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Abstract. In this paper we present invalid-curve attacks that apply to the Mont-
gomery ladder elliptic curve scalar multiplication (ECSM) algorithm. An elliptic curve
over the binary field is defined using two parameters, a and b. We show that with a
different “value” for curve parameter a, there exists a cryptographically weaker group
in nine of the ten NIST-recommended elliptic curves over F2m . Thereafter, we present
two attacks that are based on the observation that parameter a is not utilized for the
Montgomery ladder algorithms proposed by López and Dahab (CHES 1999: Crypto-
graphic Hardware and Embedded Systems, LNCS, vol. 1717, pp. 316–327, Springer,
Berlin, 1999). We also present the probability of success of such attacks for general
and NIST-recommended elliptic curves. In addition we give some countermeasures to
resist these attacks.

Key words. Elliptic curve cryptography, Scalar multiplication, Montgomery ladder,
Fault-based attacks.

1. Introduction

In 1996 a fault analysis attack was introduced by Boneh et al. [5]. This attack is based
on fault injection in a device performing an RSA [33] or Rabin [32] digital signature
as well as some identification protocols such as the Fiat-Shamir [12] and the Schnorr
[37] schemes. Biehl et al. [3] proposed the first fault-based attack on elliptic curve cryp-
tography (ECC) [21,26]. Their basic idea is to change the input points, elliptic curve
parameters, or the base field in order to perform the operations in a weaker group where
solving the elliptic curve discrete logarithm problem (ECDLP) is feasible. A basic as-
sumption for this attack is that one of the two parameters of the governing elliptic curve
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equation is not involved for point operations formulas. In this way, the computation
could be performed in a cryptographically less secure elliptic curve. Later, Ciet and
Joye [7] have shown how to recover the secret key by applying the same principle of
invalid curves but using a less restrictive assumption of unknown but fixed faulty input
point.

Recently, Fouque et al. [14] proposed a fault attack on the Montgomery ladder imple-
mentation elliptic curve scalar multiplication. They showed how to retrieve the secret
scalar using elliptic curves defined over prime fields. They based their work on the fact
that the y-coordinate is not used for the elliptic curve scalar multiplication (ECSM) and
a computation after a fault may leave the original group and be in a twist of the original
elliptic curve. A number of protections against active fault attacks have been reported
in [3,4,7,15,31,42] and [10]. For a survey of methods of fault analysis attacks on ECC
and countermeasures, the reader is referred to [2].

The invalid-curve attacks presented by Biehl et al. [3] and Ciet and Joye [7] apply to
applications where the above-mentioned parameter is not used for the group formulas.
However, for the Montgomery ladder algorithm [22] used in the ECSM, it is not the case
since the parameter is utilized. In this paper we present fault-based attacks that apply
to the Montgomery ladder algorithm on curves defined over the binary field. Our work
takes advantage of the other parameter of the elliptic curve equation. After a brief re-
view of the Montgomery algorithm, we first present some observations about the NIST-
recommended curves over the binary field. Next, we present two invalid-curve-based
attacks on the target algorithm. Finally, we present some possible countermeasures to
the attacks presented in this paper.

2. Background

2.1. Montgomery’s Ladder Algorithm for ECSM

Montgomery [27] presented a method to compute multiples of points for a special type
of elliptic curve over prime fields. His technique has been generalized to other curves of
cryptographic interests [6,22,28]. Also, an extension of this method has been described
in the context of modular exponentiation [20]. The attacks presented here apply to the
Montgomery ladder algorithm proposed by López and Dahab [22] for elliptic curves
defined over the binary field.

The well-known simplified affine form of the Weierstrass equation of non-super-
singular elliptic curves over the binary field is [19]

y2 + xy = x3 + ax2 + b. (1)

The binary double-and-add and the Montgomery ladder algorithms (and their vari-
ants) are among the most commonly used schemes for performing ECSM on curves
defined by (1). Algorithm 1 below is a description of the Montgomery algorithm [27] in
its most basic form.



348 A. Dominguez-Oviedo, M.A. Hasan, and B. Ansari

Algorithm 1 Basic Montgomery’s ladder ECSM.

Input: P ∈ E(Fq), k = (kt−1 · · ·k1 k0)2 with kt−1 = 1.
Output: Q = kP .

1. Q0 ← P , Q1 ← 2P.

2. For i = t − 2 downto 0 do
2.1 If (ki = 0) then

2.1.1 Q1 ← Q0 � Q1, Q0 ← 2Q0;
2.2 Else

2.2.1 Q0 ← Q0 � Q1, Q1 ← 2Q1.

3. Return(Q0).

In each iteration of the algorithm, the difference between Q1 and Q0 is equal to
input point P . This fact leads to a formula for the x-coordinate of the sum of two
points without their y-coordinates. Below, we present such a formula due to López and
Dahab [22].

Let P = (x, y) be the difference between P1 and P0, i.e., P1 −P0 = P . If P is known,
then the x-coordinate of P0 � P1 can be obtained as:

x(P0 � P1) =
{

x2
0 + b

x2
0

if P0 = P1,

x + x0
x0+x1

+ (
x0

x0+x1
)2 if P0 �= P1.

(2)

Additionally the y-coordinate of P0, y0, can be obtained from P = (x, y), and the
x-coordinates of P0 and P1 (i.e., x0 and x1, respectively) as follows:

y0 = (x0 + x)[(x0 + x)(x1 + x) + x2 + y]
x

+ y. (3)

As one can clearly see, (2) involves parameter b. As a result, the invalid-curve attacks
presented by Biehl et al. [3] and Ciet and Joye [7] do not apply to the Montgomery
algorithm.

2.2. Elliptic Curve Discrete Logarithm Problem (ECDLP)

The ECDLP is based on the difficulty of obtaining k given P and Q(= kP ) for some
integer k and P , Q ∈ E(Fq) [19]. This principle has led to schemes equivalent to DLP-
based cryptosystems, such as Diffie-Hellman key exchange [8], ElGamal public key
encryption [11], ElGamal digital signatures [11], and DSA [13].

In practice for the ECDLP to be intractable, it is important to select appropriate do-
main parameters such as the finite field Fq where the curve E is defined, the curve E

itself, and the base point P . When the order n of the base point P is a large prime, the
fastest known algorithms to solve the ECDLP, namely the baby-step giant-step [40] and
the Pollard’s rho [30] algorithms, need O(

√
n) steps. Consequently, for security pur-

poses it is necessary that the size of the underlying finite field be at least the double of
the security level in bits. Security level of L bits is referred to as the best algorithm for
breaking the system that takes approximately 2L steps [19]. For example, for achieving
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an 80-bit security level, the cryptosystem would require an elliptic curve defined over
a finite field Fq , where q ≈ 2160. With respect to the selection of the elliptic curve E,
some types of curves are avoided for cryptographic applications since the ECDLP can
be reduced. These curves include supersingular curves [24], anomalous curves [35,39],
and curves over F2m for some non-prime values of m [16,18,23].

If the order of the base point P does not contain at least a large prime factor, then it
is possible to use an extension for ECC of the Silver–Pohlig–Hellman algorithm [29] to
solve the ECDLP as presented in Algorithm 2. This algorithm reduces the problem to
subgroups of prime order. Let n be the order of the base point P with a prime factor-
ization n = ∏j−1

i=0 p
ei

i , where pi < pi+1. Suppose that Q = lP , where P, Q ∈ E(Fq)

and l ∈ [0, n − 1]. This algorithm obtains during the outer loop, the value of l mod pi
ei

for each 0 ≤ i ≤ j − 1. With these values l mod n can be uniquely computed using the
CRT [25]. It is important to note that at Step 1.3.2 one EC discrete logarithm needs to
be computed. However, this operation is in a subgroup at the most of order pj−1. It can
be performed with the fastest known algorithms for ECDLP such as the Pollard’s rho
algorithm with an expected running time of O(

√
pm), where pm is the largest prime

divisor of ord(Pi).

Algorithm 2 Silver–Pohlig–Hellman’s algorithm for solving the ECDLP.

Input: P ∈ E(Fq), Q ∈ 〈P 〉, n = ord(P ) = ∏j−1
i=0 p

ei

i , where pi < pi+1.
Output: l mod n.

1. For i = 0 to j − 1 do
1.1 Q′ ← O, li ← 0.

1.2 Pi ← (n/pi)P .

1.3 For t = 0 to (ei − 1) do
1.3.1 Qt,i ← (n/pt+1

i )(Q � Q′).
1.3.2 Wt,i ← logPi

Qt,i . {ECDLP in a subgroup of order ord(Pi).}
1.3.3 Q′ ← Q′ − Wt,ip

tP .

1.3.4 li ← li + ptWt,i .

2. Use the CRT to solve the system of congruences l ≡ li (mod pi
ei ). This gives us

l mod n.

