up-regulation 

of FATP2 (Fig. 3a). Chromatin immune precipitation (ChIP) demonstrated that STAT5 could 

directly bind to the slc27a2 promoter (Fig. 3b). Conversely, GM-CSF failed to increase the 

expression of FATP2 in Stat5 deficient PMN (Fig. 3c). To confirm the role of STAT5 in 

controlling the expression of slc27a2 in PMN, we crossed Stat5fl/fl mice with S100A8-cre 

mice to target the deletion of Stat5 to PMN. In the absence of Stat5 in PMN, the tumor 

growth was slower than in control mice (Extended data Fig. 7i). This was associated with 

lower expression of slc27a2 in PMN (Extended data Fig. 7j). These data indicate that GM-

CSF regulates the expression of slc27a2 through the activation of pSTAT5.

Lipid accumulation and FATP2 expression in human PMN-MDSC

PMN-MDSC isolated from the blood of patients with head and neck, lung, or breast cancers 

accumulated more lipids than PMN from healthy donors (Fig. 3d). PMN-MDSC in tumors 

had higher amounts of lipids than PMN-MDSC in blood from the same patients (Fig. 3e). 

PMN-MDSC from cancer patients had higher expression of SLC27A2 (Fig. 3f) and FATP2 

(Fig. 3g) than control PMN. M-MDSC isolated from blood of cancer patients also had more 

lipids than monocytes from healthy donors (Extended data Fig.8a). However, there was no 

difference in the accumulation of lipids in M-MDSC isolated from blood and tumor of the 

same patient (Extended data Fig.8b). Recently, we identified LOX-1 as a marker of human 

PMN-MDSC24. Analysis of a gene expression array24 revealed that LOX1+ PMN-MDSC 

had higher expression of SLC27A2, but not other transporters as compared with LOX-1− 

PMN from the same patients (Extended data Fig.8c). The higher expression of SLC27A2 in 

LOX-1+ PMN-MDSC was validated by RT-qPCR (Fig. 3h). SLC27A2 expression was 

associated with higher expression of PTGES (Extended data Fig.8d). In contrast, M-MDSC 

had lower expression of SLC27A2 than monocytes (Extended data Fig.8e). Similar to the 

results obtained in mice, GM-CSF up-regulated pSTAT5 (Extended data Fig.8f), and FATP2 

(Extended data Fig.8g).

Using LS/MS lipidomics we identified a substantially higher amount of total TG (Fig. 3i), 

and free AA, LA, and DHA (Fig. 3j) in PMN-MDSC from cancer patients than in PMN 

from healthy individuals. Higher amounts of PGE2 were detected in PMN-MDSC than in 

control PMN (Fig. 3k). The contents of total PE and arachidonoyl-PE (AA-PE) were 

increased in PMN-MDSC from cancer patients compared with PMN from healthy donors 

(Extended data Fig.8h). Thus, clinical data recapitulated the observations in mice.
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Therapeutic targeting of FATP2

Next, we sought to determine the impact of the pharmacological inhibition of FATP2 on 

tumor growth. To inhibit FATP2 in TB mice, we used 5′-bromo-5-phenyl-spiro[3H-1,3,4-

thiadiazole-2,3′-indoline]-2′-one, (lipofermata). This is a selective FATP2 inhibitor15,25. 

Lipofermata at the range of concentrations corresponding to the dose used in vivo (0.2 

mg/ml) did not affect proliferation of EL-4 and LLC tumor cells in vitro (Extended data Fig.

9a). In four tested tumor models, lipofermata caused a significant delay of tumor growth 

(Fig. 4a). Notably this effect was absent in immune deficient SCID-NOD mice (Fig. 4b), and 

depletion of CD8+ T cells in immune competent mice abrogated the effect of lipofermata 

(Fig. 4c). These data indicate that antitumor effect of FATP2 inhibition was mediated via 

immune mechanisms. In the TC-1 model, treatment with lipofermata increased the 

percentage and absolute numbers of antigen specific T cells in draining lymph nodes 

(Extended data Fig.9b).

We asked whether lipofermata could provide additional therapeutic benefit if combined with 

checkpoint inhibitors. Treatment of LLC bearing mice with lipofermata or CTLA4 alone had 

an antitumor effect. However, neither blocked tumor progression. In contrast, combination 

of CTLA4 antibody with lipofermata caused potent antitumor effect with 4 out of 5 mice 

rejecting tumors (Fig. 4d). A similar combination effect was observed in the TC1 model 

(Extended data Fig.9c). The antitumor effect was associated with substantial infiltration of 

CD8+ T cells of tumors (Extended data Fig.9d). Combination of PD1 antibody with 

lipofermata in TC-1 model also resulted in significant decrease in tumor growth although 

this effect was less pronounced (Extended Fig. 9e). Since FATP2 is overexpressed only on 

PMN-MDSC, we asked whether the antitumor effects of lipofermata could be potentiated by 

combining with TAM targeted CSF1R antibody. Consistent with previous observations26 

CSF1R antibody alone had only a minor effect on tumor growth in the LLC tumor model. 

Combination of lipofermata with CSF1R antibody resulted in cellular antitumor effect (Fig. 

4e).

Our study has identified FATP2 as a critical regulator of the immune suppressive function of 

PMN-MDSC, which mediates its effect via regulation of the accumulation of AA and 

subsequent synthesis of PGE2. These findings are consistent with the results demonstrating 

that production of PGE2 support tumor growth and immune escape27. Our study suggests a 

possibility of highly selective targeting of MDSC in cancer. Previous reports established the 

potential role of COX2 inhibitors in blockade of MDSC expansion in mouse tumor 

models28,18,29,30. However, prolonged systemic use of COX2 inhibitors is associated with 

substantial hematologic, cardiovascular and gastrointestinal toxicities. Selective targeting of 

FATP2 in PMN-MDSC offers the opportunity to inhibit PGE2 only in pathologically 

activated neutrophils and mostly within the tumor site, where expression of FATP2 is the 

highest. It is also possible that blockade of local release of PGE2 at the contact between 

PMN-MDSC and T cells in peripheral lymphoid organs can improve immune responses 

without systemic effects of PGE2 inhibition.
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Methods

Human samples.

