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Abstract—Classical Fault Attacks often require
the ability to encrypt twice the same plaintext, in
order to get one or several pairs of correct and
faulty ciphertexts corresponding to the same message.
This observation led some designers to think that a
randomized mode of operation may be sufficient to
protect block cipher encryption against this kind of
threat.

In this paper, we consider the case where the
adversary neither chooses nor knows the input mes-
sages, and has only access to the faulty ciphertexts. In
this context, we are able to describe several attacks
against AES-128 by using non uniform fault models.
Our attacks target the last 4 rounds and allow to re-
cover the correct key with practical time complexity,
using a limited number of faulty ciphertexts. This
work highlights the need for dedicated fault attack
countermeasures in secure embedded systems.
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I. INTRODUCTION

It is today well known that cryptographic al-
gorithms are susceptible to Fault Attacks (FA for
short). Indeed, since the seminal work of Boneh et
al. [7], a lot of papers have proposed FA on several
widely used cryptographic primitives, including
symmetric ciphers such as the DES [5] or the
AES [17] as well as asymmetric operations like
RSA [7] or Elliptic Curve Cryptography [4].

FA consist in inducing a logical error through a
physical mean in one of the intermediate variables
of a cryptographic operation, and to exploit the
erroneous result to get information on the key.
The means to inject a logical error can consist
in over/under-powering the device during a short
instant, in tampering its clock, or in injecting a
light beam or an electro-magnetic field inside the
device [2], [16], [19].

Several cryptanalytic methods have been de-
veloped to exploit erroneous results in order to
retrieve the key. In the Differential Fault Analysis
(DFA) [5], one runs a cryptographic function twice
on the same input and introduces a fault towards
the end of one of the computations. Then, one can
retrieve information on the key from the differences
between the correct and the faulty results.

The Safe Error Attack (SEA) [20] consists in
sticking part of the cryptographic secret to a known
value. Then, the observation of a collision on the
result of a correct computation and a faulted one
on identical inputs leaks information on the secret.

In Collision Fault Analysis [6], one runs a
cryptographic operation on two related inputs, and
introduces a fault near the beginning of one of the
computations. The adversary then exploits cases
where a collision on the outputs occurs.

A common requirement of all these FA is the
necessity of processing two inputs that are either
identical or related, in order for the adversary to
generate pairs of correct/faulty ciphertexts. There-
fore, one requires the ability to control the input of
a cryptographic operation, which classifies them as
chosen-plaintext attacks. Some of these FA require
only one pair of correct/faulty outputs obtained
from the same input, whereas others require several
pairs to retrieve the secret key1.

Some protocols exploit this requirement as a
countermeasure against FA: they are constructed
such that it is not possible for the adversary to
encrypt/sign twice the same message (or two re-
lated messages). An example of such a construction

1Some other attacks (like in [5]) do not need the correct
ciphertexts. However, they require the knowledge of the plain-
texts.



can be achieved by padding a random value to
the message. They are thus inherently protected
against chosen-plaintext fault attacks. One can cite
the protocol described by Guilley et al. [13] or
EMV signatures [1].

At CHES 2009, Coron et al. exhibited a fault
attack against RSA signatures with partially un-
known messages [9], improved in [10]. Thus they
showed that protecting RSA signatures against FA
at the protocol level is generally not sufficient.

1) Our results: in this work, we propose new
Fault Attacks on AES, succeeding with random
and unknown plaintexts. The adversary only re-
quires a collection of faulty ciphertexts encrypted
with the same key. Unlike most traditional attacks,
we consider models in which the fault injection
introduces a bias on a target variable (as in [15]),
whereas the incoming variable is uniformly dis-
tributed due to the cipher properties.

First we propose two FA targeting the end of
the 9th and the 8th AES round. These attacks
exploit several fault models that include different
non uniformly distributed faults. The adversary has
to collect several faulty ciphertexts where one byte
of the State has been modified. Depending on
the bias introduced on the considered State byte,
we propose three different distinguishers allowing
to recover the secret key.