3. Return(l).

Example 1. Let E be the curve y2 + xy = x3 + 1 over the field F211 given by the
polynomial f (z) = z11 + z2 + 1. Let us represent the elements of F211 in hexadecimal
form. Consider the point P = (0x10F,0x27A) whose order is n = 92 = 22 · 23. Let
Q = (0x1FB,0x2C6). We can use Algorithm 2 to obtain l = logP Q as follows.

• During the first loop for i = 0 we can obtain l0 = l mod 22. We can find that
l0 = W0,0 + 2W2,0 = 1 + 2 · 0 = 1.

• For the second loop for i = 1 we determine l1 = l mod 23. It can be shown that
l1 = W1,0 = 18.

• Finally we have the following pair of congruences: l mod 4 = 1 and l mod 23 = 18.
Solving using the CRT we have l = 41.
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To resist the Silver–Pohlig–Hellman attack one can simply select an elliptic curve E

such that its group order, #E(F2m), is prime or almost prime, i.e., #E(F2m) = hn, where
n is a prime and h is small [19] (e.g., h ∈ [1,4]).

3. Parameter a and NIST-Recommended Curves

3.1. Parameter a

Theorem 1. Let E and E be non-supersingular elliptic curves defined over F2m . E

and E given by the equations

E : y2 + xy = x3 + ax2 + b,

E : y2 + xy = x3 + āx2 + b̄

are isomorphic over F2m if and only if Tr(a) = Tr(ā) and b = b̄. If the last condi-
tions are met, then there is an admissible change of variables (x, y) → (x, y + tx) that
converts E into E for some t ∈ F

∗
2m that satisfies ā = t2 + t + a.

By Theorem 1 we can state that the number of isomorphism classes for elliptic curves
defined by (1) is 2m+1 − 2. The latter comes from the number of possible values for
parameter b (i.e., 2m − 1) times the possible values of the trace function of parameter
a (i.e., 2). With the last observation, for a fixed value of parameter b there are only two
isomorphic classes of curves, one for each value of γ ∈ {0,1}, where Tr(a) = γ. Let us
define two representative elliptic curves, E0 and E1, one for each of these isomorphic
classes:

E0 : y2 + xy = x3 + b (a = 0), (4)

E1 : y2 + xy = x3 + x2 + b (a = 1). (5)

Lemma 1. Let E0 and E1 be two elliptic curves over F2m defined by (4) and (5),
respectively.

(i) The only points that E0(F2m) and E1(F2m) share are O and (0,
√

b).

(ii) Let (u, v) ∈ Ej(F2m), where u ∈ F
∗
2m, v ∈ F2m, and j ∈ {0,1}. Then, there does

not exist any point in Ej(F2m) of the form (u,w) for any w ∈ F2m , where j =
1 − j .

(iii) There exist two points of the form (u, v) and (u,u + v) in either E0(F2m) or
E1(F2m) for each u ∈ F

∗
2m and some v ∈ F2m.

(iv) The orders of E0(F2m) and E1(F2m) satisfy the following:

#E0(F2m) + #E1(F2m) = 2m+1 + 2. (6)

Proof. First, if we solve the quadratic expressions resulting from (4) and (5) with
x = 0, we obtain a unique solution y = √

b. For x �= 0, (1) has a solution for y if and
only if

Tr(x) + Tr(a) + Tr

(
b

x2

)
= 0. (7)
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Since the only difference between (4) and (5) is the value of parameter a, we can con-
clude from (7) that if any value of x ∈ F

∗
2m does not have a solution with a = j , then it

does with a = j̄ for j = 0 or 1. Also this equation shows that it is not possible to have
a solution for both E0 and E1 with the same x �= 0.

Additionally, for a given value of x �= 0 we have two distinct solutions that repre-
sent two elliptic curve points (i.e., a point and its negative). To this end, for x �= 0,
#E0(F2m) + #E1(F2m) consider exactly 2m+1 − 2 points on both curves. In addition,
the points O and (0,

√
b) are common and are counted twice in the sum of both orders,

bringing the total up to 2m+1 + 2 as shown in (6). �

Example 2. Let us consider F25 as represented by the irreducible polynomial f (z) =
z5 +z2 +1. Let us represent the elements of F25 in hexadecimal form. Let E0 and E1 be
the curves y2 + xy = x3 + 1 and y2 + xy = x3 + x2 + 1, respectively, defined over F25 .
E0(F25) has an order of 44 with the following set of points:

{(0x00,0x01),(0x01,0x00),(0x01,0x01),(0x02,0x1F),(0x02,0x1D),(0x03,0x0C),(0x03,0x0F),
(0x04,0x12),(0x04,0x16),(0x05,0x1A),(0x05,0x1F),(0x07,0x1F),(0x07,0x18),(0x09,0x1D),

(0x09,0x14),(0x0B,0x16),(0x0B,0x1D),(0x0C,0x05),(0x0C,0x09),(0x0D,0x0B),(0x0D,0x06),

(0x0F,0x19),(0x0F,0x16),(0x10,0x09),(0x10,0x19),(0x11,0x03),(0x11,0x12),(0x12,0x14),

(0x12,0x06),(0x15,0x12),(0x15,0x07),(0x17,0x0B),(0x17,0x1C),(0x18,0x0F),(0x18,0x17),

(0x1A,0x11),(0x1A,0x0B),(0x1B,0x0F),(0x1B,0x14),(0x1C,0x09),(0x1C,0x15),(0x1F,0x06),

(0x1F,0x19),O}.

On the other hand, E1(F25) has an order of 22 with the following set of points:

{(0x00,0x01),(0x06,0x10),(0x06,0x16),(0x08,0x17),(0x08,0x1F),(0x0A,0x18),(0x0A,0x12),
(0x0E,0x07),(0x0E,0x09),(0x13,0x1C),(0x13,0x0F),(0x14,0x0D),(0x14,0x19),(0x16,0x02),

(0x16,0x14),(0x19,0x04),(0x19,0x1D),(0x1D,0x1B),(0x1D,0x06),(0x1E,0x15),(0x1E,0x0B),

O}.

3.2. NIST-Recommended Curves

Let E(a,b) be a NIST-recommended elliptic curve defined over the binary field F2m

with curve parameters a and b. In Table 1, each NIST-recommended randomly chosen
elliptic curve over F2m is presented, where m = 163, 233, 283, 409, and 571. Then, for
each of these curves its corresponding curve Ê(̂a, b) is shown, where â = 1 − Tr(a).
Similarly, Table 2 gives the NIST-recommended Koblitz curves. For each curve the “val-
ues” of m, f (z), a, b, and #E(F2m) are listed, where f (z) is the irreducible trinomial or
pentanomial used as the reduction polynomial. For the random curves, parameter b is
shown in hexadecimal form. For each case the group order #E(F2m) is given in decimal,
followed by its prime factorization.

We notice that for each listed NIST-recommended curve E, the group Ê(F2m) is cryp-
tographically weaker; i.e., all the prime factors of #Ê(F2m) are smaller than the larger
prime factor of #E(F2m), with only one exception for the case of m = 283 for Koblitz
curves, where the orders of both E(F2m) and Ê(F2m) are almost prime. In Table 3,
the size of each prime factor of the group orders of these elliptic curves is presented.
Additionally, it can be shown by Rück’s theorem [34] that E(F2m) and Ê(F2m), where
m ∈ {163,233,283,409,571}, are cyclic groups for all the curves in Tables 1 and 2.



352 A. Dominguez-Oviedo, M.A. Hasan, and B. Ansari

Curve specifications for m = 163: f (z) = z163 + z7 + z6 + z3 + 1,
b = 0x 00000002 0A601907 B8C953CA 1481EB10 512F7874 4A3205FD

Standard Curve B-163. a = 1
#E(F2163 ) = 11692013098647223345629484885752781378513686403174

=(2)(5846006549323611672814742442876390689256843201587)

Weaker Curve. â = 0
#Ê(F2163 ) = 11692013098647223345629472437707746935981234284444

=(2)2 (31)(907)(18908293)(192478327)(28564469476693963307545101353)

Curve specifications for m = 233: f (z) = z233 + z74 + 1,
b = 0x 00000066 647EDE6C 332C7F8C 0923BB58 213B333B 20E9CE42 81FE115F 7D8F90AD

Standard Curve B-233. a = 1
#E(F2233 ) = 13803492693581127574869511724554051111679625474690027110758767268970926

=(2)(6901746346790563787434755862277025555839812737345013555379383634485463)

Weaker Curve. â = 0
#Ê(F2233 ) = 13803492693581127574869511724554050698124810413991519109891329626226260

=(2)2 (5)(283)(541)(584818873)(783195327693846094609)(9842010543696906015214412-

423419303)

Curve specifications for m = 283: f (z) = z283 + z12 + z7 + z5 + 1,
b = 0x 027B680A C8B8596D A5A4AF8A 19A0303F CA97FD76 45309FA2 A581485A F6263E31 3B79A2F5

Standard Curve B-283. a = 1
#E(F2283 ) = 15541351137805832567355695254588151253139251848753809778218393053540088555574-

757385742

=(2)(7770675568902916283677847627294075626569625924376904889109196526770044277-

787378692871)

Weaker Curve. â = 0
#Ê(F2283 ) = 15541351137805832567355695254588151253139257576080422561810605502282380007708-

578585076

=(2)2 (7)(19)2(5942982169)(48758898298463720443)(45527407299960753170946983)(11-

6544641275194419631177527)

Table 1. NIST-recommended randomly chosen curves and their weaker counterparts over F2m .

