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[1] Could the directivity of a complex earthquake be inferred from the ruptured fault
branches it created? Typically, branches develop in forward orientation, making acute
angles relative to the propagation direction. Direct backward branching of the same
style as the main rupture (e.g., both right lateral) is disallowed by the stress field at the
rupture front. Here we propose another mechanism of backward branching. In that
mechanism, rupture stops along one fault strand, radiates stress to a neighboring strand,
nucleates there, and develops bilaterally, generating a backward branch. Such makes
diagnosing directivity of a past earthquake difficult without detailed knowledge of the
branching process. As a field example, in the Landers 1992 earthquake, rupture stopped at
the northern end of the Kickapoo fault, jumped onto the Homestead Valley fault, and
developed bilaterally there, NNW to continue the main rupture but also SSE for 4 km
forming a backward branch. We develop theoretical principles underlying such rupture
transitions, partly from elastostatic stress analysis, and then simulate the Landers example
numerically using a two-dimensional elastodynamic boundary integral equation
formulation incorporating slip-weakening rupture. This reproduces the proposed
backward branching mechanism based on realistic if simplified fault geometries, prestress
orientation corresponding to the region, standard lab friction values for peak strength,
and fracture energies characteristic of the Landers event. We also show that the seismic
S ratio controls the jumpable distance and that curving of a fault toward its compressional
side, like locally along the southeastern Homestead Valley fault, induces near-tip
increase of compressive normal stress that slows rupture propagation.
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1. Introduction

[2] The rupture zones of major earthquakes often in-
volve geometric complexities including fault bends,
branches and step overs. Recently, some understanding
of the mechanics underlying dynamic processes of fault
branching and jumping has started to emerge. A new
question has emerged as well: Is it possible to judge the
directivity of a large earthquake from the rupture pattern it
left? The answer to that question would be very useful for
risk assessment of future earthquakes, even if it is cur-
rently unknown if large earthquakes do systematically
repeat their rupture direction (while not necessarily the
entire rupture pattern). Here we address a particular,
narrower version of that question, namely: Could we

associate the directivity of a major earthquake with the
pattern of branches that it left?
[3] That question has been posed by Nakata et al. [1998],

who proposed to relate the observed surface branching of
fault systems with directivity. Their work assumed that all
branches were through acute angles in the direction of
rupture propagation. However, Dmowska et al. [2002]
pointed out that for at least some field observations, the
rupture paths seemed to branch through highly obtuse
angles, as if to propagate ‘‘backward’’ along the branch.
In general, there are no observational proofs that this is what
really happened in these cases. It is even possible that some
obtuse branches are due to early aftershocks. However, in
the case examined here involving a particular backward
branch in the 1992 Landers, California, earthquake, Poliakov
et al. [2002] showed that the pattern of damage to a
single side of the fault clearly indicates such a backward
direction of propagation on that branch. Here we analyze
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and numerically simulate the mechanics of such backward
branching and relate the results to understanding rupture
directivity.

1.1. Diagnosing Rupture Directivity

[4] The basic mechanical questions when relating fault
branching to rupture directivity are summarized in Figure 1.
Figure 1a presents the typical fault branching through acute
angle, readily observed in the field and recently analyzed by
Poliakov et al. [2002] and Kame et al. [2003]. The propen-
sity of the fault to branch in that way depends on the
orientation of the local prestress field relative to that of the
main fault, the rupture velocity at branching junction and
the geometry of the branch (the angle between the main and
branching faults). The turn of rupture path through an
obtuse angle while continuing on main fault is illustrated
in Figure 1b and is never favored by the stress field; see
section 1.3. What is proposed here as the mechanism of
creation of a backward branch is presented in Figure 1c and
consists of arrest of rupture propagation along an initial
fault strand, radiating stress increase and hence jump of the
rupture to a subsidiary fault [Harris et al., 1991; Harris and
Day, 1993] on which it nucleates and then propagates
bilaterally. Part of the rupture along the neighboring fault
creates the backward branch.
[5] Figure 1d presents the mechanical dilemma of

backward branching: Did the rupture arrive from the right
and branch through an acute angle, as illustrated in
Figure 1d (top)? Or, did it arrive from the left, stop,
jump, and nucleate on a neighboring fault, then develop
bilaterally, as illustrated in Figure 1d (bottom)? The jump
here is exaggerated, in real field cases the observation of
surface ruptures might not at once provide the right
answer. The purpose of the present paper is to document
a field example of the latter case as well as to develop
theoretical understanding and numerical simulation of the
process.