Then we propose two FA targeting the State of
the 7th and the 6th AES round just after the
MixColumns. In these two attacks, we are using
a more restrained fault model where the adversary
is able to stick some bytes to a constant unknown
value. The attack targeting the round 7 requires
to target one diagonal of the State, whereas
the attack on the round 6 needs to perturb three
diagonals of the State.

2) The paper is organized as follows: in Sec-
tion II we first briefly recall the AES block cipher
and define the notations we will use. Then we
describe the two attacks on rounds 9 and 8 using
non uniformly distributed faults in Section III.
We restrain the model to faults sticking bytes of
the State to constant unknown values in order
to attack rounds 7 and 6 in Section IV. Finally
conclusions are drawn in the Section V.

II. BACKGROUND AND NOTATIONS

A. A brief overview of the AES

In this paper we focus on applying our attack
strategy to the AES. We give only a partial descrip-
tion of this algorithm, that includes the features
of AES that are needed to understand our attacks,
see [12] for a complete specification.

The AES is a block cipher with 128-bit blocks.
In our attacks we consider the 128-bit key vari-
ant. The block is divided into an array of 4 × 4
bytes, indexed 0, . . . , 15. The quadruples of bytes
(4i, 4i + 1, 4i + 2, 4i + 3) are called columns and
the quadruples of bytes (i, i+ 4, i+ 8, i+ 12) are
called rows. In the following we will also speak of
diagonals when considering bytes (i, 4+(i+1 mod
4), 8 + (i+ 2 mod 4), 12 + (i+ 3 mod 4)).

An AES round is the composition of the follow-
ing four operations:

• SubBytes (SB): is the application of a fixed
permutation to each of the 16 bytes of the
State;

• ShiftRows (SR): is a circular shift on the
four rows of the State. More precisely, row
i is transformed by a circular shift on bytes
by i positions to the left;

• MixColumns (MC): is a linear bijection on
the four columns in parallel;

• AddRoundKey (AK): consists in XOR-ing a
128-bit round key to the 128-bit State.

A first key K0 is XOR-ed to the plaintext,
before the first round. In the last round, no
MixColumns operation is applied. We do not
provide a description of the round key generation
algorithm that is used to compute the 11 round keys
from the encryption key. We only remind the reader
that the encryption key (and thus all the sequence
of round keys) can be fully recovered from any of
the round keys.

Finally, we remind the reader of a well-known
property: let us consider a value of the State S
and a round key Kr. The result of the application
of a MixColumns followed by the round key
addition to S is MC(S) ⊕ Kr. As MC is linear,
we can write:



MC(S)⊕Kr = MC(S)⊕MC(MC−1(Kr))

= MC(S ⊕MC−1(Kr)).
(1)

This shows that the sequence of operations
MixColumns followed by AddRoundKey Kr is
equivalent to first the XOR of MC−1(Kr) followed
by a MixColumns.

B. Notations

We denote by K the secret key used by the
algorithm, and by Kr the key used in the r-
th round. Assuming several encryptions, we de-
note by P i the i-th plaintext encrypted using K,
and by Ci the corresponding ciphertext. Further-
more, we denote the intermediate State obtained
after the SubBytes (SB), ShiftRows (SR),
MixColumns (MC), AddRoundKey (AK) oper-
ation of the round r respectively by Ssbir, Ssr

i
r,

Smcir, Sak
i
r. For any State S, we denote by S̃

its faulty counterpart. For any hypothesis K̂ made
on K, we denote by Ŝ the hypothetical value of
S. Finally, we denote by S[j] the j-th byte of S.

As seen in Section II-A, the AddRoundKey op-
eration can be computed before the MixColumns,
provided that the round key Kr is replaced by
MC−1(Kr). We denote by Smodir the interme-
diate value of the State in this case, which
corresponds to Ssrir ⊕MC−1(Kr).