Samples of peripheral blood and tumor tissues were collected from patients at Helen F. 

Graham Cancer Center and University of Pennsylvania. The study was approved by 

Institutional Review Boards of the Christiana Care Health System at the Helen F. Graham 

Cancer Center, and The Wistar Institutional Review Board. All patients signed IRB 

approved consent forms. Samples were collected at Helen F. Graham Cancer Center from 6 

patients with previously untreated stage II-IV non-small cell lung cancer (NSCLC), 11 

patients with stage III-IV head and neck cancer and 5 patients with stage III-IV breast 

cancer. This cohort includes 12 females and 10 males, aged 48–74 years. Peripheral blood 

was also collected from 9 healthy volunteers after obtaining informed consent.

Mouse Models.

Animal experiments were approved by The Wistar Institute Animal Care and Use 

Committee. Balb/c or C57BL/6 mice (female, 6–8 week old) were obtained from Charles 

River, OT-I TCR-transgenic mice (C57Bl/6-Tg(TCRaTCRb)1100mjb) (female, 6–8 week 

old), B6.129S1-Cd36tm1Mfe/J, B6.Cg-Msr1tm1Csk/J, 129S-Slc27a2tm1Kds/J were 

purchased from Jackson Laboratory. C57Bl/6-Slc27a2tm1Kds/J were generated by 

backcrossing 129S-Slc27a2tm1Kds/J with wild type C57Bl/6 for ten generations. B6.129S6-

Stat5btm1Mam Stat5atm2Mam/Mmjax were crossed with B6.Cg-Tg(S100A8-cre,-EGFP)1Ilw/J, 

obtained from Jackson Laboratory. RET melanoma were obtained from Dr. Umansky 

(German Cancer Center, Heidelberg, Germany). Scl27a4fl/fl were obtained from Dr. 

Stremmel (University of Heidelberg, Germany) and crossed with B6.Cg-Tg(S100A8-cre,-

EGFP)1Ilw/J (Jackson Laboratory). In mouse tumor models maximal tumor size approved 

by IACUC was 2 cm in larger diameter. In none of the experiments were these limits 

exceeded. Sample size calculation was performed in advance. Studies were not blinded. In 

treatment experiments, mice were randomized prior to start of therapy to different groups 

based on equal tumor size.

Generation of PMN-specific SLC27A2-deficient mice.

Mice were generated at CRISPR/Cas9 Mouse Targeting Core of University of Pennsylvania, 

using the CRISPR/Cas9 system as described31. Conditional knock-out mice (CKO 

Scl27a2fl/fl) were generated using CRISPR-Cas9 genome-editing system, at CRISPR Cas9 

Mouse Targeting Core of University of Pennsylvania by flanking Exon 1 with loxp sites, as 

described31. The sequences for the gRNAs and repair templates used are as follows: Slc27a2 

5’gRNA: 

GTCCACAATACCGTCGATGTGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCT

AGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTT. Slc27a2 3’ 

gRNA: 

ACTCCTCCGTTATATGATTGGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTA

GTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTT. Slc27a2 5’ LoxP 

oligoDNA:TTTACTTTGTTTGCTTTGTGTGTTTTGGTAAATGTCGAACTGAGTCCACA

ATACCGTCGATGTataacttcgtataatgtatgctatacgaagttatTGGAAAGTGGCTCGCGTAACAG

AACAAAATCTCAAAACAAATTAACAGGACCCCATTGCTCGA. Slc27a2 3’ LoxP 
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oligoDNA: 

ATACTGTAATGGATGGTTTTAATATTCTGATAAATTAAAAATCACTCCTCCGTTATAT

GATTGataacttcgtataatgtatgctatacgaagttatAGGAAACATATAGAATTTTCCAGCCTAGCTC

CGTCTTCAAAGCCCACGTTTCTTATACAGTGC. Scl27a2fl/fl mice were then crossed 

with B6.Cg-Tg(S100A8-cre,-EGFP)1Ilw/J (Jackson Laboratory) to obtain mice with 

targeted deletion of FATP2.

Reagents and cell lines.

Tumor cell lines: EL4 (lymphoma), LLC (Lewis Lung Carcinoma), CT26 (colon 

carcinoma), TC-1 (HPV16 E6/E7 expressing tumor cell line) were obtained from ATCC and 

F244 (sarcoma) was kindly provided by Dr. R. Schreiber (Washington University, St. Lois, 

MO). All cells were maintained in DMEM medium supplemented with 10% fetal bovine 

serum (FBS, Sigma-Aldrich, St. Louis, MO) at 37 °C, 5% CO2. Tumor cells were injected 

subcutaneously (s.c.) at 5 × 105 cells per mouse. Tumor cell lines were obtained from ATCC 

and were tested for mycoplasma contamination by using Universal Mycoplasma detection 

kit (ATCC) every 3 months. SIINFEKL and EGSRNQDWL peptides were obtained from 

American Peptide Company (Vista, CA). All reagents and antibodies used in the study are 

described in Supplemental Table 1.

Preparation of TES.

Tumor explant supernatants (TES) were prepared from excised non-ulcerated EL4 tumors 

~1.5 cm in diameter. A small tumor piece (5–10 mm2) was harvested, minced into pieces <3 

mm in diameter and resuspended in complete RPMI without extra cytokines. After 16–18 

hours of incubation at 37 °C with 5% CO2, the cell-free supernatant was collected using 

0.22 μm filters (EMD Millipore) and kept at −80 °C.

Cell phenotype, lipid contents by flow cytometry and by confocal microscopy.