3.3. Invalid-Curve Attacks on Montgomery’s Ladder Algorithm

Consider a cryptosystem that uses a strong elliptic curve E(a,b) defined over F2m with
curve parameters a and b (e.g., a NIST-recommended elliptic curve), where m is an odd
number. Assume that Ê(̂a, b) is a weaker curve defined over F2m with curve parameters
â and b, such that Tr(̂a) = 1 −Tr(a). Consider that the attacker has the computational
power for computing the EC discrete logarithm using the Silver–Pohlig–Hellman algo-
rithm in the cryptographically weaker group Ê(F2m). Also consider that Ê(F2m) is a
cyclic group, which implies that there are φ(#Ê(F2m)) points of order #Ê(F2m). Addi-
tionally, for the attacks presented in this work we need to obtain #Ê(F2m). Using (6),
this value can be obtained from #E(F2m), which is usually public or can be obtained
with some point counting algorithms, e.g., [36,38]. Consider that the underlying ECSM
algorithm is the Montgomery ladder (Algorithm 1). Since this algorithm does not uti-
lize the curve parameter a, depending on the input point the computation can be carried
out in either E(F2m) or Ê(F2m). Then, the idea behind the attacks presented below is
to produce an incorrect result from the computation being performed in Ê(F2m) due
to a fault. Our contribution adopts the same single-bit flip fault model proposed in [5],
which has been shown to be practical [41].
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Curve specifications for m = 409: f (z) = z409 + z87 + 1,
b = 0x 0021A5C2 C8EE9FEB 5C4B9A75 3B7B476B 7FD6422E F1F3DD67 4761FA99 D6AC27C8 A9A197B2

72822F6C D57A55AA 4F50AE31 7B13545F

Standard Curve B-409. a = 1
#E(F2409 ) = 13221119375804971979038306160655420796568093659285624385692975966083155496547-

49610416287447524358221931959734576733135053542

= (2)(6610559687902485989519153080327710398284046829642812192846487983041577748-

27374805208143723762179110965979867288366567526771)

Weaker Curve. â = 0
#Ê(F2409 ) = 13221119375804971979038306160655420796568093659285624385692975844893076152904-

95772884469394234502917458405113523360298163484

= (2)2(13)(43)(599)(1867)(4201)(10711)(378828133699627599347)(31017040828999712-

946665122892352599407801073958767427697543570603579682776895114772929)

Curve specifications for m = 571: f (z) = z571 + z10 + z5 + z2 + 1,
b = 0x 02F40E7E 2221F295 DE297117 B7F3D62F 5C6A97FF CB8CEFF1 CD6BA8CE 4A9A18AD 84FFABBD

8EFA5933 2BE7AD67 56A66E29 4AFD185A 78FF12AA 520E4DE7 39BACA0C 7FFEFF7F 2955727A

Standard Curve B-571. a = 1
#E(F2571 ) = 77290750460345166893907037818639746885978546594128699973144705029030382845791-

20849072287998778831546166267762243853888972493744925633626140469056576606664-

822786382210571406

= (2)(3864537523017258344695351890931987344298927329706434998657235251451519142-

28956042453614399938941577308313388112192694448624687246281681307023452828830-

3332411393191105285703)

Weaker Curve. â = 0
#Ê(F2571 ) = 77290750460345166893907037818639746885978546594128699973144705029030382845791-

20849072487067548858765683586701882154819736966569718538324482502578117261658-

172001541048722292

= (2)2(7)(1153)(99262049966063)(641043691173743374578683)(365023114110807395366-

9603)(562516514411236993734142229508523209240999366989)(183237210684988683290-

3758716153488484939785889992701131641)

Table 1. (Continued.)

4. Basic Attack

Fault Model Let us assume that the adversary can inject a flip fault (single or multiple
bit) into the x-coordinate that might occur at random locations of the input point P =
(Px,Py) ∈ E(F2m) of a device computing the ECSM utilizing Algorithm 1. Suppose
that the resulting finite field pair after the fault injection is known and is P̃ = (P̃x,Py).

Consider that the result Q̃ = kP̃ = (Q̃x, Q̃y) is released.

4.1. Attack Description

For a given P̃ = (P̃x,Py) we can verify if there exists a point in Ê(F2m) with the same
x-coordinate, i.e., if ∃ P̂ ∈ Ê(F2m) such that P̂ = (P̃x, P̂y) for some P̂y ∈ F2m . In fact,
by Lemma 1 we can expect that if we flip single or multiple bits of the x-coordinate
such a point exists with a probability of about 1/2. Having P̃x , we can obtain P̂y as

P̂y = P̃x · Ht(
P̃x + b/P̃ 2

x + â
)

(8)

where Ht(·) denotes the half-trace function of the argument [19]. When P̂ ∈ Ê(F2m),
in a similar way we can obtain Q̂ = (Q̃x, Q̂y) ∈ Ê(F2m) for some Q̂y ∈ F2m .
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Curve specifications for m = 163: f (z) = z163 + z7 + z6 + z3 + 1, b = 1

Standard Curve K-163. a = 1
#E(F2163 ) = 11692013098647223345629483507196896696658237148126

= (2)(5846006549323611672814741753598448348329118574063)

Weaker Curve. â = 0
#Ê(F2163 ) = 11692013098647223345629473816263631617836683539492

= (2)2 (653)(6521)(34101072914026637)(20129541232727197849723433)

Curve specifications for m = 233: f (z) = z233 + z74 + 1, b = 1

Standard Curve K-233. a = 0
#E(F2233 ) = 13803492693581127574869511724554051042283763955449008505312348098965372

= (2)2 (3450873173395281893717377931138512760570940988862252126328087024741343)

Weaker Curve. â = 1
#Ê(F2233 ) = 13803492693581127574869511724554050767520671933232537715337748796231814

= (2)(92269)(114861079)(130034039)(5062109767067236109)(98933113739063012876557-

7490907)

Curve specifications for m = 283: f (z) = z283 + z12 + z7 + z5 + 1, b = 1

Standard Curve K-283. a = 0
#E(F2283 ) = 15541351137805832567355695254588151253139246935172245297183499990119263318817-

690415492

= (2)2 (388533778445145814183892381364703781328481173379306132429587499752981582-

9704422603873)

Other Curve. â = 1
#Ê(F2283 ) = 15541351137805832567355695254588151253139262489661987042845498565703205244465-

645555326

= (2)(7770675568902916283677847627294075626569631244830993521422749282851602622-

232822777663)

Curve specifications for m = 409: f (z) = z409 + z87 + 1, b = 1

Standard Curve K-409. a = 0
#E(F2409 ) = 13221119375804971979038306160655420796568093659285624385692975800915228451569-

96764202693033831109832056385466362470925434684

= (2)2 (330527984395124299475957654016385519914202341482140609642324395022880711-

289249191050673258457777458014096366590617731358671)

Weaker Curve. â = 1
#Ê(F2409 ) = 13221119375804971979038306160655420796568093659285624385692976010061003197882-

48619098063807927751307333979381737622507782342

= (2)(5616389)(90250595219)(53825825250806581242382638109975931)(24229267173791-

843616709438844395814578119094439350345010422887252197351)

Table 2. NIST-recommended Koblitz curves and, except for m = 283, their weaker counterparts over F2m .

Having P̂ , Q̂ ∈ Ê(F2m) one can obtain l = k or #Ê(F2m) − k mod n using Al-
gorithm 2, where n = ord(P̂ ). This would be possible because the computation
is performed in the weaker group Ê(F2m) and not in the original group E(F2m).
One can then exhaustively search for an integer k′ that satisfies (i) l = k′ mod n or
#Ê(F2m) − k′ mod n and (ii) Q̃ = k′P̃ . Thus, the idea of the basic attack is that the
adversary with only one pair (P̂ , Q̂) and some acceptable amount of exhaustive search
will be able to retrieve the secret scalar k with a probability of success ρ. Let e be a
parameter such that 2e is the maximum acceptable amount of exhaustive search space.
The complete attack procedure is presented as Algorithm 3.
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Curve specifications for m = 571: f (z) = z571 + z10 + z5 + z2 + 1, b = 1

Standard Curve K-571. a = 0
#E(F2571 ) = 77290750460345166893907037818639746885978546594128699973144705029030382845791-

20849072535914090826847338826851203301405845094699896266469247718729686468370-

014222934741106692

= (2)2 (193226876150862917234767594546599367214946366485321749932861762572575957-

11447802122681339785227067118347067128008253514612736749740666173119296824216-

17092503555733685276673)

Weaker Curve. â = 1
#Ê(F2571 ) = 77290750460345166893907037818639746885978546594128699973144705029030382845791-

20849072239152236863464511027612922707302864365614747905481375252905007399952-

980564988518187006

= (2)(83520557720108799306580699)(596201686362718542354710701)(7760879540369714-

17157963313951798343506780344407592335678148510064755548342323544940279982843-

98410755824034465814826497)

Table 2. (Continued.)

