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Abstract

There are two fundamental limitations in software testing, known as the reliable test set problem and

the oracle problem. Fault-based testing is an attempt by Morell to alleviate the reliable test set problem.

In this paper, we propose to enhance fault-based testing to alleviate the oracle problem as well. We

present an integrated method that combines metamorphic testing with fault-based testing using real and

symbolic inputs.
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1 Introduction

Program correctness has long been one of the most fundamental issues of computer science. Although

program proving provides a formal means of verifying the correctness of programs, it suffers from the

complexity and automation of the proofs. It is not easy even to prove the correctness of a relatively simple

program. On the other hand, software testing is the most popular method used by practitioners to improve

their confidence in the software product. There are, however, two recognized limitations in software testing,

known as the reliable test set problem and the oracle problem. The concept of a reliable test set was

originally proposed by Howden [20]: Suppose p is a program computing function f on domain D. A

test set T ✁ D is reliable for p if
✂☎✄

t ✆ T , p ✝ t ✞✠✟ f ✝ t ✞☛✡✌☞ ✂✍✄
t ✆ D, p ✝ t ✞✎✟ f ✝ t ✞☛✡ . In other words, the

success of a reliable test set implies the program correctness. Howden points out, however, that an effective

algorithm which generates a reliable test set for any given program cannot be constructed, unless the set

covers the whole input domain. We refer to this limitation as the reliable test set problem or the reliability

problem. Another deficiency in software testing is that, in some situations, testers are unable to decide

whether p ✝ t ✞✏✟ f ✝ t ✞ , that is, whether the result of the program under testing agrees with the expected result.

This second limitation is known as the oracle problem [17, 29].

Since reliable test sets of finite sizes are not attainable in general, and test sets employed in practice must

be of finite sizes, testers need practical means of evaluating such test sets with a view to selecting those with✑
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better performances. The mutation adequacy (or relative adequacy) criteria were introduced [5, 15, 16] to

provide a realistic approach for determining whether a test set is relatively sufficient. It restricts the faulty

programs to a smaller set, possibly finite in size. Such faulty programs can be differentiated from the original

program by a test set that is also finite. Thus, suppose p is a program computing function f on domain D,

and Q is a finite set of programs generated by slightly modifying the original program p. Each program

q ✆ Q such that q �✟ p is called a mutant of p. A test set T ✁ D is said to be adequate for p relative to Q

if,
✄

programs q ✆ Q,
✂✂✁

t ✆ D : q ✝ t ✞✄�✟ f ✝ t ✞☛✡ ☞ ✂✂✁
t ✆ T : q ✝ t ✞✄�✟ f ✝ t ✞ ✡ . The purpose of mutation testing

is to generate a relative adequate test set T to differentiate all the mutants q ✆ Q from the original program

p. Mutation testing has been shown to be very powerful in revealing program faults both experimentally

and analytically [16, 26, 27, 28]. This is because, as research into the “fault coupling effect” [18, 19, 25]

demonstrated, “Complex faults are coupled to simple faults in such a way that a test data set that detects all

simple faults in a program will detect a high percentage of the complex faults” [25].

In mutation testing, it is assumed that any set of mutants consists only of a finite number of programs, so

that they can be killed by a finite test set. This constraint has been resolved by Morell using the concept of

fault-based testing [22]. He refers to mutants as alternate programs, and a set of mutants as an alternative

set, which may contain an infinite number of programs. Hence, fault-based testing “prove[s] the absence

of infinitely many faults based on finitely many executions” [22]. To achieve this goal, the technique of

symbolic execution [11, 12, 21] was used, and statements proclaiming the absence of certain types of faults

were created and proved during the testing process. In this way, Morell combined program testing and

proving in a unified methodology.

Given any input to a program, an oracle is a mechanism that specifies the expected outcome. We note

that, in the above methodologies for alleviating the reliable test set problem, there is always an underlying

assumption that a testing oracle exists. Testers check the execution results against the oracles to decide

whether the program generates correct results on test cases. In some practical situations, however, an oracle

is not attainable. This is known as the oracle problem. In numerical analysis, for example, it is often difficult

to verify the results of calculations [17]. Weyuker [29] defined a program to be non-testable if “(1) there

does not exist an oracle” or “(2) it is theoretically possible, but practically too difficult to determine the

correct output.” Moreover, in the theory of fault-based testing introduced by Morell, not only is the oracle

for real output required, but the oracle for symbolic output is also demanded because it involves symbolic

execution and symbolic output. Without an oracle, the above techniques will not work. In this paper, we

propose an integrated approach that combines fault-based testing with metamorphic testing to alleviate the

oracle problem. Our method is built on the techniques of symbolic execution [11, 12, 14, 21, 24].

In Section 2, we shall introduce the concepts in fault-based testing, and highlight the need of a testing

oracle. In Section 3, we shall review testing techniques proposed by various researchers that can be carried

out in the absence of an oracle. In particular, we shall introduce the metamorphic testing technique. In

Section 4, we shall present our approach that integrates fault-based testing with metamorphic testing in

order to alleviate the oracle problem in the former technique. We shall demonstrate through examples how

real and symbolic inputs can be used to rule out prescribed faults in programs even if testing oracles are

not available. In Section 5, we shall discuss how the method can be applied further. The final section will

conclude the paper.
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1: INPUT (x, y);

2: x = x * y + 3;

3: OUTPUT (x * 2);

Figure 1: Program p for f ✝ x � y ✞ ✟ 2xy
✁

6

1: INPUT (x, y);

2 ✂ : x = x * y + F;

3: OUTPUT (x * 2);

Figure 2: Program p ✄

2 Fault-Based Testing

There have been a lot of discussions on the purposes of software testing. Most people agree that testing

cannot prove the correctness of a program [2]. Some people regard testing as an activity to look for bugs in

a program, and therefore consider successful test cases, which fail to reveal errors, to be useless and a waste

of time [23]. Others argue that successful test cases are useful and informative [6, 22]. Fault-based testing

adopts the latter perspective and treats successful executions of a program as indications of the absence of

some types of faults [22]. Fault-based testing therefore receives from a successful execution the information

on the absence of certain types of faults. In some sense, mutation testing can be regarded as a special case of

fault-based testing. A major difference is that the set of mutants eliminated by the former is finite whereas,

by making use of symbolic executions, the set of alternate programs eliminated by fault-based testing can

be infinite.