Cells were incubated with FC-block (BD Biosciences) for 10 min and surface staining was 

performed at 4°C for 15 min. Cells were run on LSRII flow cytometer (BD Biosciences) and 

data were analyzed by FlowJo (Tristar). For lipid staining by flow cyometry, cells were re-

suspended in 500 μl of Bodipy 493/503 at 0.25 μg/ml in PBS. Cells were stained for 15 min 

at room temperature in the dark, then washed twice, re-suspended in PBS and run 

immediately on LSRII. For lipid staining by confocal microscopy, cells were washed twice 

with PBS, resuspended in complete RPMI and 50,000 cells were seeded on poly-L-lysine 

cellware 12 MM round coverslips (Corning) for 45 min at 37 °C. Cells were fixed and 

permeabilized with Fixation & Permeabilization Buffers (BD Biosciences) for 15 min at RT, 

washed twice with wash buffer (BD Biosciences) and then stained with BODIPY for 15 min 

at RT. Cells were washed and incubated with DAPI and mounted on slides using Prolong 

Gold antifade reagent (Life Technology). The cells were imaged with a Leica TCS SP5 laser 

scanning confocal microscope (Leica Microsystems).

Isolation of mouse cells.

Single-cell suspensions were prepared from spleen and followed by red blood cell removal 

using ammonium chloride lysis buffer. Single-cell suspensions from tumor tissues were 
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prepared using Mouse Tumor Dissociation Kit according to the manufacturer’s 

recommendation (Miltenyi). CD8+ T cells were isolated from spleen and lymph nodes by 

using EasySep Mouse CD8+ T Cell Enrichment Kit (STEMCELL), following 

manufacturer’s instructions.

Suppression assay.

Single cells suspensions from spleen and tumors were prepared as described above. Then 

cells were stained and sorted on BD FACS Aria BD (Biosciences). PMN-MDSC 

(CD45+CD11b+Ly6G+Ly6Clo) and M-MDSC (CD45+ CD11b+Ly6G−Ly6Chi) were plated 

in U-bottom 96-well plates (3 replicates) in RPMI with 10% FBS and co-cultured at 

different ratios with splenocytes from Pmel or OT-1 transgenic mice in the presence of 

cognate peptides: OT-1 (SIINFEKL; 0.1 ng/ml), Pmel (EGSRNQDWL; 0.1 μg/ml). After 48 

h, cells were incubated with [3H]-thymidine (PerkinElmer) for 16–18 h. Proliferation was 

measured by using TopCount NXT instrument (PerkinElmer).

IFNγ ELISpot, T cell proliferation and antigen specific T cell analysis.

Lymph nodes (LNs) were obtained from TB mice and digested for 30 min at 37 °C with 

collagenase A (0.5 mg/ml; Sigma Aldrich), Dnase I (0.2 mg/ml, Roche), diluted in HBSS 

with Ca2+/Mg2+ and 20mM EDTA (Invitrogen) was added 5 min at room temperature to 

stop the reaction. CD8 T cells were isolated from LNs of TB mice using EasySep Mouse 

CD8+ T Cell Enrichment Kit (STEMCELL) and stimulated with anti CD3 and anti CD28 

antibodies (BD Biosciences) for 24h and IFNγ was analyzed by ELISpot (Mabtech), 

accordingly to manufacturer’s instructions. T cell proliferation was evaluated by flow 

cytometry using CSFE (BioLegend). Antigen specific CD8 T cell response was evaluated in 

single cell suspension obtained from LNs of TC1 (HPV16 E6/E7 expressing tumor cells) TB 

mice by flow cytometry using MHC tetramer (H-2Db HPV 16 E7 – RAHYNIVTF), 

obtained from D. Weiner (Wistar Institute, Philadelphia, USA).

Isolation of human cells.

PMN-MDSC and PMN were isolated by centrifugation over a double density gradient 

Histopaque (Sigma) (1.077 to collect PBMC and 1.119 to collect PMN) followed by 

labeling with CD15-PE mAb (BD Biosciences) and then separated using anti-PE beads and 

MACS column (Miltenyi). Tissues were first digested with human tumor dissociation kit 

(Miltenyi) and then red blood cell lysed. Cells were then culture in RPMI (Biosource 

International) supplemented with 10% FBS, 5 mM glutamine, 25 mM HEPES, 50μM β-
mercaptoethanol and 1% antibiotics (Invitrogen). For isolation of Lox1+ PMN from 

peripheral blood, whole blood was enriched for PMNs using MACSxpress® Neutrophil 

Isolation Kit (Miltenyi) following the protocol provided by the manufacturer. Cells were 

then labeled with anti-Lox1-PE mAb (Biolegend) and then separated using anti-PE beads 

and MACS column (Miltenyi).

Quantitative real time PCR.

RNA was extracted using Total RNA Kit according to manufacturer’s instructions. DNase 

digestion was performed cDNA was generated with High-Capacity cDNA Reverse 
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Transcription Kit (Applied Biosystems, Foster City, CA, USA). qRT-PCR was performed 

using Power SYBR Green PCR Master Mix (Applied Biosystems) in 96- or 384 well plates. 

Plates were read with ABI 7900 (Applied Biosystems). Amplifications were carried out with 

the primers described in Supplemental Table 2.

RNA-seq.

RNA-seq data was aligned using bowtie232 against mm10 version of the mouse genome and 

RSEM v1.2.12 software33 was used to estimate raw read counts using Ensemble v84 gene 

information. DESeq234 was used to estimate significance of differential expression between 

sample groups. Overall gene expression changes were considered significant if passed false 

discovery rate FDR<5% threshold. Significant genes affected at least 2 fold were analyzed 

for enrichment of upstream regulators using QIAGEN’s Ingenuity® Pathway Analysis 

software (IPA®, QIAGEN Redwood City,www.qiagen.com/ingenuity, “Upstream Analysis” 

option). Only regulators with significantly enriched p<0.005 targets (at least 20) with 

significantly predicted activation state (activation z-score |Z|>2) were considered.

Western blot.