Case m Curve Size of each prime factor of #E(F2m)

(in bits)

Randomly 163 NIST B-163 E 2,163
chosen Weaker curve Ê 2,5,10,25,28,95
curves 233 NIST B-233 E 2,233

Weaker curve Ê 2,3,9,10,30,70,113

283 NIST B-283 E 2,283
Weaker curve Ê 2,3,5,33,66,86,87

409 NIST B-409 E 2,409
Weaker curve Ê 2,4,6,10,11,13,14,69,284

571 NIST B-571 E 2,570
Weaker curve Ê 2,3,11,47,80,82,159,191

Koblitz 163 NIST K-163 E 2,163
curves Weaker curve Ê 2,10,13,55,85

233 NIST K-233 E 2,232
Weaker curve Ê 2,17,27,27,63,100

283 NIST K-283 E 2,281
Other curve Ê 2,284

409 NIST K-409 E 2,281
Weaker curve Ê 2,23,37,116,234

571 NIST K-571 E 2,569
Weaker curve Ê 2,87,89,395

Table 3. Size of each prime factor of #E(F2m) and #Ê(F2m) (in bits) for the curves presented in Tables 1
and 2.
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In Step 8 of Algorithm 3, l = k or #Ê(F2m) − k mod n is obtained. The value of l

has only partial information about k. The remaining part of the scalar might be obtained
using an exhaustive search. The latter involves two main steps: (i) solve a system of
congruences with a test candidate and the known part of the scalar (Step 11.2.1), and
(ii) perform a scalar multiplication to verify if the solution of the system of congruences
is the desired scalar (Step 11.2.2).

Let r be the exhaustive search space. This value depends on n and #Ê(F2m). In
Step 11.2.1, for having a unique solution mod #Ê(F2m) it is necessary that

lcm(n, r) = #Ê(F2m). (9)

Algorithm 3 Basic invalid-curve attack on Montgomery’s ladder ECSM algorithm.

Input: E defined over F2m , access to Algorithm 1, the base point P = (Px,Py) ∈
E(F2m), the order #Ê(F2m), a parameter for acceptable amount of exhaustive search e.
Output: Scalar k with a probability of ρ.

# Phase 1: Collect faulty output
1. Inject a fault in P = (Px,Py) for obtaining P̃ = (P̃x,Py).
2. Compute Q̃ = kP̃ = (Q̃x, Q̃y) Algorithm 1.
3. T ← Q̃x + b/Q̃2

x + â.
4. If (Tr(T ) = 0) then

4.1 Q̂x ← Q̃x , Q̂y ← Q̃x · Ht(T );
5. Else

5.1 Go to Step 1.
# Phase 2: Obtain k partially using the Silver–Pohlig–Hellman algorithm

6. P̂x ← P̃x , P̂y ← P̃x · Ht(P̃x + b/P̃ 2
x + â).

7. Obtain n = ord(P̂ ).
8. Utilize Algorithm 2 with (P̂ , Q̂, n) to obtain l mod n.

# Phase 3: Exhaustive search and verification
9. Find the smallest value of r for lcm(n, r) = #Ê(F2m) (see (11)).

10. If (r = 1) then
10.1 Compute R = lP̃ using Algorithm 1.
10.2 If (R = Q̃) then return(l); else return(#Ê(F2m) − l).

11. Else if (r ≤ 2e) then
11.1 k′ ← 0.
11.2 While (k′ < r) do

11.2.1 Solve the system of congruences k′′ ≡ k′ (mod r) and
k′′ ≡ l (mod n).

11.2.2 Compute R = k′′P̃ using Algorithm 1.
11.2.3 If (R = Q̃) then return(k′′);
11.2.4 Else if (R = −Q̃) then return(#Ê(F2m) − k′′);
11.2.5 Else k′ ← k′ + 1.

12. Else return(“failure”).
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For efficiency, r should be selected as the minimum value that satisfies (9). Let
#Ê(F2m) = 2e0p

e1
1 p

e2
2 · · ·peu−1

u−1 be the prime factorization of #Ê(F2m), where ej ≥ 1 for

j ∈ [0, u − 1]. Let n = 2f0p
f1
1 p

f2
2 · · ·pfu−1

u−1 be the prime factorization of n = ord(P̂ ),
where 0 ≤ fj ≤ ej for j ∈ [0, u−1]. Similarly, let r = 2g0p

g1
1 p

g2
2 · · ·pgu−1

u−1 be the prime
factorization of r . Using notation similar to that utilized by Menezes et al. [25] with re-
gard to lcm, we can express (9) as

2max(f0,g0)p
max(f1,g1)

1 p
max(f2,g2)

2 · · ·pmax(fu−1,gu−1)

u−1 = 2e0p
e1
1 p

e2
2 · · ·peu−1

u−1 . (10)

The exponents of the minimum value of r that satisfies (10) are

gj =
{

0, if ej = fj ,

ej , otherwise,
(11)

for j ∈ [0, u − 1].
Note that if r > 2e, Algorithm 3 returns in Step 12 “failure”. This means that from a

specific pair (P̃ , Q̃) the exhaustive search space required to obtain uniquely the value
of k (i.e., r) is more than the maximum admissible exhaustive search space (i.e., 2e).
For example for a weaker group Ê(F2m) from the NIST-recommended curves, as we
show below, the probability of failure is quite low even for small values of e. Moreover,
in the case of no success with a particular pair (P̃ , Q̃), the attacker can repeat the attack
procedure until an inevitable success is achieved.

The probability of success of Algorithm 3 (i.e., ρ) depends on the maximum accept-
able amount of exhaustive search 2e and the order of point P̂ . Assume that point P̂ is
taken randomly from group Ê(F2m). In a cyclic group, it is well known that the number
of elements of order d is φ(d). Here #Ê(F2m) is not prime, and consequently not all
the points in Ê(F2m) have an order #Ê(F2m). Moreover, if #Ê(F2m) has several prime
factors (i.e., it is expected since Ê(F2m) is assumed to be a weaker group), the order of
the points could have any combination of those prime factors or their respective prime
powers. For example, the number of points with the full order #Ê(F2m) is φ(#Ê(F2m)).
In contrast, there is only one point of order two which corresponds to (0,

√
b).

4.2. Obtaining the Probability of Success ρ

Let #Ê(F2m) = 2n0p
n1
1 p

n2
2 · · ·pnu−1

u−1 be the prime factorization of #Ê(F2m), where
nj ≥ 1 for j ∈ [0, u − 1] and pj < pj+1 for j ∈ [1, u − 2]. Assume that point P̂ is
taken randomly from the group Ê(F2m). Here we will obtain the probability of success
ρ, first for specific values and then for an arbitrary value of e.

• Case 1: e = 0. If e = 0, then the attack will succeed when ord(P̂ ) = #Ê(F2m).

The number of points in Ê(F2m) of order #Ê(F2m) is

φ
(
#Ê(F2m)

) = 2n0−1
u−1∏
j=1

p
ni

i

(
1 − 1

pi

)
,
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and for this case the probability ρ is

ρe=0 = φ(#Ê(F2m))

#Ê(F2m)
= 1

2

u−1∏
j=1

(
1 − 1

pj

)
. (12)

Clearly, this value is bounded to 1/2. If p1 � 1, then ρe=0 would be close to 1/2
(e.g., all the Koblitz curves in Example 4.2).

• Case 2: e = 1. For e = 1, this probability can be obtained as follows:

ρe=1 =
⎧⎨
⎩

∏u−1
j=1(1 − 1

pj
), if n0 = 1,

1
2

∏u−1
j=1(1 − 1

pj
), otherwise.

(13)

• Case 3: e = 2. For e = 2, we can have two cases. First, if p1 �= 3, then ρe=2 is

ρe=2 =
⎧⎨
⎩

∏u−1
j=1(1 − 1

pj
), if n0 = 1 or 2,

1
2

∏u−1
j=1(1 − 1

pj
), otherwise.

(14)

Secondly, if p1 = 3, then it is necessary to take into account points of order
#Ê(F2m)/h, with h ∈ [1,3]. In this case ρe=2 is

ρe=2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

5
6

∏u−1
j=2(1 − 1

pj
), if n0 = 1 or 2, and n1 = 1,

2
3

∏u−1
j=2(1 − 1

pj
), if n0 = 1 or 2, and n1 ≥ 2,

1
6

∏u−1
j=2(1 − 1

pj
), if n0 ≥ 3, and n1 = 1,

1
3

∏u−1
j=2(1 − 1

pj
), otherwise.