2.1 Fault-based testing with real input

Figure 1 shows a 3-line program p adapted from the first example in [22], which illustrates the technique

of using one single symbolic alternative to represent infinitely many alternatives. The program is supposed

to calculate a mathematical function f ✝ x � y ✞ ✟ 2xy
✁

6. To ensure that there is no error with respect to the

constant “3” in line 2, we assume that it is replaced by another constant “F”, as shown in line 2 ✄ of program

p ✄ in Figure 2. “F” denotes all possible alternatives for the constant “3”, and hence program p ✄ represents

infinitely many alternate programs for p.

Let x ✟ 5 and y ✟ 6 be a test case. The original program p will generate an output of 66, which can easily

be verified to be correct against an oracle. By means of symbolic execution of program p ✄ , we obtain an

output of ✝ 30
✁

F ✞✆☎ 2. Morell’s goal is to find all the constants F such that program p ✄ will produce the same

result as the original program p. In other words, we must find all the values of F such that ✝ 30
✁

F ✞✆☎ 2 ✟ 66.

Solving the equation, we obtain F ✟ 3. Hence, we have proved that the test case ✝ 5 � 6) distinguishes the

original program p from all mutants constructed by replacing 3 in line 2 by any other constant values. Note

that, to do the testing, an oracle is required for checking the correctness of the output of the original program.

3



double ComputeArea ( ) �
double a, b, incr, area, v;

1: INPUT (a, b, incr); /* incr ✁ 0 */

2: v = a * a + 1;

3: area = 0;

4: while (a + incr ✂☎✄ b) �
5: area = area + v * incr;

6: a = a + incr;

7: v = a * a + 1;✆
8: incr = b ✝ a;

9: if (incr ✁☎✄ 0) �
10: area = area + v * incr;

11: return area;✆
else

12: ERROR (“illegal values for a and b!”);✆

Figure 3: Program ComputeArea

2.2 Fault-based testing with symbolic input

The previous example illustrated the procedure of using a real input to eliminate a constant alternative in

fault-based testing. Morell also demonstrated how to eliminate more complex alternatives such as variable

substitution using symbolic inputs rather than real inputs. Figure 3 shows a sample program adapted

from [22]. It calculates the area under the curve x2 ✁
1 over the interval between a and b. Suppose the

aim of the testing is to show the absence of errors in the assignment statement 3. Let the symbolic input

be a ✟ A, b ✟ B, and incr ✟ I such that B ✞ A and A
✁

I ✟ B. Then the symbolic output produced by

symbolic execution will be ✝ A ☎ A
✁

1 ✞ ☎ ✝ B ✠ A ✞ . Note that, according to Morell’s method, a symbolic oracle

is required here to verify the correctness of the output.

Suppose we introduce a fault in the assignment statement 3:

3 ✄ : area = F; /* Should be “area = 0;” */

where F is a constant. Following the same execution path, we obtain an output of F
✁ ✝ A ☎ A

✁
1 ✞ ☎ ✝ B ✠ A ✞ .

Morell’s goal is to find all the constants F such that statement 3 ✄ will produce the same result as the original

statement 3. Hence, we have F
✁ ✝ A2 ✁

1 ✞ ☎ ✝ B ✠ A ✞ ✟ ✝ A2 ✁
1 ✞ ☎ ✝ B ✠ A ✞ , which can be solved to give F ✟ 0.

Thus, statement 3 ✄ can only be exactly the same as statement 3.

Morell also proved that alternate programs would also be eliminated when F denoted a polynomial of a.

In other words, if F ✝ a ✞ denotes the set of all polynomials in a, then it can be proved that F ✝ a ✞ can only be 0.

Furthermore, Morell introduced another error in statement 5. It is replaced by

5 ✄ : area = F; /* Should be “area = area + v * incr;” */

where F denotes a constant alternative. Let the symbolic input be a ✟ A, b ✟ B, and incr ✟ I such that A
✁

I ✡
B and A

✁
2I ✟ B. Using a similar procedure, it can be shown that F ✟ ✝ A ☎ A

✁
1 ✞ ☎ I, thus contradicting the
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assumption that F is a constant. This proves that no constant substitution can be found for statement 5. By

executing the loop twice, Morell further eliminated all alternate programs in which F could be a polynomial

of the variables area, v, and incr. In other words, when the assignment fault introduced in statement 5 is a

polynomial in the form F ✝ area � v� incr ✞ , it can be proved [22] that F ✝ x � y � z ✞ ✟ x
✁

yz, which is exactly the

function computed in the original program.

Note again that these techniques have been based on the assumption that both the real and symbolic

outputs can be verified against some oracles.

In Section 4, we shall present an approach to do fault-based testing without the need of oracles for real

and symbolic outputs. Before doing this, let us review the oracle problem in more details.

3 Testing Without Oracles

In order to test a numerical program where an oracle is not available, a common approach is to make

use of identity relations derived from theory. This technique was, for example, intensively used in Cody

and Waite [13]. For instance, the identity cos ✝ ✠ x ✞ ✟ cos ✝ x ✞ was used to test the program that supposedly

compute the cosine function.

Weyuker [29] undertook a detailed study and introduced various approaches to test “non-testable pro-

grams” via static and dynamic properties of the functions being calculated. She gave an example of the

testing of two programs that are supposed to compute the functions f ✝ x ✞ and f ✄ ✝ x ✞ , respectively, where f ✄
is the derivative of f . From elementary results in Taylor series, we know that f ✝ x ✁ ∆ ✞✏✟ f ✝ x ✞ ✁ ∆ ✁

f ✄ ✝ x ✞ ✁

O ✝ ∆2 ✞ . Substituting ∆ ✟ 1 � 0 ✂ 1 � 0 ✂ 01 �✄✂☎✂☎✂ into the expression f ✝ x ✁ ∆ ✞ ✠ ✝ f ✝ x ✞ ✁ ∆ ✁
f ✄ ✝ x ✞☛✞ , we can “see at

a glance whether f ✄ could be the derivative of f .”