Cells were lysed in RIPA buffer (Sigma-Aldrich) in presence of protease inhibitor cocktail 

(Sigma-Aldrich), sonicated and stored at −80°C. Whole cell lysates were prepared and 

subjected to 10% SDS-PAGE and transferred to PVDF membrane. The membranes were 

probed overnight at 4°C with the antibodies specific for FATP2 (SLC27A2) (ThermoFisher), 

ACTIN, GAPDH, STAT5 (Cell Signaling Technology). Membranes were washed and 

incubated for 1 h at room temperature with secondary antibody conjugated with peroxidase.

Generation of suppressive neutrophils in vitro.

Mouse neutrophils were generated from enriched bone marrow hematopoietic progenitor 

cells (HPCs) with 20 ng/ml of GM-CSF. Briefly, HPCs were isolated from mouse BM by 

using Lineage depletion kit (Miltenyi), according to manufacturer’s instructions. Cells were 

seeded at 25000 cell/ml in 24 well plates and GM-CSF (20 ng/ml), 20% v/v TES or 

arachidonic acid (10μM) were added at day 0 and day 3. At day 5, Ly6G positive neutrophils 

were isolated by using anti-Ly6G biotin (Miltenyi) and streptavidin beads (Miltenyi), 

according to manufacturer’s instructions.

FATP2 overexpression in HPC and PGE2 ELISA.

HPCs were isolated from mouse BM by using Lineage depletion kit (Miltenyi), according to 

manufacturer’s instructions. HPC were resuspended in serum-free medium (SFM) 

containing lentiviral vectors followed by centrifugation of the plate at 1000 rpm for 20 min 

at 25°C. Fresh media supplemented with GM-CSF (20 ng/ml) was then added and cells were 

seeded at 25000 cell/ml in 24 well plates. At day 3, GM-CSF and 20% v/v TES were added 

to the culture. At day 5, cells were collected, stained with PE conjugated anti mouse Ly6G, 

APC conjugated anti mouse Ly6C and BV421 conjugated anti-mouse CD11b, and GFP- and 

GFP+ Ly6G+ cells were sorted on BD FACS Melody (BD Biosciences). GFP− and GFP+ 

Ly6G+ cells were seeded at 2.000.000 cells/ml in presence of GM-CSF and TES and 

incubated for further 24 hours. Pellets and supernatants were collected for further analysis. 
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PGE2 concentration in supernatants was measured by using PGE2 ELISA KIT (Invitrogen), 

according to manufacturer’s instructions.

Uptake and tracing of arachidonic acid.

Splenic PMN-MDSC from WT and FATP2 KO LLC TB mice were cultured in complete 

media (RPMI+10%FBS) with 100 nM of d11AA (Cayman Chemicals), conjugated to 10% 

fatty acid-free BSA (Sigma Aldrich), and 10 ng/ml of GM-CSF. After 16–18h, supernatants 

and cellular pellets were collected and stored at −80c. Lipids (including PGE2 and 

PGE2d11) were analyzed by LC-MS; the amounts of PGE2 in the supernatants were 

measured by ELISA.

Immunofluorescence microscopy.

Immunofluorescence staining of CD8 was performed on frozen mouse tumor tissue sections. 

Rat monoclonal anti-mouse CD8a primary antibody (BD Pharmingen™) and Alexa Fluor 

594 goat anti-rat IgG (H+L) secondary antibody (Invitrogen) were used for the staining. Cell 

nuclei were stained with DAPI. Imaging was performed using a Leica TCS SP5 confocal 

microscope. Sixteen frames acquired with a 63X objective lens were used to calculate the 

cell number per mm2.

Seahorse analysis.

Metabolic rates were determined using the Seahorse XFe24 and XFe96 Flux Analyzers 

(Agilent Technologies) following the manufacturer’s protocol. Briefly, the microplate was 

coated with 22.4 μg/ml Cell-Tak (Fisher) using 200mM sodium bicarbonate. 400,000 cells 

were seeded per well immediately after isolation in 50μl and 80μl of unbuffered RPMI 

(Sigma-Aldrich) for the XF24 and XF96 analyzers, respectively. The microplate was 

incubated for 30 min at 37°C to allow the cells to settle into a monolayer. Unbuffered RPMI 

was gently added to the wells without disturbing the monolayer to bring the assay volume to 

675μl and 180μl for the XFe24 and XFe96 analyzer, respectively. The basal oxygen 

consumption rate (OCR) and extracellular acidification rate (ECAR) was measured, in 

addition to rate changes upon treatment with 5μM oligomycin (Sigma-Aldrich), 1μM FCCP 

(Sigma-Aldrich), and 0.75μM rotenone and 1μM antimycin A (Sigma-Aldrich).

Chromatin immunoprecipitation (ChIP)

Chromatin immunoprecipitation (ChIP) assays were performed as described previously35. 

Briefly, PBMC cells were treated or not with GM-CSF 10ng/ml and 100ng/ml for 20 min. 

Cells then were fixed in 1% formaldehyde for 10 min. DNAs were sonicated to obtain 200- 

to 400-bp DNA fragments on a Diagenode Bioruptor according to the manufacturer’s 

protocol. The following antibodies were used for ChIP assays: anti-rabbit IgG (Santa Cruz 

Biotechnology), anti-Phospho-STAT5 alpha (Tyr694) Antibody (6H5L15) Rabbit 

Monoclonal (Invitrogen). Primers for ChIP assays are listed in Supplemental Table 2. PCR 

data were normalized to input values that were quantified in parallel for each experiment.
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Tumor cell injections and treatment.

5×105 tumor cells were injected s.c. into mice, which formed tumors with a 1.5-cm diameter 

within 2–3 weeks of injection. Lipofermata was administrated s.c. at dose of 2 mg/kg twice 

per day. As a control, mice were treated with vehicle alone (DMSO + 30% v/v Kolliphor). 