III. ATTACKS ON 9-TH AND 8-TH ROUND

A. Fault model and general principle

In this section, it is assumed that the adversary
is able to encrypt an unknown collection of plain-
texts {P 1, P 2, · · · , Pn}, and to inject a fault on a
particular byte Sakir[j] for all i ∈ [1, n]. We sup-
pose moreover that he has access to the resulting
collection {C̃1, C̃2, · · · , C̃n} of faulty ciphers, but
not to any correct ciphertext.

Our considered fault model covers a large set of
faults: the injected fault is only assumed to disturb
a particular byte of Sakir in such a way that the
distribution of the faulty value S̃akir[j] is biased,
even when Sakir[j] is uniform. We will however
distinguish three different cases, illustrating the

degree of control of the attacker on the injected
fault:

1) Perfect control. The attacker perfectly knows
the statistical distribution of the faulty value
S̃akir[j].

2) Partial control. The attacker has some partial
information on the distribution of the faulty
value S̃akir[j]. In particular, we will consider
the case where he knows the logical effect
induced by the perturbation. For the sake of
clarity, we will focus on the case where this
logical effect is a AND or OR function (this
means that we have S̃akir[j] = Sakir AND
ei or S̃akir[j] = Sakir OR ei, where e is an
unknown error byte).

3) No control. The attacker has no information
about the distribution of the faulty value
S̃akir[j], except that it is non uniform.

Our strategy to recover the correct key is some-
what similar to the one used in [18]. Several
hypotheses K̂ are made on secret bytes, in order to
retrieve an hypothetical value which distribution is
strongly biased. In our particular context however,
we do not need any correct ciphertexts to compute
the hypothetical value Ŝakir[j]. Depending on the
degree of control of the attacker on the fault distri-
bution, we use different distinguishers to retrieve
the correct key.

I/ Maximum likelihood. When the attacker per-
fectly knows the distribution of the faulty
value, he can then distinguish the correct key
by using a maximum likelihood approach,
that is, by looking for the hypothesis K̂ which
maximize l(K̂), where:

l(K̂) =

n∏
i=1

P (S̃akir = Ŝakir).

II/ Minimal (resp. Maximal) mean Hamming
weight. The AND (resp. OR) function inher-
ently introduces a bias in the distribution of
each bit of S̃akri [j]. With no further knowl-
edge, each bit of S̃akri [j] equals 0 with a
strong (resp. weak) probability. We hence
propose to search for the minimal (resp.
maximum) mean of Hamming weights (HW),



that is, to look for the hypothesis K̂ which
minimizes (resp. maximizes) h(K̂), where:

h(K̂) =
1

n

n∑
i=1

HW (Ŝakir).

III/ Square Euclidean Imbalance (SEI). When the
attacker only knows that the distribution is
biased, we propose to look for the strongest
possible bias. To this end we use the Squared
Euclidean Imbalance (like in [18]) to measure
the distance between the obtained hypotheti-
cal distributions and the uniform distribution.
We therefore look for the hypothesis K̂ max-
imizing s(K̂), such that:

s(K̂) =

255∑
δ=0

(
#{i|Ŝakir[j] = δ}

n
− 1

256

)2

.

During the rest of this section, we will use
the three following fault models to illustrate the
efficiency of the proposed distinguishers:

a) the so-called stuck at 0 fault model with prob-
ability 1:

S̃akri = Sakri AND 0 with proba. 1

b) the stuck at 0 fault model with probability 1
2

(where e is uniformly distributed in [0, 255]):

{
S̃akri = Sakri AND 0 with proba. 1

2

S̃akri = Sakri AND e with proba. 1
2

c) the stuck at model with an unknown and ran-
dom value e (where e is uniformly distributed
in [0, 255]):

S̃akri = Sakri AND e with proba. 1.

B. Attack on the 9-th round

1) Fault location: The fault is injected just after
the penultimate AddRoundKey operation of the
AES, modifying Sak9.