(15)

• Case 4: Arbitrary e with some conditions. Let

#Ê(F2m) = 2n0p
n1
1 p

n2
2 · · ·pnt−1

t−1 p
nt
t p

nt+1
t+1 · · ·pnu−1

u−1 .

Assume that #Ê(F2m) splits completely in e bits such that

log2

(
2n0p

n1
1 · · ·pnt−1

t−1

) ≤ e and log2(pt ) > e.

If these conditions are satisfied, then the number of points whose order divides
p

nt
t p

nt+1
t+1 · · ·pnu−1

u−1 is

s =
g−1∑
i=0

φ
(
2j0(i)p

j1(i)

1 p
j2(i)

2 · · ·pjt−1(i)

t−1 p
nt
t p

nt+1
t+1 · · ·pnu−1

u−1

)
, (16)
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where

g = (n0 + 1)(n1 + 1) · · · (nt−1 + 1),

j0(i) = i mod (n0 + 1),

j1(i) =
⌊

i

n0 + 1

⌋
mod (n1 + 1),

j2(i) =
⌊

i

(n0 + 1)(n1 + 1)

⌋
mod (n2 + 1),

...

jt−1(i) =
⌊

i

(n0 + 1)(n1 + 1) · · · (nt−2 + 1)

⌋
mod (nt−1 + 1).

It can be shown that

g−1∑
i=0

φ
(
2j0(i)p

j1(i)

1 p
j2(i)

2 · · ·pjt−1(i)

t−1

) = 2n0p
n1
1 p

n2
2 · · ·pnt−1

t−1 .

Since the function φ is multiplicative,1 we can reduce (16) and obtain

s = 2n0p
n1
1 · · ·pnt−1

t−1 p
nt−1
t (pt − 1)p

nt+1−1
t+1 (pt+1 − 1) · · ·pnu−1−1

u−1 (pu−1 − 1).

In this case ρ is as follows:

ρ = s

#Ê(F2m)
= (pt − 1)(pt+1 − 1) · · · (pu−1 − 1)

ptpt+1 · · ·pu−1
. (17)

• Case 5: Arbitrary e. When we cannot split #Ê(F2m) in the form as in the previous
case, we can proceed as follows. First, search for the smallest prime factor such that
log2(pi) > e. Let t be the index of this prime factor. Let d = p

nt
t p

nt

t+1 · · ·pnu−1
u−1 .

From all the possible combinations of the prime factors p0p1 · · ·pt−1 and their
respective powers, we need to consider only those whose product with d has a
value of r that satisfies (9) and r ≤ e. The complete procedure for this case is stated
in Algorithm 4. This algorithm also includes the computation of ρ for Cases 1–4.

Algorithm 4 Probability of success ρ for Algorithm 3.

Input: The order #Ê(F2m) = 2n0p
n1
1 p

n2
2 · · ·pnt−1

t−1 p
nt
t p

nt

t+1 · · ·pnu−1
u−1 , a parameter for ac-

ceptable amount of exhaustive search e, where 0 ≤ e < log2 (pu−1).
Output: Probability of success ρ.

1. If (e = 0) then return(ρe=0) using (12);
2. Else if (e = 1) then return(ρe=1) using (13);

1 If gcd(m,n) = 1, then φ(mn) = φ(m)φ(n).



360 A. Dominguez-Oviedo, M.A. Hasan, and B. Ansari

3. Else if (e = 2) then return(ρe=2) using (14) or (15);
4. Else if #Ê(F2m) splits completely in e bits such that log2(2

n0p
n1
1 · · ·pnt−1

t−1 ) ≤ e

and log2(pt ) > e

4.1 Return(ρ) using (17);
5. Else

5.1 Search for the smallest prime factor such that log2(pi) > e. Set t with this
index.

5.2 d ← p
nt
t p

nt+1
t+1 · · ·pnu−1

u−1 .
5.3 ρ ← 0.
5.4 For jt−1 = 0 to nt−1 do

For jt−2 = 0 to nt−2 do
...

For j0 = 0 to n0 do
h ← 2j0p

j1
1 · · ·pjt−2

t−2 p
jt−1
t−1 .

Find the smallest value of r for lcm(d · h, r) = #Ê(F2m).
If (r ≤ 2e) then

ρ ← ρ + φ(h).

5.5 ρ ← ρ(pt −1)(pt+1 −1) · · · (pu−1 −1)/(2n0p
n1
1 p

n2
2 · · ·pnt−1

t−1 ptpt+1· · ·pu−1).

5.6 Return(ρ).

4.3. Probability of Success ρ for Ê(F2m) from NIST-Recommended Curves

Table 4 presents the probability of success of Algorithm 3 for Ê(F2m) from the NIST-
recommended curves. This shows the probability of obtaining the scalar k using a single
faulty point P̃ ∈ Ê(F2m) and specific values of parameter e. We notice that with the min-
imum amount of exhaustive search (i.e., e = 0) the values are close to 1/2, especially
for the Koblitz curve cases where the relation between the two smallest prime factors
of #Ê(F2m) is greater (e.g., p1/2 ≈ 10.8 × 106 for the example of the Koblitz curve
over F2409 ). Also for the Koblitz curve examples, it can be noticed that with e = 2 their
probabilities are close to unity, as shown in the fifth column of Table 4. In contrast, for
the randomly chosen curves, similar values close to unity are obtained with e = 10, as
illustrated in the rightmost column of this table.

Table 5 shows the minimum value of parameter e for obtaining a probability ρ larger
than some specific values. From this table it can be noticed that for practical situations
e could be quite small for an exhaustive search (e.g., say 14) and still have a reasonably
high probability of success ρ (e.g., ρ > 999

1000 ).

Cost of Algorithm 3 Most of the computational cost of Algorithm 3 is involved in
phases 2 and 3, i.e., obtaining k partially using the Silver–Pohlig–Hellman algorithm
(Algorithm 2) and the exhaustive search with verification process, respectively. The
cost of both phases depends on the order of P̂ , i.e., n, and the order #Ê(F2m). Let us
consider the cost of each phase.

3 The case of m = 283 for Koblitz curves is omitted for this and any subsequent table since there does not
exist a cryptographically weaker group Ê(F2m).
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Case m ρ

e = 0 e = 1 e = 2 e = 5 e = 10

Randomly 163 0.48333745 0.48333745 0.96667491 0.98278616 0.99943089
chosen 233 0.39784981 0.39784981 0.79569963 0.99462453 0.99677211
curves 283 0.40601504 0.40601504 0.81203008 0.94736842 0.96992481

409 0.44966230 0.44966230 0.89932460 0.93679646 0.99732494
571 0.42819973 0.42819973 0.85639945 0.99913270 0.99913270

Koblitz 163 0.49915775 0.49915775 0.99831549 0.99831549 0.99908107
curves 233 0.49999457 0.99998915 0.99998915 0.99998915 0.99998915

409 0.49999991 0.99999982 0.99999982 0.99999982 0.99999982
571 0.49999999 0.99999999 0.99999999 0.99999999 0.99999999

Table 4. Probability of success ρ of obtaining k with Algorithm 3 for Ê(F2m) from NIST-recommended
curves3 for a given parameter e.

Case m Parameter e (in bits)

ρ > 1 − 1
100 ρ > 1 − 1

1000 ρ > 1 − 1
1×106

Randomly 163 7 10 17
chosen 233 5 12 20
curves 283 11 14 14

409 8 12 23
571 5 5 15

Koblitz 163 2 10 15
curves 233 1 1 18

409 1 1 1
571 1 1 1

Table 5. Minimum value of parameter e for obtaining a probability ρ larger than some given values for
Ê(F2m) from NIST-recommended curves.

• Silver–Pohlig–Hellman’s algorithm (phase 2 of Algorithm 3). Step 1.3.2 of the
Silver–Pohlig–Hellman algorithm (Algorithm 2), which is the only step in this
algorithm with significant cost, needs to compute one EC discrete logarithm. This
operation can be performed with a fast algorithm for ECDLP such as Pollard’s
rho algorithm [30] with an expected number of point operations of about 3

√
pt−1,

where pt−1 is the largest prime divisor of n. This running time can be further
reduced using a parallelized version of the Pollard’s rho algorithm [43] to about
(
√

πpt−1/2)/M point operations, where M is the number of processors used for
solving the ECDLP instance. Additionally, as shown by Gallant et al. [17], if a
Koblitz curve over F2m is utilized, then the parallelized version of the Pollard’s rho
algorithm can take about (

√
πpt−1/m)/(2M) point operations.