Treatments with lipofermata started 8–10 days after tumors injections. CSF1R antibody 

(BioXcell, 300 μg/mouse) was administered every other day starting next day after tumor 

injection and continued until the mice were sacrificed. PD-1 antibody (clone RMP1–14, 

BioXcell, 200 μg/mouse) was administered twice a week started 10–12 days after tumor 

injection. CTLA4-IgG2a (BioXcell, 200 μg/mouse) was administered at day 7 and day 11.

Liquid chromatography-mass-spectrometry of lipids.

Lipids were extracted by Folch procedure with slight modifications, under nitrogen 

atmosphere, at all steps. The detailed protocol is provided in Supplemental Experimental 

Procedures. LC/ESI-MS analysis of lipids was performed on a Dionex HPLC system 

(utilizing the Chromeleon software), consisting of a Dionex UltiMate 3000 mobile phase 

pump, equipped with an UltiMate 3000 degassing unit and UltiMate 3000 autosampler 

(sampler chamber temperature was set at 4°C). The Dionex HPLC system was coupled to an 

Orbitrap Fusion Lumos mass spectrometer (ThermoFisher Scientific) or to a hybrid 

quadrupole-orbitrap mass spectrometer, Q-Exactive (ThermoFisher, Inc., San Jose, CA) with 

the Xcalibur operating system. The instrument was operated in negative and positive ion 

modes (at a voltage differential of –3.5–5.0 kV, source temperature was maintained at 

150°C). Phospholipids (PLs) MS and MS/MS analysis was performed on an Orbitrap Fusion 

Lumos mass spectrometer. The details are provided in Supplementary Information. MS and 

MS/MS analysis of free fatty acids (FFA) and TAG/CE was performed on a Q-Exactive 

hybrid-quadrupole-orbitrap mass spectrometer (ThermoFisher, Inc. San Jose, CA). The 

details are provided in Supplementary Information. MS lipid standards were from Avanti 

Polar Lipids (Alabaster, AL) and from Cayman Chemical Company (Ann Arbor, MI). 

Analysis of LC-MS data was performed using the software package Compound 

Discoverer™ (ThemoFisher Scientific).

Construction of LV-GFP-FATP2 plasmid.

The FATP2 gene was amplified from the pCMV6-Kan/Neo-FATP2 plasmid (Origene, Cat# 

MC206275) using the following primers: FATP2_For_XmaI 

(GGTGGTCCCGGGCCTATGCTGCCAGTGCTCTACAC) and FATP2_Rev_SalI 

(GGTGGTGTCGACTCAGAGCTTCAGAGTTTTAT). The amplified PCR product was then 

digested with XmaI/SalI and cloned into a SIV-based self-inactivating lentiviral transfer 

vector downstream of GFP (pGAE-CMV-GFP-P2A-FATP2-Wpre). The transfer vector 

pGAE-CMV-GFP-Wpre, the packaging plasmid pAd-SIV3+, and the vesicular stomatitis 

virus envelope G protein (VSV-G) pseudotyping vector from Indiana serotype (pVSV.GIND), 

have been previously described36,37. Vector production and validation is described in 

Supplemental Information.
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Statistical analysis.

Statistical analysis was performed using unpaired two-tailed Student’s t-test with 

significance determined at 0.05. Estimation of variation within each group of data was 

performed and variance was similar between groups that were compared. Animal 

experiments were not blinded. Tumor growth was evaluated using two-way Anova test with 

Bonferroni correction for multiple comparisons.

Extended Data
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Extended data Figure 1. Lipid accumulation and expression of lipid transporters in MDSC
a. Lipid accumulation measured by BODIPY staining in PMN-MDSC isolated from spleen 

and tumors of indicated tumor models. Each group included 4–8 mice. Each circle 

represents an individual mouse. Mean ± SD are shown. Inset - confocal image representative 

of 2 independent experiments. b. Lipid accumulation in PMN generated from BM HPC with 

GM-CSF and TES. (n=3–5). c. LC/MS analysis of TG in PMN from control mice and PMN-

MDSC from of EL4 TB mice (n=4). d. Lipid accumulation measured by BODIPY staining 

in M-MDSC isolated from spleen and tumor of indicated tumor models (n=10). Each circle 

represents an individual mouse. Mean ± SD are shown. e. Lipid accumulation in DC and 

MDSC generated from CD204 KO HPC in presence of TES (n=3). Mean ± SD are shown. f. 
Lipid accumulation in PMN-MDSC from spleen of tumor bearing WT and CD204 KO mice 

(n=3). Mean ± SD are shown. g. Suppressive activity of PMN-MDSC from spleen of tumor 

bearing WT and CD204 KO mice. Representative of 4 experiments each performed in 

triplicates. Mean ± SD are shown. h. Expression of msr1, fabps, slc27a (1–5), cd36 in 

control PMN and PMN-MDSC isolated from spleen and tumor of EL4 TB mice (n=4–5). 

Mean ± SD are shown. In all panels, p values were calculated in unpaired two-sided 

Student’s t-test: *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001.
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Extended data Figure 2. Expression of gene involved in lipogenesis in PMN-MDSC.
a. FATP2 protein in control PMN and PMN-MDSC from spleen of TB mice. Representative 

of 2 experiments. b. FATP2 in PMN generated in vitro from BM HPC. Representative of 2 

experiments. For gel source data, see Supplementary Figure 1. c. F244 tumor growth in WT 

and FATP2 KO SV129veve mice (n=4). d. Verification of correct targeting of FATP2 by RT-

qPCR and WB in PMN-MDSC isolated from spleen of slc27a2fl/fl x s100a8-cre− and 

slc27a2fl/fl x s100a8-cre+ TB mice. For gel source data, see Supplementary Figure 1. e. 
IFNγ production by CD8+ T cells and CD4 and CD8 T-cell proliferation (n=3) in WT and 

FATP2KO mice. Mean ± SD are shown. f. Suppressive activity of M-MDSC isolated from 