2) Description of the attack: We can express
S̃aki9 as a function of C̃i and one byte of K10:

S̃aki9 = SB−1 ◦ SR−1(C̃i ⊕K10). (2)

Each byte of S̃aki9 can hence be deduced using
only one hypothesis on a particular byte of K10

2.
Hence, from a collection of faulty ciphertexts
{C̃1, C̃2, . . . , C̃n}, we predict the corresponding
{Ŝak19, Ŝak29, . . . , Ŝakn9 }, and use one of the dis-
tinguishers to discriminate the correct key byte.

It should be noted that the SEI distinguisher
is useless in this context, as the distance to the
uniform distribution will be the same for each
hypothesis. Indeed, the inverse SubBytes and
AddRoundKey operations only perform a per-
mutation of the values of the end distribution,
therefore keeping the numbers of occurrences as an
invariant for every hypotheses. Thus, a substantial
information about the distribution of the faulty
value is necessary to successfully attack round 9.

3) Complexity analysis: As shown by equation
2, one can recover one byte of K10 by making
hypotheses on itself, thus allowing to predict the
corresponding byte of Ŝaki9. Therefore, our attack
needs a total of 28 hypotheses per key byte. Note
that if the adversary is able to disturb only one
byte of Sak9, he has to perform 16 times the
attack, each one targeting one byte index of K10.
On the contrary, if he perturbs the full State, the
collection of faulty ciphertexts will allow him to
retrieve all bytes of K10.

4) Attack results: We compare the efficiency
of our distinguishers against the considered fault
models. The results are computed over 1000 sim-
ulations and summarized in Figure 1.

C. Attack on the 8-th round

1) Fault location: The fault is injected just after
the ante-penultimate AddRoundKey operation of
the AES, modifying Sak8.

2A direct consequence is that a single fault perturbing the
whole State can be seen as 16 faults, each one perturbing
a single byte (indeed the bytes of the State are independent
ones from the others in the last round).



Max. likelihood Min. mean HW
(a) 1 1
(b) 10 14
(c) 14 18

Figure 1. Attack on round 9: Number of required faults to
retrieve (one byte of) K10 with a 99% probability.

2) Description of attack: We can express S̃aki8
as a function of C̃i, four bytes of K10 and one
byte of MC−1(K9):

S̃aki8 = SB−1 ◦ SR−1 ◦MC−1(SB−1◦
SR−1(C̃i ⊕K10)⊕K9)

= SB−1 ◦ SR−1(MC−1(SB−1◦
SR−1(C̃i ⊕K10))⊕MC−1(K9)).

(3)
Each byte of S̃aki8 can therefore be deduced

using one hypothesis on four bytes of K10 and
on a particular byte of MC−1(K9). Moreover, an
improvement can be made to enhance the efficiency
of the attack using the SEI distinguisher. Indeed, as
observed previously, the inverse SubBytes and
the AddRoundKey operations can be omitted,
allowing to mount this attack on S̃mod9:

S̃modi9 = MC−1◦SB−1◦SR−1(C̃i⊕K10). (4)

3) Complexity analysis: As shown by equation
4, one can recover four bytes of K10 by making
hypotheses on their value, thus allowing to predict
the corresponding byte of Ŝmodi9 (here four bytes
of K10 are connected to one byte of Smodi9 due
to inverse MixColumns). Therefore, our attack
needs a total of 232 hypotheses to retrieve 4 key
bytes, and has to be performed four times to
retrieve the entire K10.

4) Attack results: Using the SEI distinguisher
applied to the improved attack, the targeted four
key bytes are retrieved with 99% probability using
6 faulty ciphertexts for the model a), using 14
faulty ciphertexts for the model b), and using
around 80 faulty ciphertexts for the model c).

IV. ATTACKS ON 7-TH AND 6-TH ROUND

In this section we study the resistance of AES to
FA when a fault is inserted during rounds 6 or 7. As
the fault occurs earlier in the encryption process,
the bias it implies on the ciphertext is smaller and
more difficult to exploit. Therefore, we use stronger
fault models. Namely, we consider throughout this
section stuck at faults, that is, perturbations such
that the faulty byte(s) will take a constant but
unknown value.