There is a closely related technique known as data diversity. It has been developed and advocated for

fault tolerance, rather than fault detection, by Ammann and Knight [1]. Given an original input, the objective

of data diversity is to provide alternate means of computing the same input using the same program. Such

alternate inputs are basically “reexpressed” forms of the original input. Consequently, properties used in

data diversity must also be identity relations.

Blum and Kannan [3] introduced the concept of a program checker, which is a program that prob-

abilistically checks the correctness of the output of another program. An example is a checker for the

graph isomorphism function, which employs the property that if G and H are not isomorphic, then G and

permutations of H should not be isomorphic either. Blum et al. [4] extended the theory of the program

checker into the theory of self-testing / correcting. Given a function f and a program p that implements f , a

self-tester T for f is a probabilistic program. T estimates the error probability that p ✝ x ✞ �✟ f ✝ x ✞ for a random

input x. A self-corrector C for f is also a probabilistic program. If it is known that program p calculates f

correctly for sufficiently large amount of data on the input domain, then for any input x, C will make calls to

p and return the value of f ✝ x ✞ correctly with a high probability. Blum et al. introduced general techniques to

construct self-tester / corrector for a variety of numerical functions. For example, the self-tester / corrector

for integer multiplication functions essentially employs the distributive law a
✁ ✝ b ✁

c ✞✠✟ a
✁

b
✁

a
✁

c.

The self-tester / corrector for modular functions essentially employs the property that ✝ a ✁
b ✞ mod r ✟

✝ a mod r
✁

b mod r ✞ mod r.

More recently, a metamorphic testing (MT) method was proposed by Chen et al. [8]. It can be explained

briefly as follows. Let f be a function to be programmed. Suppose R f is some property of f that can

be expressed as a relation among a series of the function’s inputs x1 � x2 �✆✂☎✂☎✂ � xn, where n ✟ 1, and their
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corresponding values f ✝ x1 ✞ � f ✝ x2 ✞ � ✂☎✂☎✂ � f ✝ xn ✞ . This relation R f is called a metamorphic relation. Consider

the sine function, for instance. For any two inputs x1 and x2 such that x1
✁

x2 ✟ π, we must have sin x1 ✟
sin x2. This property is a metamorphic relation of the sine function and can be written formally as

Rsin ✟ ✁ ✝ x1 � x2 � sin x1 � sin x2 ✞✄✂✂ x1
✁

x2 ✟ π ☎ sin x1 ✟ sin x2 ✆ ✂
When there is no ambiguity, we can simply write the relation as

Rsin : x1
✁

x2 ✟ π ☎ sin x1 ✟ sin x2 ✂

Suppose p is a program that implements the function f . Let p ✝ x1 ✞ � p ✝ x2 ✞ �✆✂☎✂☎✂✆� p ✝ xn ✞ be the outputs

of p corresponding to the inputs x1 � x2 �✆✂☎✂☎✂ � xn, respectively. In theory, p should satisfy all the properties

of f , including metamorphic relations R f . In practice, however, the relations R f need to be converted

into other metamorphic relations Rp more suitable for the implementation domain, by taking into account

such implementation issues as rounding errors in floating-point arithmetic. MT proposes to check whether

a program under test satisfies such metamorphic relations R p. They are necessary (but not sufficient)

conditions for the correctness of the program under test.

For example, suppose p implements the sine function. In theory, it should satisfy

Rp ✟ ✁ ✝ x1 � x2 � p ✝ x1 ✞ � p ✝ x2 ✞☛✞ ✂✂ x1
✁

x2 ✟ π ☎ p ✝ x1 ✞ ✟ p ✝ x2 ✞ ✆ ✂
In practice, when floating point arithmetic is involved, the inputs and outputs should satisfy an implementation-

oriented metamorphic relation such as

R ✄p ✟ ✁ ✝ x1 � x2 � p ✝ x1 ✞ � p ✝ x2 ✞☛✞ ✂✂ x1
✁

x2 ✟ PI ☎ ✂✂✂✂
p ✝ x2 ✞ ✠ p ✝ x1 ✞

min ✝✞✝ p ✝ x2 ✞✟✝ �✠✝ p ✝ x1 ✞✟✝ ✞
✂✂✂✂
✡ ε ✆

or

R ✄ ✄p ✟ ✁ ✝ x1 � x2 � p ✝ x1 ✞ � p ✝ x2 ✞☛✞ ✂✂ x1
✁

x2 ✟ PI ☎ ✝ p ✝ x2 ✞ ✠ p ✝ x1 ✞✟✝ ✡ ε ✆ �
where PI is the implemented value of π and ε is the acceptable error. For the ease of presentation, we shall

simply use the form Rp in the examples in this paper. Readers are reminded that R ✄p or R ✄ ✄p may be used in

the actual cases.

To verify this relation, two executions are needed in MT. The first input to p is a real number x1, followed

by a second input x2 ✟ π ✠ x1. Even if a testing oracle does not exist, MT can still be applied because it checks

the relations among the inputs and outputs of more than one execution of the program, instead of checking

a single result.

There is a similarity between MT and the earlier methods introduced in this section, in that all of them

make use of some properties of the functions to check the program outputs. There are, however, differences

between MT and the other methods in both practice and philosophy. In practice, metamorphic testing not

only employs identity relations, but also makes use of inequalities. An example can be found in [9]. As for

the other approaches described above, apart from a couple of examples on error bounds given by Weyuker,

they all employ identity relations only. With regard to the philosophical aspect, consider the program checker

as an example. Its ultimate goal is to estimate, through a probabilistic oracle, how likely the program output

is correct for a given test case. Even though other test cases may be generated by the checker during the

testing process, the fundamental goal does not change. On the other hand, it is not the prime objective of
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metamorphic testing to provide an alternate means of identifying a testing oracle to verify the correctness of

a single output. Its intrinsic philosophy is that, when a test case selected according to some testing criteria

does not reveal any failure, it still carries useful information, albeit implicitly. Thus, follow-up test cases can

be used to check certain necessary properties of the program, irrespective of whether a testing oracle exists

or not. If the necessary properties do not hold, the program is obviously incorrect. In this way, metamorphic

testing is property-based and can be used along with any other test case selection strategies.