• Exhaustive search and verification (phase 3 of Algorithm 3). With n = ord(P̂ )

and #Ê(F2m), the exhaustive search space r is obtained using (9) (see Step 9 of
Algorithm 3). Thus, assuming t ≈ m, the phase 3 of Algorithm 3 will require r

scalar multiplications in the worst case which represents at most (3mr)/2 point
operations if a binary method is utilized.
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Example 3. Let us consider the cost of phases 2 and 3 of Algorithm 3 for Ê(F2m)

from the NIST-recommended curve K-163. For a single processor, the cost of phase 2 is
of about 3

√
p4 ≈ 243.6 point operations, where p4 is the largest prime factor of #Ê(F2m)

(see Table 2). Now, assume that we have M = 10,000 computers for solving the instance
of the ECDLP. In this case the expected number of point operations for each processor
is approximately (

√
πp4/163)/20000 ≈ 224.9. For the phase 3 cost, from Tables 3 and 5

we can notice that with a probability greater than 999
1000 the exhaustive search space will

be less than 210, which implies a number of point operations <3(163)(210)/2 ≈ 217.9.

5. Attack with Unknown Faulty Base Finite Field Pair ˜P

Fault Model Let us assume that the adversary can inject a single-bit flip fault into
the x-coordinate of the input point Pi = (Pi,x,Pi,y) ∈ E(F2m) of a device comput-
ing the ECSM utilizing Algorithm 1 for some i. Suppose that the resulting finite
field pair after the fault injection P̃i = (P̃i,x,Pi,y) is unknown. Also, consider that
the fault location is at a random position of the x-coordinate. Consider that the result
Q̃i = kP̃i = (Q̃i,x, Q̃i,y) is computed.

5.1. Attack Description

Under this scenario the attacker might retrieve the secret scalar as follows. First, it is
necessary to collect some faulty outputs of the form Q̃i = kP̃i = (Q̃i,x, Q̃i,y) for which
there exists a point Q̂i ∈ Ê(F2m) such that Q̂i = (Q̃i,x, Q̂i,y) for some Q̂i,y ∈ F2m .
In fact, with two different points Q̂i ∈ Ê(F2m), where i ∈ {0,1}, and some acceptable
amount of exhaustive search it is possible to obtain k with a high probability.

Let P̂i be a point in Ê(F2m) with the same x-coordinate as P̃i = (P̃i,x,Pi,y), i.e.,
P̂i = (P̃i,x, P̂i,y) ∈ Ê(F2m) for some P̂i,y ∈ F2m . Since P̃i (and consequently P̂i ) is un-
known, we need to guess it among those finite field pairs that differ from each Pi in
only one bit of their x-coordinate. Let ci be the number of possible candidates for P̂i ,
where i ∈ {0,1}. Let Ri,j be a candidate for P̂i , where i ∈ {0,1} and j ∈ [0, ci − 1].
Initially, by Lemma 1 we can expect that ci is about m/2. However, this amount could
be further reduced depending on the order of Q̂i . This is possible because we know that
ord(Q̂i) ≤ ord(P̂i), and more precisely ord(Q̂i)|ord(P̂i). Let ηi be the reduction
factor due to the latter condition such that ci ≈ ηi

m
2 .

After collecting the faulty outputs we can construct two tables Ai of ci entries with
the output of the Silver–Pohlig–Hellman algorithm for each (Ri,j , Q̂i , ni,j ), where i ∈
{0,1}, j ∈ [0, ci − 1], and ni,j = ord(Ri,j ). These tables are illustrated in Fig. 1. Thus,
having li,j mod ni,j in each entry of Tables A0 and A1, we could distinguish those that
are likely to be equivalent to either k or #Ê(F2m) − k. The idea is to search entry pairs
v and w that satisfy either

l0,v ≡ l1,w

(
mod gcd(n0,v, n1,w)

)
or (18)

l0,v ≡ #Ê(F2m) − l1,w

(
mod gcd(n0,v, n1,w)

)
. (19)

In practical situations where m ≥ 163 it is more likely to have a unique candidate pair
that satisfies either (18) or (19), because it is expected that ni,j � ci for i ∈ {0,1} and
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Fig. 1. Tables A0 and A1 with the output of the Silver–Pohlig–Hellman algorithm for each (Ri,j , Q̂i , ni,j ),
where i ∈ {0,1}, j ∈ [0, ci − 1], and ni,j = ord(Ri,j ).

j ∈ [0, ci − 1]. Nevertheless, even if there is not a unique candidate pair it is possible
to verify which one is equivalent to k or #Ê(F2m) − k after performing an exhaustive
search similar to the attack presented in the previous subsection. The complete attack
procedure is presented in Algorithm 5. Let e be a parameter such that 2e is the max-
imum acceptable amount of exhaustive search per candidate pair found in Step 5 of
Algorithm 5. Also, let us define σ as the probability of success for retrieving the scalar
k using Algorithm 5.

Algorithm 5 Invalid-curve attack with unknown faulty base point P̃ .

Input: E defined over F2m , access to Algorithm 1, base point Pi = (Pi,x,Pi,y) ∈
E(F2m) with i ∈ {0,1}, the order #Ê(F2m), a parameter for acceptable amount of ex-
haustive search e.
Output: Scalar k with a probability of σ

# Phase 1: Collect faulty outputs
1. i ← 0.
2. While (i < 2) do

2.1 Inject a fault in Pi = (Pi,x,Pi,y) for obtaining P̃i = (P̃i,x,Pi,y).
2.2 Compute Q̃i = kP̃i = (Q̃i,x, Q̃i,y) using Algorithm 1.
2.3 T1 ← Q̃i,x + b/Q̃2

i,x + â.
2.4 If (Tr(T1) = 0) then

2.4.1 Q̂i,x ← Q̃i,x , Q̂i,y ← Q̃i,x · Ht(T1), i ← i + 1.
# Phase 2: Construct tables

3. For i = 0 to 1 do
4. T2 ← 1.

4.1 For j = 0 to m − 1 do
4.1.1 Rx ← Pi,x + T2.
4.1.2 T3 ← Rx + b/Rx

2 + â.
4.1.3 If (Tr(T3) = 0) then

(a) Ry ← Rx · Ht(T3).
(b) Obtain n = ord(R).
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(c) If (ord(Q̂i)|n) then
(i) Utilize Algorithm 2 with (R, Q̂i, n) to obtain l mod n.

(ii) Store (l, n) in Table Ai .
4.1.4 T2 = T2 � 1.

# Phase 3: Searching for candidate pairs
5. For some entries v and w in Tables A0 and A1, respectively, search for

candidate pairs that satisfy lv ≡ lw (mod gcd(nv, nw)) or lv ≡ #Ê(F2m) −
lw (mod gcd(nv, nw)).

6. For the candidate pairs where lv ≡ #Ê(F2m) − lw (mod gcd(nv, nw)) set lw ←
#Ê(F2m) − lw (mod nw) in Table A1.

# Phase 4: Exhaustive search and verification
7. For each candidate pair do

7.1 Solve the system of congruences l ≡ lv (mod nv) and l ≡ lw (mod nw).
7.2 n ← lcm(nv, nw).
7.3 Find the smallest value of r for lcm(n, r) = #Ê(F2m).
7.4 If (r = 1) then

7.4.1 Compute R = lP̃ using Algorithm 1.
7.4.2 If (R = Q̃) then return(l);
7.4.3 Else if (R = −Q̃) then return(#Ê(F2m) − l).

7.5 Else if (r ≤ 2e) then
7.5.1 k′ ← 0.
7.5.2 While (k′ < r) do

(a) Solve the system of congruences k′′ ≡ k′ (mod r) and k′′ ≡
l (mod n).

(b) Compute R = k′′P̃ using Algorithm 1.
(c) If (R = Q̃) then return(k′′);
(d) Else if (R = −Q̃) then return(#Ê(F2m) − k′′);
(e) Else k′ ← k′ + 1.

8. Return(“failure”).

Number of Entries of Tables A0 and A1 Let #Ê(F2m) = 2e0p
e1
1 p

e2
2 · · ·peu−1

u−1 be the
prime factorization of #Ê(F2m). As stated before, the number of entries of Table Ai , ci ,
depends on the reduction factor ηi . The latter in turn depends on the order of Q̂i and the
order of the candidate points for P̂i , Ri,j , where i ∈ {0,1} and j ∈ [0, ci −1]. Assuming
that the points Ri,j are taken randomly from the group Ê(F2m), it can be shown that ηi

depending on ord(Q̂i) has the following bounds:

ηmax ≤ ηi ≤ 1,

where ηmax = 1
2

∏u−1
j=1(1 − 1

pj
). The lower bound of the above expression corresponds

to the case when ord(Q̂i) = #Ê(F2m). In this case the reduction factor is maximum
(i.e., ηmax), and consequently the number of entries of Table Ai is minimum (i.e.,
cmin ≈ ηmaxm

2 ). On the other hand, theoretically the upper bound of ηi holds only when
ord(Q̂i) is the point of order two (0,

√
b). However, for the cases where p1 � 2 (e.g.,
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Case m ηmax η
ηmaxm

2 ≈ cmin
m
2 ≈ cmax

ηm
2 ≈ c

Randomly 163 0.483 0.665 39.4 81.5 54.2
chosen 233 0.398 0.574 46.3 116.5 66.9
curves 283 0.406 0.573 57.5 141.5 81.1

409 0.450 0.623 92.0 204.5 127.3
571 0.428 0.603 122.2 285.5 172.1

Koblitz 163 0.499 0.686 40.7 81.5 55.9
curves 233 0.499 0.749 58.2 116.5 87.4

409 0.499 0.749 102.2 204.5 153.4
571 0.499 0.749 142.7 285.5 214.1

Table 6. Minimum, maximum, and average number of entries of Tables Ai for Ê(F2m) from the NIST-
recommended curves.