1.2. Field Examples of Backward Branching

[6] We study the transition of the rupture path from the
Kickapoo to the Homestead Valley faults, Figure 2, during
the 1992 Landers earthquake, so as to leave a backward
branch in the rupture path along the southern end of
Homestead Valley fault. The rupture started to the SSE of
the area covered by the map, along the Johnson Valley fault,
and continued far to the NNW, first along the Homestead
Valley fault and then the Emerson and Camp Rock faults
[Rockwell et al., 2000; Sowers et al., 1994; Spotila and
Sieh, 1995; Zachariasen and Sieh, 1995].
[7] In the 1992 Landers earthquake [Sowers et al., 1994],

right-lateral slip on the Johnson Valley Fault propagated
first along that fault but then, after several aborted attempts
signaled by the short surface breaks shown, it branched to
the dilational side onto the Kickapoo fault, at an angle j �
�30�. The rupture also continued a few kilometers to the
NNW on the main (Johnson Valley) fault. That exemplifies
the type of branching typically considered, through an acute
angle relative to the direction of propagation along the
primary fault. (The Johnson Valley and Kickapoo branch
has been analyzed as a field case in support of recent
theoretical work [Poliakov et al., 2002; Kame et al.,
2003], explaining how such typical branching depends on

prestress state, branch geometry, and rupture propagation
speed as the branch junction is approached.)
[8] What is of interest here, however, is that the rupture,

after propagating along the Kickapoo segment, transitioned
to the Homestead Valley fault and progressed not just to the
north on that fault, in continuation of the main Landers
rupture, but also backward along the Homestead Valley
fault where it curves to the SSE. That forms the backward
branch (backward relative to the main direction of rupture
propagation) that we consider, a prominent feature of 4 km
length. Measurements of surface slip along that backward
branch [Sowers et al., 1994] show right-lateral slip, de-
creasing toward the SSE. Prominent surface breaks were
also observed along the western side of the Homestead
Valley fault (Figure 2). From those it can be argued
[Poliakov et al., 2002; Kame et al., 2003] that given the
local principal prestress orientation [Hardebeck and
Hauksson, 2001], the western side of the southern Home-
stead Valley fault should have been the dilational side of
the rupture. That, along with the slip pattern, suggests
that rupture initiated on the Homestead Valley fault in the
region where it is closely approached by the Kickapoo
fault, near the northern termination of the latter, and then
propagated bilaterally, both north and SSE along the
Homestead Valley fault.
[9] The following are other cases, also from the Eastern

California Shear Zone, of rupture transitions that leave
backward branched rupture patterns: As rupture continued
along the Homestead Valley fault, NNW of the region

Figure 1. Issues in fault branching (see text).
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Figure 2. Map from Sowers et al. [1994] showing region of transition from the Johnson Valley to the
Kickapoo and to the Homestead Valley faults during the 1992 Landers earthquake. The thickest lines
show fault breaks with surface slip >1 m, intermediate lines >0.05 m, and thinnest lines >0.01 m.
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mapped in Figure 2, there was a transition of the rupture
path to the Emerson fault, but while primarily propagating
to the NW, the rupture also progressed backward along
different SSE splays of the Emerson fault [Zachariasen
and Sieh, 1995]. The rupture path next transitioned from
the Emerson to the Camp Rock fault, and in doing so again
generated a backward branch to the SSE on the Camp
Rock fault. Another case is in the 1999 Hector Mine
earthquake. Rupture originated on a buried fault without
surface trace [Li et al., 2002; Hauksson et al., 2002;
Oglesby et al., 2003a] and progressed bilaterally south
and north. In the south it met the Lavic Lake fault and
progressed a large distance south on it but also progressed
backward, i.e., NNW, along the northern stretch of the
Lavic Lake fault. The angle between the buried fault and
the northern Lavic Lake fault is j � �160�, and that
NNW stretch extends around 15 km, defining a major
backward branch.

1.3. Backward Branching Mechanisms

[10] Such examples with highly obtuse branch angles
(backward branching) suggest that there may be no
simple correlation between fault geometry and directivity.
An important question is whether those obtuse branches
actually involved a rupture path which directly turned
through an obtuse angle (while continuing also on the
main fault) like in Figure 1b, or rather involved arrest by
a barrier on the original fault and jumping to a neigh-
boring fault, on which rupture propagated bilaterally
(Figure 1c). The importance of stopping on the main
fault to making the jumping mechanism possible will be
discussed later.
[11] Stress fields around a dynamically moving mode II

crack tip with right-lateral slip have been reported by
Poliakov et al. [2002]. At the obtuse angles considered,
they predict strongly left-lateral shear stress and hence are
inconsistent with having the rupture path directly turn
through highly obtuse angles like in Figure 1b if slip is to
remain right lateral on the branch. Thus we discount that
mechanism. Note that there is no inhibition to obtuse angle
branching with left-lateral slip on the branch; that situation
was observed in lab experiments under impact loading
[Rousseau and Rosakis, 2003]. Rousseau and Rosakis
diagnosed small tensile fracture arrays along the extensional
side of the rupture where the slip was right versus left
lateral.
[12] On the other hand, there is evidence that the Kick-

apoo and Homestead Valley faults are disjoint from one
another, so that the transition fits the stopping and jumping
scenario of Figure 1c. First, mapping of observable fault slip
(>10 mm) in the vicinity of the transition [Sowers et al.,
1994] (see Figure 2) suggests that the faults do not actually
intersect one another at the surface. Second, Li et al. [1994]
used studies of fault zone trapped waves to show that there
was transmission in a channel along the southern Johnson
Valley and Kickapoo faults and in another channel along the
Homestead Valley fault but no communication between
those channels. Those results suggest that the Kickapoo
and Homestead Valley faults do not join, at least at the
possibly shallow depths controlling the observations. Finally,
precise relative relocations of Landers aftershocks have been
used to image the fault strands at depth [Felzer and Beroza,

1999] and suggest that they form two discrete structures
throughout the seismogenic depth range.