4 Integrating Fault-Based Testing with the Metamorphic Method

As introduced in Section 3, MT is a method that checks whether the program satisfies expected metamorphic

relations. The latter is independent of the presence or otherwise of an oracle. MT can therefore be applied

without the need of an oracle. In this section, we shall integrate MT and fault-based testing to alleviate the

oracle problem, for both real and symbolic inputs.

4.1 Preliminary example

Similar to Morell’s fault-based testing, our integrated method also allows two types of inputs: real and

symbolic. We shall also use the mathematical function f ✝ x � y ✞✏✟ 2xy
✁

6 and the 3-line program in Figure 1

as a preliminary example to illustrate our technique. From simple algebra, we find that the function satisfies

the property f ✝ xy � f ✝ x � y ✞☛✞ ✠ f ✝ x � y ✞✏✟ ✝ 2xy ✞ 2 ✁
10xy. 1 This can be expressed formally as a metamorphic

relation as follows:

R f ✟ ✁ ✂ ✝ x1 � y1 ✞ � ✝ x2 � y2 ✞ � f ✝ x1 � y1 ✞ � f ✝ x2 � y2 ✞ ✡ ✂✂✂
x2 ✟ x1y1

✁
y2 ✟ f ✝ x1 � y1 ✞ ✡ ☎ f ✝ x2 � y2 ✞ ✠ f ✝ x1 � y1 ✞✏✟ ✝ 2x1y1 ✞ 2 ✁

10x1y1 ✆ ✂

Let p denote the program in Figure 1. The expected metamorphic relation for p is defined as

Rp ✟ ✁ ✂ ✝ x1 � y1 ✞ � ✝ x2 � y2 ✞ � p ✝ x1 � y1 ✞ � p ✝ x2 � y2 ✞ ✡ ✂✂✂
x2 ✟ x1y1

✁
y2 ✟ p ✝ x1 � y1 ✞ ✡ ☎ p ✝ x2 � y2 ✞ ✠ p ✝ x1 � y1 ✞✏✟ ✝ 2x1y1 ✞ 2 ✁

10x1y1 ✆ ✂

For the test case ✝ x1 � y1 ✞ ✟ ✝ 5 � 6 ✞ , the program p produces “66” as output. Suppose, for the sake of

argument, that this program does not have a known oracle.2 We continue to generate the next test case as

suggested by the metamorphic relation Rp. Thus, we obtain x2 ✟ x1y1 ✟ 5
✁

6 ✟ 30, and y2 ✟ p ✝ x1 � y1 ✞ ✟
66. For this test case, the program yields p ✝ 30 � 66 ✞ ✟ 3966. We need to verify whether the two test

results together satisfy the expected relation Rp. Indeed, p ✝ x2 � y2 ✞ ✠ p ✝ x1 � y1 ✞ ✟ 3966 ✠ 66 ✟ 3900, and

✝ 2x1y1 ✞ 2 ✁
10x1y1 ✟ ✝ 2 ✁

5
✁

6 ✞ 2 ✁
10

✁
5

✁
6 ✟ 3900. Hence, the relation Rp is fulfilled.

Suppose we introduce an assignment fault F into the program, as shown in Figure 2. This faulty

program, which we shall denote by p ✄ , produces 2F
✁

60 by the symbolic execution of the same initial test

case ✝ x1 � y1 ✞ ✟ ✝ 5 � 6 ✞ . Taking the metamorphic relation Rp into consideration, we choose a second symbolic

test case (x2 ✟ 5
✁

6 ✟ 30) and (y2 ✟ p ✄ ✝ 5 � 6 ✞ ✟ 2F
✁

60). After symbolic execution, p ✄ yields the output

✝ 30
✁ ✝ 2F

✁
60 ✞ ✁

F ✞ ✁
2 ✟ 122F

✁
3600. Our goal is to find the value(s) of F for which p ✄ satisfies the

1Many properties of f can be identified as metamorphic relations. This is but one example.
2We use this simple but artificial example to illustrate the procedure behind metamorphic testing. Genuine examples where no

oracle exists will be given in Sections 4.2 and 4.3.
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double Power (double u, double v) �
double uMinusOne, numerator, lnTerm, result;

int i;

1: if (v = = 0)

2: result = 1;

else �
3: if ((int)v = = v) && (v ✁ 0)) �
4: result = 1;

5: for (i = 1; i ✂☎✄ v; i++)

6: result = result * u;✆
else �
/* ln (u) = ln (1 + (u ✝ 1)) = (u ✝ 1) ✝ 1 / 2 * (u ✝ 1) ˆ 2 + 1 / 3 * (u ✝ 1) ˆ 3 ✝✁�✂�✄� */

7: i = 1;

8: uMinusOne = u ✝ 1;

9: numerator = uMinusOne;

10: lnTerm = uMinusOne;

11: result = uMinusOne;

12: while (fabs (lnTerm) ✁ 1e ✝ 16) �
/* “fabs” is a floating point function that returns the absolute value */

/* 1e ✝ 16 = 10 ˆ � ✝ 16
✆

*/

13: i++;

14: numerator = ( ✝ 1) * numerator * uMinusOne;

15: lnTerm = numerator / i;

16: result = result + lnTerm;✆
17: result = exp(v * result);✆

✆
18: return result;✆

Figure 4: Program Power

expected relation Rp. Thus, substituting into Rp, we establish p ✄ ✝ x2 � y2 ✞ ✠ p ✄ ✝ x1 � y1 ✞ ✟ ✝ 2x1y1 ✞ 2 ✁
10x1y1,

giving ✝ 122F
✁

3600 ✞ ✠ ✝ 2F
✁

60 ✞ ✟ ✝ 2 ✁
5

✁
6 ✞ 2 ✁

10
✁

5
✁

6. Solving the equation, we obtain F ✟ 3, which

is the only value that F can take. This means that all the alternate programs constructed by replacing 3 with

other constants have been eliminated. This result coincides with that obtained by conventional fault-based

testing in [22]. A fundamental difference is that we have applied the MT technique without referring to a

testing oracle.