WT or FATP2 KO TB mice. Dashed line shows T cell proliferation without MDSC. Four 

experiments with similar results were performed. g. Suppressive activity of TAM from WT 

or FATP2 KO TB mice. Dashed line shows T-cell proliferation without macrophages. 3 

independent experiments with similar results were performed. In all panels mean and SD are 

shown. h. Growth of EL4 tumors in WT and FATP4 KO mice (n=4). Representative of 2 

experiments. Mean ± SD are shown. i. Suppressive activity of PMN-MDSC isolated from 

spleen or tumor of WT or FATP4 KO mice. Representative of 2 independent experiments 
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performed in triplicates. Mean ± SD are shown. Dotted line – control values of T cell 

proliferation without presence of PMN-MDSC. j. Growth of LLC tumor in WT and CD36 

KO mice, depleted of CD8+ T cells (n=3). Mean ± SD are shown. k. Lipid accumulation 

measured by BODIPY staining in PMN-MDSC and M-MDSC isolated from spleen and 

tumor of CD36 KO mice (n=3). Mean ± SD are shown. In all experiments p values were 

calculated in unpaired two-sided Student’s t-test.
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Extended data Figure 3. Effect of FATP2 KO on mRNA gene expression.
a. Expression heatmap for genes affected at least 5-fold, b. Number of significantly affected 

genes (FDR<5%) for different fold change thresholds. c. List of upstream regulators whose 

targets were found by Ingenuity Pathway Analysis (IPA) as significantly enriched among 

genes affected by FATP2 KO. n=number of affected targets, p=enrichment pvalue, 

Z=activation z-scores calculated by IPA represent predicted regulator state based on the 

known effect on target and direction of mRNA change. Negative activation z-scores predict 

inhibition and positive z-scores – activation of the regulator in the FATP2 KO mice.
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Extended data Figure 4. LC-MS analysis of lipids from WT and FATP2 KO PMN-MDSC.
a. TGs molecular species containing LA (18:2), docosapentaenoic acid (22:5), and 

docosahexaenoic acid (22:6) (n=7). b. Total CE and CE (20:4) molecular species (n=7). c. 
LA (18:2), docosapentaenoic acid (22:5), and docosahexaenoic acid (22:6) fatty acids 

(n=12). d. Distribution of major PLs in FATP2 KO and WT PMN-MDSC samples. e. 

Content of PLs containing AA in PE, PC, PI, and PS (n=12). f. Content of AAd11 labelled 

phospholipids (PI, PG, PA and PS), n=5. Statistical analysis was performed using unpaired 

two-sided Student’s t-test *P<0.05; **P<0.01 (each circle indicates an individual mouse, 

Mean ± SD).

Veglia et al. Page 19

Nature. Author manuscript; available in PMC 2019 October 17.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Extended data Figure 5. Metabolomic analysis and expression of FAO related genes in PMN-
MDSC.
a. Oxygen consumption rate (OCR) (top panel) and basal OCR (bottom panel) of WT and 

FATP2 KO PMN-MDSC. Representative of 2 experiments is shown in top panel (n=3–4). 

Bottom panel cumulative results are shown. Each circle indicates an individual mouse (n=7). 

Mean and SD are shown. P values were calculated using unpaired two-sided Student’s t-test. 

b. Extracellular acidification rate (ECAR) (top panel) and basal ECAR (bottom panel) of 

WT and FATP2 KO PMN-MDSC. Top panel - representative of 2 independent experiments 

(n=3–4). Bottom panel – cumulative results. Each circle indicates an individual mouse 

(n=7). Mean and SD are shown. Statistical analysis (unpaired two-sided Student’s t-test) was 

performed. NS, not significant; *P<0.05. c. Carbon-13 labeling of TCA cycle intermediates 

and associated amino acids. Ex vivo MDSC were cultured in physiological-like medium 

supplemented with BSA-conjugated 13C16-palmitate and GM-CSF for 18 hours. 

Metabolites were then extracted and analyzed by high-resolution LC-MS. Carbon-13 

isotopologs (M+x) for each metabolite are represented as normalized stacked bars. Data 

presented as Mean and SD of 3 biological replicates. Statistical analysis (unpaired two-sided 

Student’s t-test) was performed. d. Expression of genes involved in FAO. RT-qPCR analysis 

of cpta1, acadm, hadha expression in control PMN and PMN-MDSC isolated from spleen 

and tumor of TB mice. Each group included 3–6 mice and shown as Mean ± SD
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Extended data Figure 6. Exchange of nutrients with the media.
Ex vivo MDSCs were cultured in physiological-like medium supplemented with GM-CSF 

for 18 hours. Metabolites were then extracted from the media and analyzed by LC-MS. 

Upward bars represent efflux from the cells into the media, and downward bars represent 

uptake (or depletion) from the media by the cells. Data are normalized to protein content 

after extraction. Data are presented as a mean and SD (n=3).

Veglia et al. Page 21

Nature. Author manuscript; available in PMC 2019 October 17.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Extended data Fig. 7. Effect of AA on PGE2 production and suppressive activity of PMN-MDSC.
a. LC/MS analysis of PGE2 in PMN from control mice and PMN-MDSC from EL4 and 

CT26 TB mice (n=3). Mean ± SD are shown. b. PGE2 release (ELISA) by control PMN 

(n=4), PMN-MDSC from WT (n=11), and FATP2 KO (n=8) LLC TB mice. c. Expression of 

ptges in PMN-MDSC isolated form spleen of EL4 TB mice (n=13–15), KPC (n=3), RET 

(n=3–6). Mean ± SD are shown. d. Expression of ptgs2 and ptges in PMN-MDSC (qRT-

PCR) (n=6). e. Expression of arg1 and nos2 (qRT-PCR) in spleen PMN-MDSC from WT 

and FATP2 KO EL4 TB mice (n=3–5). Mean ± SD are shown. f. Flow cytometry of myeloid 

cells differentiated from HPC in presence of AA. Representative of 3 experiments. g. 
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Expression of arg1, nos2 and nox2 in PMN isolated from HPC cultures with AA. Data are 

pooled from 6 independent experiments and depicted as mean ± SD. h. pSTAT5 by flow 

cytometry at different time points in mouse PMN isolated from BM treated with different 

amounts of GM-CSF. Representative of 3 independent experiments. i. LLC tumor growth 