Ê(F2m) for the Koblitz curves of Table 2), if ord(Q̂i) = #Ê(F2m)/2e0 , then the re-
duction factor is close to unity. For these cases the number of entries of Table Ai is
maximum (i.e., cmax ≈ m

2 ). In Table 6 the values of ηmax, cmin, and cmax are given for
each Ê(F2m) from the NIST-recommended curves. Also, this table shows the average
cases for ηi and ci (i.e., η and c, respectively).

Algorithm 5 needs to compute in total c0 + c1 EC discrete logarithms using the
Silver–Pohlig–Hellman algorithm. This number is fixed since the search for candidate
pairs and the exhaustive search phases are performed after the tables’ construction. If
we merge these three phases, a speedup on average can be achieved. Let us describe two
approaches that one could take to combine these phases.

1. We can first completely construct Table A0. Then, each time an entry of Table A1
is obtained, we can verify whether this entry satisfies the congruence in (18) or
(19) with any entry of A0. For each candidate pair found (if any) we proceed with
the exhaustive search and verification process. If the verification fails, then we
continue to obtain the next entry of Table A1 and repeat the process until the scalar
is obtained. Even when using this approach the number of EC discrete logarithms
in the worst case is the same as that using Algorithm 5 (i.e., c0 + c1); on average
it is roughly c0 + 1

2c1.
2. Another approach is to construct Tables A0 and A1 in an alternate way. Each time

an entry in Ai is obtained, we can search Table Ai for candidate pairs that satisfy
either Congruence (18) or (19) for i ∈ {0,1}. For each candidate pair found (if
any) we proceed with the exhaustive search and verification process. This process
is repeated until a candidate pair passes the verification process, i.e., the scalar is
found. Let Tables A0 and A1 be of the same size, i.e., c0 = c1. For this case the
average number of EC discrete logarithms is ≈ 4

3c0. In Appendix A we show how
the latter value is obtained. This appendix also includes the case where c0 �= c1.

5.2. Obtaining the Probability of Success σ

The probability of success σ of Algorithm 5 depends on parameter e and the order
of both P̂0 and P̂1. Consider that the latter two points are taken randomly from the
group Ê(F2m). For each trio (P̂i , Q̂i , ni), the Silver–Pohlig–Hellman algorithm pro-
vides li mod ni , where i ∈ {0,1} and ni = ord(P̂i). Utilizing these values, a system of
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congruences is solved and a solution mod n is obtained, where n = lcm(n0, n1) (see
Step 7.2). This “combination” of modulus ni might reduce the exhaustive search space
in comparison with the individual case of n0 or n1. This observation permits us to ob-
tain a relation between the probabilities of success ρ and σ for Algorithms 3 and 5,
respectively. In this case ρ is the probability that from an individual pair (li , ni), i = 0
or 1, we could obtain the scalar using exhaustive search for a given value of e. Then we
can express σ as follows:

σ = 2ρ − ρ2 + λ. (20)

The first two terms represent the probability that for a given e we could obtain the scalar
from at least one of the two pairs. The third term, λ, is the probability that the “combi-
nation” does succeed in obtaining the scalar with exhaustive search when neither pair
individually does so for a given value of e. Equation (20) gives an explicit lower bound
for σ , i.e., σ ≥ 2ρ − ρ2. In fact, for the cases of Ê(F2m) from the NIST-recommended
curves we notice that σ ≈ 2ρ − ρ2 for e ≥ 2.

For obtaining a more precise value of σ one can check, from all the possible order
values of two points (i.e., P̂0 and P̂1), which ones provide sufficient scalar information
for obtaining the rest using exhaustive search for a given parameter e. Additionally we
need to consider the probability of occurrence of every point order combination. The
complete procedure is provided in Algorithm 6.

Algorithm 6 Probability of success σ for Algorithm 5.

Input: The order #Ê(F2m) = 2n0p
n1
1 · · ·pnu−1

u−1 , a parameter for acceptable amount of
exhaustive search e, where e ≥ 0.
Output: Probability of success σ .

1. σ = 0
2. For Ju−1 = 0 to nu−1 do

For Ju−2 = 0 to nu−2 do
...

For J0 = 0 to n0 do
D ← 2J0p

J1
1 · · ·pJu−1

u−1
N ← φ(D)

For ju−1 = 0 to nu−1 do
For ju−2 = 0 to nu−2 do

...

For j0 = 0 to n0 do
d ← 2j0p

j1
1 · · ·pju−1

u−1
n ← lcm(D,d)

Find the smallest value of r for lcm(n, r) = #Ê(F2m).
If (r ≤ 2e) then

σ ← σ + N · φ(d).
3. σ = σ/(#Ê(F2m))2

4. Return(σ ).
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5.3. Probability of Success σ for Ê(F2m) from NIST-Recommended Curves

Table 7 presents the probability of success of Algorithm 5 for Ê(F2m) from the NIST-
recommended curves. This shows the probability of obtaining the scalar k for specific
values of parameter e. These values were obtained using Algorithm 6. We notice that the
probability of success is better in comparison with the basic attack. In fact, for e ≥ 2 the
relation between the probability of success of both attacks is σ ≈ 2ρ − ρ2. In Table 8,
we list the minimum value of parameter e for obtaining a probability σ larger than
some specific values. This table shows that even with small values of e (e.g., say 14) the
probability of success is quite high (e.g., σ > 999,999

1,000,000 ).

Cost of Algorithm 5 The most significant computational cost of Algorithm 5 is in-
volved in phases 2 and 4, i.e., construction of tables and the exhaustive search with
verification process, respectively. Let us consider the cost of each phase.

• Construction of tables (phase 2 of Algorithm 5). Compared with the basic attack
presented in the previous subsection (Algorithm 3), Algorithm 5 needs to perform
c0 + c1 instances of the Silver–Pohlig–Hellman algorithm (Algorithm 2) instead of

Case m σ

e = 0 e = 1 e = 2 e = 5 e = 10

Randomly 163 0.74921865 0.74921865 0.99895820 0.99973864 0.99999970
chosen 233 0.71998855 0.71998855 0.95998473 0.99998410 0.99999555
curves 283 0.73265871 0.73265871 0.97687829 0.99722992 0.99926508

409 0.74515657 0.74515657 0.99354209 0.99797754 0.99999814
571 0.73469332 0.73469332 0.97959110 0.99999925 0.99999925

Koblitz 163 0.74999822 0.74999822 0.99999763 0.99999763 0.99999939
curves 233 0.74999999 0.99999999 0.99999999 0.99999999 0.99999999

409 0.74999999 0.99999999 0.99999999 0.99999999 0.99999999
571 0.74999999 0.99999999 0.99999999 0.99999999 0.99999999

Table 7. Probability of success σ of obtaining k with Algorithm 5 for Ê(F2m) from the NIST-recommended
curves for a given parameter e.

Case m Parameter e (in bits)

σ > 1 − 1
100 σ > 1 − 1

1000 σ > 1 − 1
1×106

Randomly 163 2 5 10
chosen 233 5 5 12
curves 283 3 9 14

409 2 6 12
571 3 5 5

Koblitz 163 2 2 10
curves 233 1 1 1

409 1 1 1
571 1 1 1

Table 8. Minimum value of parameter e for obtaining a probability σ larger than some given values for
Ê(F2m) from the NIST-recommended curves.
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one, where ci is the size of Table Ai for i ∈ {0,1}. Similar to the cost of phase 2 of
Algorithm 3, the cost to construct the tables with a single processor is about 3(c0 +
c1)

√
pt−1 point operations, where pt−1 is the largest prime divisor of #Ê(F2m). If

M processors are used, then about (c0 + c1)
√

πpt−1/2/M point operations are
required. If a Koblitz curve over F2m is utilized, then this cost can be reduced to
about (c0 + c1)(

√
πpt−1/m)/(2M) point operations. These costs clearly depend

directly on values of ci , which depends on the order of Q̂i and the order of the
candidate points for P̂i . As discussed earlier, the bounds for ci are approximately
ηmaxm

2 ≤ ci ≤ m
2 , where ηmax is the maximum reduction factor which depends on

#Ê(F2m).
• Exhaustive search and verification (phase 4 of Algorithm 5). In phase 3 of Algo-

rithm 5 using Tables A0 and A1, a search for candidate pairs that satisfy either (18)
or (19) is performed. As discussed earlier, for today’s applications where m ≥ 163
it is expected to have a unique candidate pair. In this way, in phase 4 an exhaus-
tive search is performed in order to obtain the full value of the scalar. Here, the
exhaustive search space r is obtained in Steps 7.2 and 7.3. Thus, assuming t ≈ m,
the phase 4 of Algorithm 5 will require r scalar multiplications in the worst case
which represents at most (3mr)/2 point operations if a binary method is utilized.