In the next two sections, we shall further describe how fault-based testing can be achieved in the absence

of an oracle using real and symbolic inputs, respectively.
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4.2 Fault-based testing with real input in the absence of an oracle

Consider the program Power in Figure 4. Given two real numbers u and v as input, the program computes

the value of uv. This is done in three ways:

✝ i ✞ If v is zero, then obviously uv ✟ 1.

✝ ii ✞ Otherwise, if v is a positive integer, then u v can be found by multiplying u by itself the appropriate

number of times.

✝ iii ✞ Otherwise, uv is computed by the mathematical expression e v ln
�
u ✁ .

The main task of our testing lies with part ✝ iii ✞ .
Consider statement 11 in the program. Suppose we introduce a fault in the statement 11, of the form

11 ✄ : result = F; /* Should be “result = uMinusOne;” */

Our goal here is to ensure that any constant alternative is impossible. Assume the contrary. We would like

to find all possible constants F such that the erroneous statement 11 ✄ would pass the test without being

detected.

Since it is not straightforward to verify the result of this example against an oracle, especially for large

numbers, we shall make use of the metamorphic testing method. A typical property of the exponential

function is uv ✁
uv ✟ ✝ u ✁

u ✞ v. Hence, the program should satisfy the metamorphic relation

Power ✝ u � v ✞ ✁
Power ✝ u � v ✞✏✟ Power ✝ u ✁

u � v ✞ ✂

Let u ✟ 0 ✂ 5400128 and v ✟ 3 ✂ 9 be a test case. The original program will generate Power ✝ 0 ✂ 5400128 � 3 ✂ 9 ✞ ✟
9 ✂ 0443177318673

✁
10 ✂ 2, and Power ✝ 0 ✂ 5400128 ☎ 0 ✂ 5400128 � 3 ✂ 9 ✞ ✟ 8 ✂ 1799683234969

✁
10 ✂ 3. Since

✝ Power ✝ 0 ✂ 5400128 � 3 ✂ 9 ✞☛✞ 2 ✟ 8 ✂ 1799683234969
✁

10 ✂ 3 ✟ Power ✝ 0 ✂ 5400128 ☎ 0 ✂ 5400128 � 3 ✂ 9 ✞ , the meta-

morphic relation is satisfied.

Now consider the program with the symbol “F” in statement 11 ✄ . Let us call this program Power ✄ . After

symbolic execution, we obtain the symbolic output

Power ✄ ✝ 0 ✂ 5400128 � 3 ✂ 9 ✞ ✟ e3 ✄ 9 ☎✝✆F ✞ ∑43
i ✟ 2

�
✂ 1 ✁ i ✠ 1

�
0 ✄ 5400128 ✂ 1 ✁ i ✡ i ☛

✂

Hence,

Power ✄ ✝ 0 ✂ 5400128 � 3 ✂ 9 ✞ ✁
Power ✄ ✝ 0 ✂ 5400128 � 3 ✂ 9 ✞ ✟ e2 ☎ 3 ✄ 9 ☎☞✆ F ✞ ∑43

i ✟ 2

�
✂ 1 ✁ i ✠ 1

�
0 ✄ 5400128 ✂ 1 ✁ i ✡ i ☛

✂

On the other hand, for the test case ✝ 0 ✂ 5400128
✁

0 ✂ 5400128 � 3 ✂ 9 ✞ , the output of the symbolic execution is

Power ✄ ✝ 0 ✂ 5400128 ☎ 0 ✂ 5400128 � 3 ✂ 9 ✞ ✟ e3 ✄ 9 ☎☞✆ F ✞ ∑94
i ✟ 2

�
✂ 1 ✁ i ✠ 1

�
0 ✄ 5400128 ☎ 0 ✄ 5400128 ✂ 1 ✁ i ✡ i ☛

✂

Hence, according to the metamorphic relation, we should have

e2 ☎ 3 ✄ 9 ☎☞✆ F ✞ ∑43
i ✟ 2

�
✂ 1 ✁ i ✠ 1

�
0 ✄ 5400128 ✂ 1 ✁ i ✡ i ☛ ✟ e3 ✄ 9 ☎☞✆ F ✞ ∑94

i ✟ 2

�
✂ 1 ✁ i ✠ 1

�
0 ✄ 5400128 ☎ 0 ✄ 5400128 ✂ 1 ✁ i ✡ i ☛

✂

Solving the equation, we obtain F ✟ ✠ 2 ✂ 1158822416384
✁

10 ✂ 1 .
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/* Program Trig calculates the value of sin x if “isSin” is true.

Otherwise, it calculates the value of cos x. */

double Trig (double x, bool isSin) �
int index;

double term, sum;

/* Initialize for cos x */

1: term = 1;

2: index = 1;

3: if (isSin) � /* Initialize for sin x */

4: term = x;

5: index = 2;✆
6: sum = term;

7: while (fabs (term) ✁ 1e ✝ 16) �
8: term = term * � ✝ 1 ✁ * x * x / (index * (index + 1));

9: sum = sum + term;

10: index = index + 2;✆
11: return sum;✆

Figure 5: Program Trig

Let u ✟ 0 ✂ 7309782 and v ✟ 9 ✂ 16 be another test case. Through the same procedure, we can deduce that

F ✟ ✠ 7 ✂ 2372728875240
✁

10 ✂ 2. Even if rounding errors are taken into consideration, those two values

of the same constant F obviously contradict each other. As a result, no constant alternative is possible for

statement 11 ✄ . In other words, we have proved that the metamorphic test cases ✝ u � v ✞ ✟ ✝ 0 ✂ 5400128 � 3 ✂ 9 ✞ ,

✝ 0 ✂ 5400128
✁

0 ✂ 5400128 � 3 ✂ 9 ✞ , ✝ 0 ✂ 7309782 � 9 ✂ 16 ✞ , and ✝ 0 ✂ 7309782
✁

0 ✂ 7309782 � 9 ✂ 16 ✞ distinguish the

original program Power from every mutant constructed by replacing uMinusOne in statement 11 by any

constant value.