(n=4) in stat5fl/fl:cre− and stat5fl/fl:cre+ mice. j. Slc27a2 expression (RT-qPCR) in PMN-

MDSC from spleen of WT and KO TB mice (n=4). Statistical analysis - unpaired two-sided 

Student’s t-test: NS, not significant; *P<0.05; **P<0.01
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Extended data Figure 8. Lipid accumulation in MDSC from cancer patients.
a. Amount of lipids (BODIPY staining) in M-MDSC isolated from blood of cancer patients 

or healthy individuals. Each circle indicates an individual and Mean ± SD are also shown. b. 
Amount of lipids (BODIPY staining) in M-MDSC from blood and tumor tissue of cancer 

patients. Each circle indicates an individual (n=5). c. RNAseq analysis of genes involved in 

lipid accumulation in human LOX1+ PMN-MDSC and LOX1− PMN (n=4). d. PTGES 

expression in LOX1+ and LOX1− PMN from blood of cancer patients. Fold change over 

LOX1−PMN (n=3). e. Slc27a2 expression in M-MDSC and monocytes isolated from blood 

of cancer patients and healthy donors, respectively. Each circle indicates an individual (n=4–

6). Mean ± SD are shown. f. pSTAT5 by flow cytometry at different time points, in human 

PMN isolated from blood of healthy donor and treated with different amounts of GM-CSF. 

g. FATP2 in PMN isolated from blood of healthy donors and treated with GM-CSF. 

Representative of 3 independent experiments is shown. For gel source data, see 

Supplementary Figure 1. h. Content of total PE and AA-containing PE species in PMN-

MDSC isolated from lung cancer patients or healthy donors. Each circle indicates an 

individual; mean ± SD (n=4). Statistical analysis - unpaired two-sided Student’s t-test: 

*P<0.05; **P<0.01; ***P<0.001; ****P<0.0001.

Veglia et al. Page 24

Nature. Author manuscript; available in PMC 2019 October 17.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Extended data Figure 9. Effect of lipofermata treatment on tumor-bearing mice.
a. MTT assay after 3-day incubation of tumor cells with indicated concentration of 

lipofermata. b. Percentage and absolute number of tumor-associated antigen (E7-derived 

peptide) specific CD8+ T cells in draining lymph nodes of mice bearing TC-1 tumor and 

treated with lipofermata (n=3). Means and SD are shown. P values were calculated in two-

sided Student’s t-test: *P<0.05; c. Growth of TC-1 tumors in mice treated with CTLA4 

antibody and lipofermata (n=5). Mean and SD are shown. d. CD8+ T cell infiltration of 

TC-1 tumors in mice treated with CTLA4 antibody and lipofermata. Typical staining of 2 

different mice is shown. Scale bar = 50 μm. Bottom – the number of CD8+ T cells per mm2 

(n=2). e. Growth of TC-1 in mice treated with PD1 antibody and lipofermata (n=5). Mean ± 

SD are shown. P values are calculated in two-way ANOVA test with correction for repeated 

measurements. *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001.
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Extended data Table 1.
Major phospholipid molecular species, containing 
deuterated arachidonic acid in WT and FATP2 KO 
PMN.

Phospholipid molecular species are represented as di-acyl and alkenyl/acyl species: 

PE(16:0/20:4) and PE(16:0p/20:4), respectively. These m/z values indicate ratios of mass to 

charge [M + Formate]- ions for PC and [M - H]- ions for the rest of phospholipids PE, PI, 

PS, PG, BMP, PA, respectively. Data are mean + SD; differences were detected by Student’s 

t-test. N = 5.

PL Molecular species m/z ppm pmol/mg protein

WT FATP2 KO p value

PE(16:0/20:4d11) 749.5718 3.3 32.17 + 4.58 21.92 + 3.98 0.010

PE(18:0/20:4d11) 777.6079 0.9 119.83 + 14.37 72.62 + 14.22 0.002

PE(16:0p/20:4d11) 733.5833 3.2 218.51 + 41.30 131.27 + 17.43 0.006

PE(18:0p/20:4d11) 761.6130 0.9 279.61 + 57.35 142.52 + 11.91 0.002

PC(16:0/20:4d11) 837.6300 2.0 233.07 + 33.78 140.29 + 24.39 0.003

PC18:0/20:4d11) 865.6615 2.2 307.33 + 35.30 145.28 + 20.37 0.001

PC18:1/20:4d11) 863.6464 2.9 115.63 + 12.99 62.45 + 10.64 0.001

PC(16:0p/20:4d11) 821.6321 -0.4 20.72 + 4.25 10.26 + 2.60 0.004

PC(18:0p/20:4d11) 849.6662 1.8 478.76 + 92.27 232.63 + 32.48 0.002

PI(18:0/20:4d11) 896.6181 0.3 472.19 + 65.28 323.03 + 37.99 0.005

PS(18:0/20:4d11) 821.5989 2.9 93.44 + 28.97 68.20 + 9.77 0.143

PG(18:0/20:4d11) 808.6046 1.6 1.44 + 0.25 0.80 + 0.12 0.002

BMP(18:0/20:4d11) 808.6046 1.6 0.04 + 0.02 0.02 + 0.04 0.463

PA(16:0/20:4d11) 706.5362 1.4 7.44 + 1.62 3.65 + 1.20 0.006

PA18:0/20:4d11) 734.5683 3.8 52.40 + 8.87 31.22 + 6.83 0.006

PA18:1/20:4d11) 732.5525 4.4 4.45 + 1.15 1.54 + 0.62 0.003

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The effect of FATP2 deletion on tumor growth and PMN-MDSC function.
a. Slc27a2 expression in control PMN and PMN-MDSC from TB mice. b. Slc27a2 

expression in M-MDSC and PMN-MDSC from spleen of TB mice. c. Slc27a2 expression in 

indicated cells in EL4 TB mice. In a-c results of individual mice are shown. N=4–5. d. EL4 

or LLC tumor growth in C57BL/6 mice (n=4–5). Representative of 2 experiments. e. EL4 

tumor in mice reconstituted with WT or FATP2 KO BM cells. N=4–5. Representative of 2 

experiments. f. EL4 or LLC tumors in WT and FATP2 KO mice depleted of CD8+ T cells. 