A. Attack on round 7

1) Fault model: In this section we assume that
the adversary has the ability to inject a fault on a
full diagonal of the State during several encryp-
tions. By diagonal we mean a set of four bytes
before SR that enter the same MC operation, i.e.
bytes {0, 5, 10, 15}, {1, 6, 11, 12}, {2, 7, 8, 13} or
{3, 4, 9, 14}.

This fault model could seem difficult to achieve
in practice. However, in several implementations,
the bytes are processed by 4-uples (for in-
stance software implementations running on 32-
bit CPUs; in such a case, a fault modifying
the processing of one instruction can impact the
four handled data bytes, see [11] for a practi-
cal example). Indeed, since bytes {0, 5, 10, 15},
{1, 6, 11, 12}, {2, 7, 8, 13} and {3, 4, 9, 14} of the
State Sakr, Smcr or Ssbr+1 correspond to
the bytes that will be processed together during
the next MixColumns operation, they are often
manipulated together. Thus, a fault induced at such
time will affect all four bytes.

In our model, the fault injection consists in set-
ting the target part of the State to a constant (but
potentially unknown) value. Our analysis shows
that it does not need to be achieved with probability
1.

2) Description of the attack: We describe an
attack resulting from the injection of a fault on a
diagonal of Smc7. Depending on which intermedi-
ate value of the State is the easiest to target, the
same attack can be performed with a fault injection
on Sak7, Ssb8 or Ssr8 (in this last case, the fault
should target a column of the State instead of a
diagonal).
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Figure 2. Sketch of the attack on round 7 using a fault on a
diagonal of Smc7. Dark bytes are set to a constant value due
to the fault injection. Light bytes can be computed from the
ciphertext and a guess on four bytes on K10.

A sketch of the attack is depicted on Figure
2. It uses the following property: let us assume
that an adversary manages to inject a fault on
bytes Smci7[0, 5, 10, 15], during the encryption of `
different plaintexts, which means that these 4-uples
of bytes take a constant value (over the ` values
of i). In the remainder of this section, we denote
such a phenomenon by `-multi-collision. Figure
2 shows that this `-multi-collision propagates to
bytes Smodi9[0, 7, 10, 13].

Let us consider a key guess K̂. Then, starting
from the ciphertext Ci and computing backwards,
the resulting byte Ŝmodi9[0] depends only on key
bytes K̂10[0, 7, 10, 13]. For a time complexity of
` · 232 decryptions of the last round, we can then
detect which values of these four bytes lead to
a `-multi-collision on byte Ŝmodi9[0]. A similar
analysis enables the adversary to identify which
values of 4-uples K̂10[1, 4, 11, 14], K̂10[2, 5, 8, 15]
and K̂10[3, 6, 9, 12] lead to `-multi-collisions, re-
spectively on byte Ŝmodi9[7], Ŝmodi9[10] and
Ŝmodi9[13].

3) Complexity analysis: Let us consider the
first 4-uple of key bytes K̂10[0, 7, 10, 13]. We as-
sume that for any wrong key guess, the bytes

(
Ŝmodi9[0]

)
1≤i≤`

are independent and uniformly

distributed in GF (256). Then, the probability that
a wrong guess K̂10[0, 7, 10, 13] leads to a `-
multi-collision is 2−8(`−1). The average number
of wrong guesses that cannot be discarded is then
232−8(`−1). For ` > 5, only the right key guess
passes the test with high probability.

The same analysis applies to the other 4-uples
of key bytes. After exploiting the information ob-
tained by faulting the encryptions, the adversary
has to perform an exhaustive search on the remain-
ing key candidates. Its estimated complexity is:

Tsearch(`, `) =
(

232−8(`−1)
)4

= 2128−32(`−1) ,

which is practical for ` ≥ 4.
In the first step of the attack, one has to compute

a part of the decryption for each of the ` ciphertexts
in each of the 4 columns, under 232 different key
hypotheses. The complexity of this step is then
4`232. Therefore, the overall complexity of the
attack is given by:

Tattack(`, `) = 2128−32(`−1) + 4`232 .