4.3 Fault-based testing with symbolic input in the absence of an oracle

Let us consider a further example as shown in Figure 5. The program Trig accepts as inputs a real number

x and a Boolean parameter isSin. It calculates sin x when isSin is true and cos x when isSin is false. Except

for special cases such as x ✟ 0 and x ✟ π ✂ 2, there is no easy way to verify the outputs of the program, unless

we check them against the outputs from yet another program.

Suppose statement 4 is replaced by an alternative:

4 ✄ : term = F; /* Should be “term = x;” */

where F is a function of x in the form F ✟ a
✁

xn such that a is a real number constant and n is a non-negative

integral constant.

As explained earlier, it is not easy to verify the program against an oracle, so that we cannot apply

Morell’s fault-based testing method to eliminate the alternative. Instead, let us test the program using the
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property sin2 x
✁

cos2 x ✟ 1. The metamorphic relation in the implementation domain can be written as

Rp : ✝ p ✝ x � true ✞☛✞ 2 ✁ ✝ p ✝ x � false ✞☛✞ 2 ✟ 1 ✂ (1)

Consider a symbolic input x ✟ S with isSin ✟ true. By symbolic execution of the alternate program contain-

ing statement 4 ✄ , the output is

Trig ✝ S � true ✞ ✟ F ☎ ✝ 1 ✠ S2 ✂ 6
✁

S4 ✂ 120 ✠ ✂☎✂☎✂ ✞ ✂
Hence, we have

✝ Trig ✝ S � true ✞☛✞ 2 ✟ F2 ☎ ✝ 1 ✠ S2 ✂ 6
✁

S4 ✂ 120 ✠ ✂☎✂☎✂ ✞ 2

✟ ✝ a ☎ Sn ✞ 2 ☎ ✝ 1 ✠ S2 ✂ 6
✁

S4 ✂ 120 ✠ ✂☎✂☎✂ ✞ 2

✟ ✝ a2 ☎ S2n ✞ ☎ ✝ 1 ✠ ✝ 1 ✂ 3 ✞ ☎ S2 ✁ ✝ 2 ✂ 45 ✞ ☎ S4 ✠ ✂☎✂☎✂ ✞
✟ a2 ☎ S2n ✠ ✝ 1 ✂ 3 ✞ ☎ a2 ☎ S2 �

�
n ✞ 1 ✁ ✁ ✝ 2 ✂ 45 ✞ ☎ a2 ☎ S2 �

�
n ✞ 2 ✁ ✠ ✂☎✂☎✂

(2)

For the same symbolic input x ✟ S with isSin ✟ false, we obtain a second symbolic output of the program,

thus:

Trig ✝ S � false ✞ ✟ 1 ✠ S2 ✂ 2
✁

S4 ✂ 24 ✠ S6 ✂ 720
✁

✂☎✂☎✂

As a result,

✝ Trig ✝ S � false ✞☛✞ 2 ✟ 1 ✠ S2 ✁ ✝ 1 ✂ 3 ✞ ☎ S4 ✠ ✝ 2 ✂ 45 ✞ ☎ S6 ✁
✂☎✂☎✂

Based on equation (1), we should have

✝ Trig ✝ S � true ✞☛✞ 2 ✁ ✝ Trig ✝ S � false ✞☛✞ 2 ✟ 1

and therefore

a2 ☎ S2n ✠ ✝ 1 ✂ 3 ✞ ☎ a2 ☎ S2 �
�
n ✞ 1 ✁ ✁ ✝ 2 ✂ 45 ✞ ☎ a2 ☎ S2 �

�
n ✞ 2 ✁ ✠ ✂☎✂☎✂ ✟ S2 ✠ ✝ 1 ✂ 3 ✞ ☎ S4 ✁ ✝ 2 ✂ 45 ✞ ☎ S6 ✠ ✂☎✂☎✂ (3)

As we know, n is a non-negative integral constant. If n ✟ 0, then there will be a constant term a2 on the

left-hand side of identity (3), while the minimum degree of the right-hand side will be 2. This is obviously a

contradiction. If n ✞ 2, then all the terms on the left-hand side of the identity will have a degree ✞ 4, while

there will be a term of degree 2 on the right-hand side. This again will be a contradiction. Thus, the only

possible value of n is 1. Since n ✟ 1, if we equate the coefficients of like terms on both sides of the identity,

we obtain a2 ✟ 1 � ✠ ✝ 1 ✂ 3 ✞ ☎ a2 ✟ ✠ 1 ✂ 3 � ✝ 2 ✂ 45 ✞ ☎ a2 ✟ ✝ 2 ✂ 45 ✞ � ✂☎✂☎✂ , which can be solved to give a ✟ ✁
1.

In this way, F can only be x or ✠ x. Of course, F ✟ x is just the original statement 4 in program Trig.

Hence, we need only study F ✟ ✠ x. To discard this alternative, we need to employ another metamorphic

relation. For example, we note that sin x ✟ ✠ cos ✝ π ✂ 2
✁

x ✞ . The metamorphic relation in the implementation

domain can be written as

x2 ✟ π ✂ 2
✁

x1 ☎ p ✝ x1 � true ✞ ✁
p ✝ x2 � false ✞ ✟ 0 ✂ (4)

We apply the technique introduced in Section 4.2 to eliminate the alternative F ✟ ✠ x using real input.

Let PI ✟ 3 ✂ 1415926535898 and let the input be x ✟ 1 ✂ 2. The original program with F ✟ x in statement 4 will
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produce Trig ✝ 1 ✂ 2 � true ✞ ✟ 0 ✂ 93203908596723, and Trig ✝ PI ✂ 2
✁

1 ✂ 2 � false ✞ ✟ ✠ 0 ✂ 93203908596723. Hence,

Trig ✝ 1 ✂ 2 � true ✞ ✁
Trig ✝ PI ✂ 2

✁
1 ✂ 2 � false ✞✏✟ 0 and the metamorphic relation (4) is satisfied.