Representative of 2 experiments (n=4–5). g. LLC tumors in mice with FATP2 KO targeted to 

PMN (S100A8-cre). N=4. h. Suppression of T-cell proliferation by PMN-MDSC isolated 

from WT or FATP2 KO TB mice. Four experiments with similar results were performed. 

Dashed line shows T cell proliferation without MDSC. In d-g p values were calculated in 

two-way ANOVA test. In all other panels p values were calculated using unpaired two-sided 

Student’s t-test. In all panels *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001 between 

control and test samples.
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Figure 2. Mechanism of FATP2 mediated suppression by PMN-MDSC.
a. TG in PMN-MDSC from spleens of EL4 TB WT and FATP2 KO mice (n=7). b. FA in 

PMN-MDSC from spleen of TB WT (n=12) and FATP2 KO mice (n=11). c. Phospholipid 

species containing AA residues in PMN-MDSC from spleen of TB WT (n=12) and FATP2 

KO mice (n=10). d. AAd11, and PGE2d11 in PMN-MDSC from spleen of TB WT and 

FATP2 KO mice (n=5). e. AAd11 labelled PE and PC in PMN-MDSC from WT (n=5) and 

FATP2 KO (n=4) TB mice. f. PGE2 (LS-MS) in PMN-MDSC from WT and FATP2 KO 

mice (n=6). g. Expression of slc27a2 (qRT-PCR) in PMN generated from HPC transduced 

with lentivirus expressing FATP2 or GFP (n=4). h. PGE2 release from cells described in g. 
N=4. In g,h - fold increase over GFP− cells after transduction. i. Suppressive activity (in 

triplicates) of PMN differentiated from HPC in the presence of AA. Representative of 3 

experiments is shown. Dashed line shows T cell proliferation without MDSC. j. PGE2 

production by PMN differentiated from HPC in the presence of AA (n=5). Fold changes 

over the control. k. PGE2 production by PMN differentiated from Ptgs2 KO HPC in the 

presence of AA. N=4. Fold changes over control. l. Suppressive activity (in triplicates) of 

PMN differentiated from Ptgs2 KO HPC in the presence of AA. Two independent 

experiments were performed. Dashed line shows T cell proliferation without MDSC. In all 

experiments Mean ± SD are shown and p values were calculated using unpaired two-sided 
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Student’s t-test. *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001 between control and test 

samples.
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Figure 3. Regulation of FATP2 in PMN-MDSC.
a. FATP2 in PMN treated with GM-CSF. Representative of 3 experiments. For gel source 

data, see Supplementary Figure 1. b. ChIP assay with STAT5 antibody in PMN from BM 

treated with GM-CSF. Triplicate measurements of representative of 2 experiments are shown 

c. FATP2 in stat5fl/fl:s100a8-cre PMN treated with GM-CSF. Representative of 3 

experiments. d. Amount of lipid (BODIPY staining) in PMN-MDSC isolated from blood 

healthy individuals (n=9) or patients with head and neck cancer (n=11), non-small cell lung 

cancer (n=6), or breast cancer (n=5). e. Amount of lipid (BODIPY staining) in PMN-MDSC 

isolated from blood and tumor tissue of cancer patients with NSCLC (n=4). f. Expression of 

SLC27A2 by RT-qPCR in PMN-MDSC isolated from blood of cancer patients and healthy 

donors. Fold change over control PMN (n=6). g. FATP2 in PMN-MDSC isolated from blood 

of cancer patients or healthy individuals. Representative of 3 experiments. h. SLC27A2 

expression by RT-qPCR in LOX1+ and LOX1− PMN from blood of cancer patients. Fold 

change over LOX1− PMN (n=8) i. LS/MS lipidomics of TG in PMN from healthy donors 

and PMN-MDSC from cancer patients. N=4. j. LS/MS lipidomics of free AA, LA, and DHA 

in PMN from healthy donors and PMN-MDSC from cancer patients (n=4). k. LS/MS 

lipidomics of PGE2 in PMN from healthy donors and PMN-MDSC from cancer patients 

(n=4). In all panels Mean ± SD are shown. Statistical analysis was performed using Two-

Way ANOVA (d). In all other panels using unpaired two-sided Student’s t-test: NS, not 

significant; *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001.
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Figure 4. Therapeutic effect of targeting FATP2.
Treatments with lipofermata (2 mg/kg twice per day s.c.) started 8–10 days after tumors 

injections. CTLA4 antibody (200 μg/mouse i.p.) was administrated at day 7 and day 11 after 

tumor injection. CSF1R antibody (300 μg/mouse; every other day). a. Growth of indicated 

tumors in C57BL/6 mice treated with lipofermata. Representative of 2 independent 

experiments (n= 4–5 mice per group) are shown. b. Growth of LLC tumors in NOD-SCID 

mice treated with lipofermata (n=5). c. Growth of LLC tumor in mice depleted of CD8 T 

cells and treated with lipofermata (n=5). d. Growth of LLC tumor in mice treated with 

CTLA4 antibody and lipofermata (n=5). e. Growth of LLC tumor in mice treated with 

CSF1R inhibitor and lipofermata (n=5). In all experiments Mean ± SEM are shown and 

statistical analysis was performed in two-way ANOVA test with corrections for multiple 

comparison *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001 differences from untreated 

cells and between treated groups.
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