4) Considering failed fault attempts: Let us
consider now that the adversary can inject such
a fault only with probability p. The attack de-
scribed above still applies, although the multi-
collision occurs only on `p of the ` values of
Smodi9[0, 7, 10, 13] (on average).

Therefore, after getting all the possible faulty
ciphertexts, we have to select a threshold τ for
the size of the largest multi-collision obtained with
the right key guess. Instead of considering all key
values that lead to an `-multi-collision on byte
Ŝmodi9[0], we select the key guesses for which a
τ -multi-collision occurs. As we wish to discard as
many wrong keys as possible and to keep the right
key in the selected pool with a good probability,
τ ≈ `p ≥ 4 is a natural choice.

The same modification applies to the other 4-
uples of key bytes. Considering the fact that the τ -
uple of indexes for which the collision occurs is the
same for each of the bytes Smodi9[0, 7, 10, 13], the



adversary can perform an overall search on these
τ -uples. This search only needs to be done once for
all 4 quadruples of key bytes. The time complexity
of the exhaustive search is now:

Tsearch(`, τ) =

(
`

τ

)
2128−32(`−1) .

Taking into account the first phase of the attack,
the overall time complexity becomes:

Tattack(`, τ) =

(
`

τ

)
2128−32(`−1) + 4`232 .

5) Improving the complexity of the first step: In
the description of our attack, the identification of
the key candidates is performed by an exhaustive
approach. Depending on the values of ` and τ , it
might be improved by using an algorithm searching
collisions in a list.

As the MixColumns operation is linear, so is
its inverse. Therefore, Smod9[0] can be expressed
as a linear function of Sak9[0, 1, 2, 3]. We denote
by L0,1 and L2,3 the linear operations such that
Smod9[0] = L0,1(Sak9[0, 1]) ⊕ L2,3(Sak9[2, 3]).
We denote by λ0,1 and λ2,3 these values. Start-
ing from the faulty ciphertext Ci, one can com-
pute λ̂0,1 = L0,1(Ŝaki9[0, 1]) by guessing only
K̂10[0, 13] and λ̂2,3 = L2,3(Ŝaki9[2, 3]) by guess-
ing only K̂10[7, 10]. We can then build two lists
Λ0,1 and Λ2,3 of 216 `-uples of bytes. Each `-uple
contains the values of λ̂i0,1 (or λ̂i2,3) for 1 ≤ i ≤ `.

Then, we guess which τ -uple of ciphertexts
(Ci1 , . . . , Ciτ ) is the result of τ successful fault
injections. For the right key guess, we have a
τ -multi-collision on Ŝmodi1,...,iτ9 , which can be
expressed as:

λ̂i10,1 ⊕ λ̂
i1
2,3 = . . . = λ̂iτ0,1 ⊕ λ̂

iτ
2,3 ,

which is equivalent to:

λ̂i10,1 ⊕ λ̂
i2
0,1 = λ̂i12,3 ⊕ λ̂

i2
2,3

. . .

λ̂i10,1 ⊕ λ̂
iτ
0,1 = λ̂i12,3 ⊕ λ̂

iτ
2,3 .

In each `-uple of Λ0,1 (resp. Λ2,3), we extract
the τ corresponding bytes λ̂i1,...,iτ0,1 (resp. λ̂i1,...,iτ2,3 ,

and keep the τ − 1-uples (λ̂i10,1 ⊕ λ̂
i2
0,1, . . . , λ̂

i1
0,1 ⊕

λ̂iτ0,1) (resp. .λ̂i12,3 ⊕ λ̂i22,3, . . . , λ̂
i1
2,3 ⊕ λ̂iτ2,3)). This

costs approximately 216τ operations. Then, we
sort both lists of 216 τ − 1-uples (for a cost of
2 × 16 × 216) and enumerate all the collisions
between both lists. In this step, the bottleneck is
the search through both lists if the resulting list
is expected to be smaller than the initial lists, or
the construction of the resulting list if it is larger.
As a consequence, the complexity of this step is
max

(
216, 232−8(τ−1)

)
.