We continue to test the alternate program with statement 4 replaced by “term = ✠ x;”. Let us

call it Trig ✄ . For the same input x ✟ 1 ✂ 2, the results are Trig ✄ ✝ 1 ✂ 2 � true ✞ ✟ ✠ 0 ✂ 93203908596723 and

Trig ✄ ✝ PI ✂ 2
✁

1 ✂ 2 � false ✞ ✟ ✠ 0 ✂ 93203908596723. Hence, Trig ✄ ✝ 1 ✂ 2 � true ✞ ✁
Trig ✄ ✝ PI ✂ 2

✁
1 ✂ 2 � false ✞ ✟

✠ 1 ✂ 86407817193446. Obviously, this alternate program does not satisfy the expected metamorphic rela-

tion (4). In this way, the alternative F ✟ ✠ x is eliminated.

In this section, we have illustrated our technique of using symbolic input (possibly combined with real

input) to eliminate prescribed faults. The example also demonstrated the power of combining different

metamorphic relations in testing. It shows that, by making use of more than one metamorphic relation,

different types of faults may be revealed. In other words, different metamorphic relations may have different

fault-detection capabilities for different types of faults.

We must concede, however, that our method may not be foolproof in terms of program correctness. This

issue will be further discussed in the next section.

5 Discussions

In the previous examples, the prescribed types of faults have been totally eliminated. This may not be

possible in some real life situations. Having said that, we shall illustrate via an example in this section how

our method may still be applied in such circumstances.

The program Trap as shown in Figure 6 is adapted from [11]. It calculates the approximate area under

the curve f ✝ x ✞ for the interval between x ✟ a and x ✟ b. Suppose statement 12 is replaced by an alternate

statement

12 ✄ : area = area + ✝ k1 * yOld + k2 * yNew) / 2.;

/* Should be “area = area + (yOld + yNew) / 2.;” */

where k1 and k2 are any constants. Before testing, let us first identify a metamorphic relation. Suppose

G ✝ x ✞ ✟ F ✝ x ✞ ✁
C, where C is a positive constant. From elementary calculus, we know that

Trap ✝ G � A � B � N � Error ✞ ✟ Trap ✝ F � A � B � N � Error ✞ ✁
C

✁ ✝ B ✠ A ✝ when N ✞ 1. We execute the program

using the symbolic input ✝ F � A � B � N � Error ✞ , where F is any function, A ✟ B, and N ✟ 1. The statements

✝ 1 � 3 � 4 � 5 � 6 � 7 � 8 � 9 � 10 � 11 � 12 � 13 � 9 � 14 � 15 � 16 � 17 ✞ will be traversed, generating the symbolic output

Trap ✝ F � A � B � N � Error ✞ ✟ ✝ k1 ☎ F ✝ A ✞ ✁
k2 ☎ F ✝ B ✞☛✞ ✂ 2 ☎ ✝ A ✠ B ✞ ✂

Running the program again using the symbolic input ✝ G � A � B � N � Error ✞ , we obtain

Trap ✝ G � A � B � N � Error ✞ ✟ ✝ k1 ☎ ✝ F ✝ A ✞ ✁
C ✞ ✁

k2 ☎ ✝ F ✝ B ✞ ✁
C ✞☛✞ ✂ 2 ☎ ✝ A ✠ B ✞ ✂

According to the metamorphic relation, therefore, we establish an equation

✝ k1 ☎ ✝ F ✝ A ✞ ✁
C ✞ ✁

k2 ☎ ✝ F ✝ B ✞ ✁
C ✞☛✞ ✂ 2 ☎ ✝ A ✠ B ✞ ✟ ✝ k1 ☎ F ✝ A ✞ ✁

k2 ☎ F ✝ B ✞☛✞ ✂ 2 ☎ ✝ A ✠ B ✞ ✁
C

✁ ✝ A ✠ B ✞ ✂

After simplification, we obtain ✝ k1
✁

k2 ✞ ☎ C ✟ 2C, thus giving ✝ k1
✁

k2 ✞✠✟ 2. If k1 and k2 are possible

integers, then both of them can only take the value of “1”, which is just the original value. Otherwise, we
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/* Program Trap implements the trapezoidal rule to find the approximate area under the curve f(x) between

x = a and x = b. The computation uses n intervals of size � b ✝ a � / n each. The variable “error” will be set

to “true” when n ✂ 1. */

float Trap (float (*f)(float), float a, float b, int n, bool &error) �
float area;

float h; /* interval */

float x;

float yOld; /* value of f(x ✝ h) */

float yNew; /* value of f(x) */

1: if (n ✂ 1)

2: error = true;

else �
3: error = false;

4: area = 0;

5: if (a != b) �
6: h = (b ✝ a) / n;

7: x = a;

8: yOld = (*f)(x);

9: while ((a ✁ b && x ✁ b) �✁� (a ✂ b && x ✂ b)) �
10: x = x + h;

11: yNew = (*f)(x);

12: area = area + (yOld + yNew) / 2.;

13: yOld = yNew;✆
14: area = area * h;

15: if (a ✁ b)

16: area = ✝ area;✆
✆

17: return area;✆

Figure 6: Program Trap

can still eliminate all pairs of k1 and k2 such that k1
✁

k2 �✟ 2. This example shows that, even in situations

where our method cannot exactly identify the fault, our technique is still useful because it greatly narrows

down the range of possible faults.

The examples cited so far in this paper are numerical programs. It should be noted that our approach

can also be applied to non-numerical ones. Consider, for instance, a program ShortestPath that implements

the shortest path problem. The program accepts a graph G and two nodes A and B, and then outputs all the

shortest paths from A to B. Apart from simple graphs, it is expensive to verify whether the outputs are correct.

In this case, metamorphic testing can be applied as follows: Randomly select an element P from the output

of ShortestPath ✝ G � A � B ✞ . P is one of the shortest paths from A to B. Randomly select a node C in this path

P. Then, run the program to compute ShortestPath ✝ G � A � C ✞ and ShortestPath ✝ G � C � B ✞ . A metamorphic

relation is, “there exist an element of ShortestPath ✝ G � A � C ✞ and an element of ShortestPath ✝ G � C � B ✞ that
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can be combined to form the path P.” If this metamorphic relation is not satisfied, the program must contain

a fault. Another metamorphic relation is that a different permutation of the input graph G should produce the

same output. Fault-based testing techniques can be applied to such non-numerical metamorphic relations.

Furthermore, the concepts of attributive equivalence and observational equivalence have been introduced

in [7] for the testing of object-oriented programs. These concepts of equivalence can also be used as non-

numerical metamorphic relations in fault-based testing.