Example 4. Let us consider the cost of phases 2 and 4 of Algorithm 5 for Ê(F2m)

from the NIST-recommended curve K-163. Let us use the minimum and maximum
values of ci from Table 6 to give an interval for each cost. For a single processor, the
cost of phase 2 is approximately in the interval [6cmin

√
p4,6cmax

√
p4] ≈ [249.9,250.9]

point operations, where p4 is the largest prime factor of #Ê(F2m) (see Table 2). Now,
assume that we have M = 10,000 computers for solving the instances of the ECDLP. In
this case the expected number of point operations for each processor is approximately in

the interval [ cmin(
√

πp4/163)
10000 ,

cmax(
√

πp4/163)
10000 ] ≈ [231.2,232.2]. For the phase 4 cost, from

Tables 3 and 5 we can notice that with a probability greater than 999
1000 the exhaustive

search space will be r ≤ 4. Here the cost of phase 4 is negligible.

6. Countermeasures

The attacks presented in the previous section only need one or two faulty outputs to
break the given instance of ECSM with a high probability of success. Hence, this may
constitute a threat to cryptosystems using the Montgomery ladder ECSM for elliptic
curves over the binary field. Therefore, some countermeasures are needed. In the fol-
lowing, we will describe possible protections against the attacks presented in this paper.

Group Formulas Change A possible countermeasure is to use alternative group for-
mulas that include both elliptic curve parameters a and b. However, such formulas are
likely to require more computations and hence cause a degradation in terms of perfor-
mance. Additionally, if this approach is the only protection used, no errors due to faults
are detected, and this might constitute a risk for other attacks such as the DFA attack
presented by Biehl et al. [3].
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Curve Selection The attacks presented in this paper assume that Ê(F2m) is a crypto-
graphically weaker group where the ECDLP could be solved in a reasonable period
of time for a given E(F2m). However, this assumption is not true if both #E(F2m)

and #Ê(F2m) are almost prime. From the NIST-recommended curves, the only curve
that satisfies this condition is referred to as K-283. Although, this curve selection cri-
terion is an effective countermeasure against the fault-based attacks presented in this
paper, it might be too restrictive from a practical point of view. Moreover, the following
two countermeasures represent a possible solution without limiting the use of particular
group E(F2m) even when the order of Ê(F2m) is not an almost prime number.

Point Verification (PV) It is important to verify that the input point is in E(F2m). In the
case where this checking could be bypassed, it is more important to verify whether or
not the output is on the original elliptic curve. This countermeasure not only prevents the
attacks presented in this paper, but also others such as those described by Biehl et al. [3],
Ciet and Joye [7], and Antipa et al. [1]. It is important to note that this verification needs
to be implemented in a secure environment. Otherwise, the attacker might bypass this
protection and carry out an invalid-curve attack such as one of those described earlier
in this paper.

Coherency Check (CC) In addition to PV, which could be applied to any ECSM algo-
rithm, the Montgomery ladder ECSM algorithm also permits us to detect errors in scalar
multiplication using a coherency check (CC). We can use the fact that the temporary pair
(Q0,Q1) is of the form (l · P, (l + 1)P ) for some integer l at any value of i during the
loop of Montgomery’s algorithm. Since the difference between Q1 and Q0 should be
P at any iteration, one can check this during and after the ECSM operation. Note that
if the attacker is able to modify the input point P in the way described in Algorithms 3
and 5, the operation Q1 − Q0 needs to be implemented using group formulas that in-
clude both curve parameters, a and b, or at least parameter a to avoid performing this
checking operation in Ê(F2m). This approach for error detection is presented in more
detail in [9].

7. Conclusion

In this paper we have presented two invalid-curve attacks that apply to the Montgomery
ladder ECSM algorithms proposed by López and Dahab [22]. These attacks exploit the
fact that parameter a is not used in the group formulas for these particular algorithms.
In this way, if Ê(F2m) is a weaker group with the same parameters as the original group
E(F2m) except for parameter a and we are able to inject a fault in the input point as
described in Algorithms 3 and 5, then we would retrieve the scalar k with a high prob-
ability of success. For the purpose of the NIST-recommended curves, we have shown
that there exists a weaker group for nine of the ten cases that include the randomly
chosen and Koblitz curves. The only exception is the curve K-283, for which #E(F2m)

and #Ê(F2m) are almost prime. Also, we have obtained the theoretical probability of
success for each of the presented attacks. Additionally, we have determined numerical
values of the probabilities of success for Ê(F2m) from the NIST-recommended curves.
And finally, we have presented some countermeasures to prevent the attacks described
in this paper.
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Appendix A. Average Number of EC Discrete Logarithms for Algorithm 5

In this appendix we include the computations of the average number of EC discrete
logarithms for Algorithm 5 using the second improved approach described on page 365.
As assumed in Sect. 5, the fault location is at a random position of the x-coordinate of
the base point P . This assumption implies that the value of k mod ni is at a random
position in Tables Ai , where ni = ord(P̂i) and i ∈ {0,1}. Let us define the random
variable w as the number of entries needed for having k mod ni in both tables. The
order of the possible values of w is shown in Fig. A.1 for the case c0 < c1.

Case: c0 = c1 In this case the accumulative probability distribution F(w) for some
given values is as follows:

F(1) = 0, F (2) = 1/c2
0,

F (3) = 2/c2
0, F (4) = 4/c2

0,

F (5) = 6/c2
0, F (6) = 9/c2

0,

F (7) = 12/c2
0, F (8) = 16/c2

0,

...
...

F (2c0 − 1) = (c0 − 1)/c0, F (2c0) = 1.

We can write F(w) as

F(w) =
{

(w2 − 1)/(4c2
0), w odd, and 1 ≤ w ≤ 2c0 − 1,

w2/(4c2
0), w even, and 2 ≤ w ≤ 2c0.

Fig. A.1. Values of the random variable w according to entries of Tables A0 and A1 considering c0 < c1.
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Then the probability distribution f (w) = F(w) − F(w − 1) is

f (w) =
{

(w − 1)/(2c2
0), w odd, and 1 ≤ w ≤ 2c0 − 1,

w/(2c2
0), w even, and 2 ≤ w ≤ 2c0.

The mean μ can be expressed by

μ =
2c0∑
w=1

wf (w).

After performing a change of variables (i.e., y = w−1
2 and y = w

2 for the odd and even
number cases, respectively), μ can be rewritten as

μ =
c−1∑
y=0

y(2y + 1)

c2
0

+
c0∑

y=1

2y2

c2
0

= 8c2
0 + 3c0 + 1

6c0
≈ 4

3
c0 (for c0 � 1). (A.1)

Case: c0 < c1 Similar to the previous case, we can write F(w) for some given values
as follows:

F(1) = 0, F (2) = 1/(c0c1),

F (3) = 2/(c0c1), F (4) = 4/(c0c1),

F (5) = 6/(c0c1), F (6) = 9/(c0c1),
...

...

F (2c0 − 1) = (c0 − 1)/c1, F (2c0) = c0/c1,

F (2c0 + 1) = (c0 + 1)/c1, F (2c0 + 2) = (c0 + 2)/c1,
...

...

F (c0 + c1 − 1) = (c1 − 1)/c1, F (c0 + c1) = 1.

We express F(w) as

F(x) =

⎧⎪⎪⎨
⎪⎪⎩

(x2 − 1)/(4c0c1), x odd, and 1 ≤ x ≤ 2c0 − 1,

x2/(4c0c1), x even, and 2 ≤ x ≤ 2c0,

(x − c0)/c1, 2c0 + 1 ≤ x ≤ c0 + c1.

For this case the probability distribution f (x) is

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

(x − 1)/(2c0c1), x odd, and 1 ≤ x ≤ 2c0 − 1,

x/(2c0c1), x even, and 2 ≤ x ≤ 2c0,

1/c1, 2c0 + 1 ≤ x ≤ c0 + c1.
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We can obtain the mean μ as follows:

μ =
c0+c1∑
x=1

xf (x).

After performing a change of variables (i.e., y = x−1
2 and y = x

2 for the odd and even
number cases, respectively, where 1 ≤ x ≤ 2c0 ), μ can be expressed as

μ =
c0−1∑
y=0

y(2y + 1)

c0c1
+

c0∑
y=1

2y2

c0c1
+

c0+c1∑
x=2c0+1

x

c1
,

(A.2)

μ = 3c2
1 − c2

0 + 6c0c1 + 3c1 + 1

6c1
.

Case: c0 > c1 This case is very similar to the previous case. In fact, from (A.2) we
can perform the changes of variables c0 ← c1 and c1 ← c0 to obtain the mean for this
case:

μ = 3c2
0 − c2

1 + 6c0c1 + 3c0 + 1

6c0
. (A.3)
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