Overall, by summing the complexities on
the four columns and the possible guesses of
(i1, . . . , iτ ), the complexity of this algorithm is:

Tstep1(`, τ) = 8`216 + 4
(
`
τ

) (
216τ + 32× 216

+ max
(
216, 232−8(τ−1)

))
≈ 8`216 + 224

(
`
τ

)
which is smaller than 4`232 for small values of

` and τ .
6) Results: The success probability of our at-

tack, depending on p, ` and τ is given in Figure 3.
This probability corresponds to the probability that
the correct key will be present in the selected group
of key candidates, i.e. we succeeded in at least τ
of our fault injections. We also give the expected
number of possible key candidates remaining after
the first step. This directly gives us the complexity
of the second step of our attack where all these
key candidates must be tested in order to find the
correct one. The complexity of the first step of the
attack will be at most 4`232 but can be reduced for
small values of ` and τ as shown above.

The table can be read as follows. With a prob-
ability of fault injection estimated at p = 0.8, the
attacker may choose to fault 6 messages. Then,
guessing the bits of the key as described above,
he may look for 4-multi-collisions, that is a set of
4 messages among the 6 having the same value on
the expected bytes. In that case, he will obtain a set
of approximately 235.9 possible keys. The correct
key will belong in this set only if he has indeed
obtained the expected fault 4 times among the 6
tries, that is with probability 0.9. If the adversary
chooses instead to look for 5-multi-collision, he



Proba. Nb. of expected Success Nb. of

of fault mess. collision proba. of key

inj. (p) (`) size (τ ) the attack candidates

1 4 4 1 232

5 5 1 1
0.9 4 4 0.66 232

5 4 0.92 234.3

6 4 0.98 235.9

6 5 0.88 6
0.8 5 4 0.74 234.3

6 4 0.90 235.9

6 5 0.66 6
8 5 0.94 56

0.7 6 4 0.75 235.9

7 4 0.88 237.1

7 5 0.65 21
0.5 8 4 0.64 238.1

10 4 0.83 239.7

10 5 0.62 252

Figure 3. Success probability of the attack on round 7 and
estimated number of selected key candidates

will decrease the number of candidates to approx-
imately 6 keys. However the correct key will be
in this set only with probability 0.66. Thus, for a
given p, there is a tradeoff between the number of
messages to fault, the size of the multi-collision to
search for, the success probability of the attack and
the size of the set of possible remaining keys.

B. Attack on round 6

In this section, we show that there is still a pos-
sibly exploitable leak when the fault is injected at
round 6. As it can be expected, the loss of security
is less dramatic when the fault is injected earlier
in the encryption process. But even if the attack
depicted in this section is not easily applicable, we
argue that it decreases the security level reached by
some AES implementations. It should also be taken
into account when choosing appropriate counter-
measures for a given implementation.

1) Fault model: In this section we extend the
diagonal fault model used in Section IV-A. We

assume that we are able to fault 3 diagonals of the
State Smc6. As above, the fault consists in set-
ting the corresponding bytes to an unknown fixed
value with a probability p. This means that when
the fault succeeds, only four bytes {0, 5, 10, 15},
{1, 6, 11, 12}, {2, 7, 8, 13} or {3, 4, 9, 14} keep
their original values.

2) Description of the attack: A sketch of the
attack is depicted in Figure 4. As previously,
depending on which intermediate value of the
State is more vulnerable to fault injections, the
attack can be performed on Smc6, Sak6, Ssb7 or
Ssr7 (in this last case, the fault should target 3
columns of the State instead of 3 diagonals).

As before, we assume that the fault injections
during several encryptions result in a τ -multi-
collision on the dark grey bytes in Figure 4.
This multi-collision propagates to 12 bytes of the
State Ssr8. After the MixColumns operation
of round 8, the first column of State Smc8 will
have only 28 possible values. Thus, we can expect
a collision between two such columns with only 24

successfully faulty ciphertexts. This new collision
is depicted in grey on Figure 4. It propagates to
bytes Smod9[0, 7, 10, 13]. This collision can be
detected, as in the previous attack, by guessing 4
bytes of K10.