6 Conclusion

In this paper, we have looked into the oracle problem in fault-based testing. We have found that, by

integrating metamorphic testing with fault-based testing, alternate programs can be eliminated even if there

is no testing oracle. We have presented techniques of using real and symbolic inputs.

When compared with other fault-based testing approaches that rely on testing oracles, our approach

requires additional efforts in identifying metamorphic relations and running the program more than once.

Obviously, whenever a testing oracle is available, it should be used to check the output. Nevertheless, there

are many situations where a testing oracle cannot be found. Our method does provide an innovative solution

in such circumstances.

References

[1] P. E. Ammann and J. C. Knight, Data diversity: an approach to software fault tolerance, IEEE Transactions on

Computers 37 (4) (1988) 418–425.

[2] B. Beizer, Software Testing Techniques (Van Nostrand Reinhold, New York, 1990).

[3] M. Blum and S. Kannan, Designing programs that check their work, Journal of the ACM 42 (1) (1995) 269–291.

[4] M. Blum, M. Luby, and R. Rubinfeld, Self-testing / correcting with applications to numerical problems, Journal

of Computer and System Sciences 47 (3) (1993) 549–595.

[5] T. A. Budd, Mutation analysis: ideas, examples, problems and prospects, in: B. Chandrasekaran and S. Radicchi,

eds., Computer Program Testing (North-Holland, Amsterdam, 1981) 129–148.

[6] F. T. Chan, T. Y. Chen, S. C. Cheung, M. F. Lau, and S. M. Yiu, Application of metamorphic testing in numerical

analysis, in: Proceedings of the IASTED International Conference on Software Engineering (SE ’98) (ACTA

Press, Calgary, Canada, 1998) 191–197.

[7] H. Y. Chen, T. H. Tse, and T. Y. Chen, TACCLE: a methodology for object-oriented software testing at the class

and cluster levels, ACM Transactions on Software Engineering and Methodology 10 (1) (2001) 56–109.

[8] T. Y. Chen, S. C. Cheung, and S. M. Yiu, Metamorphic testing: a new approach for generating next test cases,

Technical Report HKUST-CS98-01 (Department of Computer Science, Hong Kong University of Science and

Technology, Hong Kong, 1998).

[9] T. Y. Chen, J. Feng, and T. H. Tse, Metamorphic testing of programs on partial differential equations: a case

study, in: Proceedings of the 26th Annual International Computer Software and Applications Conference

(COMPSAC 2002) (IEEE Computer Society Press, Los Alamitos, California, 2002).

[10] T. Y. Chen, T. H. Tse, and Z. Zhou, Fault-based testing in the absence of an oracle, in: Proceedings of the

25th Annual International Computer Software and Applications Conference (COMPSAC 2001) (IEEE Computer

Society Press, Los Alamitos, California, 2001) 172–178.

14



[11] L. A. Clarke and D. J. Richardson, Symbolic evaluation methods: implementations and applications, in:

B. Chandrasekaran and S. Radicchi, eds., Computer Program Testing (North-Holland, Amsterdam, 1981) 65–

102.

[12] L. A. Clarke and D. J. Richardson, Applications of symbolic evaluation, Journal of Systems and Software 5

(1985) 15–35.

[13] W. J. Cody, Jr. and W. Waite, Software Manual for the Elementary Functions (Prentice Hall, Englewood Cliffs,

New Jersey, 1980).

[14] G. Colman, P. Andreae, and L. Groves, Program analysis by symbolic execution and generalization, in:

C. Rattray and G. Robert, eds., The Unified Computation Laboratory: Modelling, Specifications, and Tools

(Clarendon Press, Oxford, 1992) 367–380.

[15] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, Hints on test data selection: help for the practicing programmer,

IEEE Computer 11 (4) (1978) 34–41.

[16] R. A. DeMillo and A. J. Offutt, Constraint-based automatic test data generation, IEEE Transactions on Software

Engineering 17 (9) (1991) 900–910.

[17] M.-C. Gaudel, Testing can be formal, too, in: Proceedings of the 6th International Joint CAAP/FASE Conference

on Theory and Practice of Software Development (TAPSOFT ’95) (Lecture Notes in Computer Science 915,

Springer-Verlag, Berlin, 1995) 82–96.

[18] K. S. How Tai Wah, Fault coupling in finite bijective functions, Software Testing, Verification and Reliability 5

(1) (1995) 3–47.

[19] K. S. How Tai Wah, A theoretical study of fault coupling, Software Testing, Verification and Reliability 10 (1)

(2000) 3–45.

[20] W. E. Howden, Reliability of the path analysis testing strategy, IEEE Transactions on Software Engineering

SE-2 (3) (1976) 208–215.

[21] W. E. Howden, Symbolic testing and the DISSECT symbolic evaluation system, IEEE Transactions on Software

Engineering SE-3 (4) (1977) 266–278.

[22] L. J. Morell, A theory of fault-based testing, IEEE Transactions on Software Engineering 16 (8) (1990) 844–857.

[23] G. J. Myers, The Art of Software Testing (John Wiley, New York, 1979).

[24] A. J. Offutt and E. J. Seaman, Using symbolic execution to aid automatic test data generation, in: Systems

Integrity, Software Safety, and Process Security: Proceedings of the 5th Annual Conference on Computer

Assurance (COMPASS ’90) (IEEE Computer Society Press, Los Alamitos, California, 1990) 12–21.

[25] A. J. Offutt, Investigations of the software testing coupling effect, ACM Transactions on Software Engineering

and Methodology 1 (1) (1992) 5–20.

[26] A. J. Offutt and S. D. Lee, An empirical evaluation of weak mutation, IEEE Transactions on Software

Engineering 20 (5) (1994) 337–344.

[27] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf, An experimental determination of sufficient mutant

operators, ACM Transactions on Software Engineering and Methodology 5 (2) (1996) 99–118.

[28] J. M. Voas and G. McGraw, Software Fault Injection: Inoculating Programs against Errors (John Wiley, New

York, 1998).

[29] E. J. Weyuker, On testing non-testable programs, The Computer Journal 25 (4) (1982) 465–470.

15