3) Complexity analysis: Let us first assume that
we have a probability 1 of fault injection on the
three diagonals. According to [14], the expected
number of messages needed to obtain a τ -multi-
collision from a set of size r is given by:

N(r, τ) ∼r→∞
τ
√
τ !Γ

(
1 +

1

τ

)
r1−1/τ ,

where Γ is the gamma function Γ(x) =∫∞
0
e−ttx−1dt.

According to this formula, a 2-multi-collision
will occur on the first column of State Smc8
after approximately ` = 20 ciphertexts have been
successfully faulted. A 3-multi-collision will occur
after ` = 65 ciphertexts, a 4-multi-collision after
` = 128 and a 5-multi-collision will appear after
` = 202 ciphertexts. These numbers could be
increased to get a better success probability (see
results presented in Figure 5 for possible choices).



SubBytes7

SubBytes8

SubBytes9

SubBytes10

ShiftRows7

ShiftRows8

ShiftRows9

ShiftRows10

Add(K8)
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Figure 4. Sketch of the attack on round 6 using a fault on
Smc6. Dark bytes are set to a constant value due to the fault
injection. Light bytes can be computed from the ciphertexts and
a guess of four bytes on K10. Collision on the intermediate grey
bytes can be obtained with 24 faulty ciphertexts.

When the probability p of obtaining a faulty
ciphertext is less than 1, the number of messages
given above should be divided by p in order to
obtain the expected multi-collision even when the
fault is not certain.

The remainder of the attack proceeds as previ-
ously. The number of key candidates after the first
step of the attack is:

Tsearch(`, τ) =

(
`

τ

)
2128−32(`−1) .

Taking into account the first phase of the attack,
the overall time complexity is about:

Tattack(`, τ) =

(
`

τ

)
2128−32(`−1) + 4`232 .

Finally, the Figure 5 presents the success proba-
bility and the remaining key search complexity of
our attack for several values of p, ` and τ .

Proba. Nb. of expected Success Nb. of
of fault mess. collision proba. of key
inj. (p) (`) size (τ ) the attack candidates

1 128 4 0.36 255.3

155 4 0.59 256.5

202 5 0.28 231.3

245 5 0.54 232.7

0.9 143 4 0.36 256

174 4 0.60 257.1

225 5 0.28 232

273 5 0.54 233.5

0.8 160 4 0.36 256.6

194 4 0.59 257.8

253 5 0.29 233

307 5 0.54 234.4

0.7 183 4 0.36 257.4

222 4 0.59 258.6

289 5 0.29 233.9

350 5 0.54 235.3

0.5 256 4 0.36 259.4

310 4 0.59 260.5

404 5 0.29 236.3

490 5 0.54 237.7

Figure 5. Success probability of the attack on round 6 and
number of selected key candidates

V. CONCLUSION

In this work we have described several fault
attacks on AES-128 that lead to the recovery of
the whole secret key. Unlike previous fault attacks,
these attacks are in a faulty ciphertexts only model.
That is, the adversary does not know nor control
the encrypted messages. In particular he cannot
obtain a pair of correct/faulty ciphertexts from a
same plaintext.

Depending on the disturbed round, we use differ-
ent fault models. The common point of the models
we studied is that the distribution of the faulty
bytes is non uniform. This can be achieved when
the faulty value is forced to an unknown constant
or, more loosely, when the effect of the fault can
be modelized as an AND or OR operation with an
unknown error byte.

Our attacks require a reasonable number of



faulty ciphertexts (a few hundreds for the worse
attack), which makes them practical. We also toler-
ate failed injections and give results depending on
the success probability of obtaining the expected
fault. Our results based on simulations show that
such attacks present a real threat to cryptographic
algorithms and that FA countermeasures should
not rely exclusively on input randomization (like
the scheme proposed in [13]), but should also use
dedicated countermeasures (redundancy, infection
. . . ).
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