1.4. Branching and Rupture Directivity

[13] If such a jumping mechanism turns out to be a
reasonably general mechanism of backward branching, then
an implication for the Nakata et al. [1998] aim of inferring
rupture directivity from branch geometry is that such will be
possible only when rather detailed characterization of fault
connectivity (by surface geology, microearthquakes reloca-
tion, trapped waves) can be carried out in the vicinity of the
branching junction. Such studies must ascertain whether
direct turning of the rupture path through an angle, or
jumping and then propagating bilaterally, were involved in
prior events. Those two possibilities have opposite impli-
cations (Figure 1d) for how to associate directivity with a
(nominally) branched fault geometry.
[14] In the following sections of the paper, we analyze the

mechanics of rupture propagation and slip transfer for faults
with complex geometries similar to those near the Kickapoo
to Homestead Valley transition. We show that these consid-
erations strongly support the possibility that the backward
branch formed by the jumping and bilateral propagation
mechanism of Figure 1c. (Further, we note that Aochi and
Fukuyama [2002] tried to simulate the Kickapoo to Home-
stead Valley rupture transition by assuming that the faults
were actually connected in an inverted ‘‘y’’ type of branch
junction, rather than forming the step over configuration
that we assume here. They could then achieve rupture
continuation from Kickapoo onto the northern Homestead
Valley fault, but not onto the southeastern part of the
Homestead Valley fault which is the object of our study
here, and which hosted the backward branch of rupture
observed.)

2. Choice of Prestress and Modeling Parameters

2.1. Parameters

[15] For convenience, we treat the Kickapoo fault near its
northern termination as being straight and coincident with
the x axis, which runs south to north (like the fault itself
does approximately in that region; Figure 2). The fault plane
is y = 0, with the y axis positive to the west, and we perform
two-dimensional (2-D) modeling in that x, y plane. Here and
later, all faults are considered to undergo right-lateral strike
slip.
[16] The prestress, i.e., the tectonic stress in the region,

has the form

s0ij ¼
s0xx s0xy
s0yx s0yy

 !

ð1Þ

as regards in-plane components, where normal stresses are
positive if tensile. We should actually think of these as
effective stresses (sij

0)tot + p0dij, where p0 denotes initial
fluid pore pressure. As in the work by Kame et al. [2003], in
which the branching from the Johnson Valley to Kickapoo
faults during this earthquake was studied, the static friction
coefficient tan(Fs) = ms is taken as 0.6, generally consistent
with laboratory values, and cohesion is neglected. It is less
clear what to take for the dynamic coefficient tan(Fd) = md
after slip weakening, or how reasonable it is to regard it as
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actually constant at large earthquake slip, especially when
thermal weakening and possible fluidization is considered.
Values of md/ms = 0.8 and 0.2 have been tested and the
results do not show significant differences. Only the results
for md/ms = 0.2 will be shown here. We choose the shear
modulus m = 30 GPa and the Poisson ratio n = 0.25 (l = m).
[17] Most of our results can be expressed in nondimen-

sional form but when necessary for numerical illustrations
here, we have used G = 1 MJ/m2 for the crack energy
release rate and syy

0 = �50 MPa. For the corresponding sxx
0 ,

to be discussed subsequently, the in-plane invariant (sxx
0 +

syy
0 )/2 = �59.5 MPa. Assuming ideal strike-slip rupture

(i.e., vanishing intermediate deviatoric stress), that invariant
is equal to the effective overburden, and assuming hydro-
static pore pressure, that corresponds to a depth of 3.3 km.
Given the nondimensionalization of our problem, features
of the solution such as the speed of rupture propagation and
its time evolution, and details of if, where and how slip
transfers between faults, would be unchanged for the choice
of parameters G = 4 MJ/m2 and syy

0 = �100 MPa. That
change, which keeps the slip-weakening zone length R at
the same (time-dependent) size throughout the rupture as for
the above case, would correspond to a depth of 6.6 km.
Such depth is a reasonable estimate of the centroidal depth
of rupture during the Landers event, and the fracture energy
is close to the 5 MJ/m2 inferred for it by seismic slip
inversions, fitted to 3-D analyses of slip-weakening rupture
[Olsen et al., 1997; Peyrat et al., 2001].
[18] To properly determine the in plane prestress field

around the faults, if all the stresses are normalized by �syy
0 ,

two further quantities have to be specified. First, on the
basis of inference of principal stress directions from micro-
seismicity by Hardebeck and Hauksson [2001], the maxi-
mum principal compressive stress direction around the
faults is approximately 30� east of north. Because the
tangent direction to the Kickapoo fault is about north. Thus
there is an angle � � 30� between the most compressive
stress and that fault (Figure 3).
[19] We have to specify one more value, for example the

shear stress ratio, syx
0 /(�syy

0 ). There is no rigorous way to
specify that. We choose it according to considerations of
rupture propagation velocity vr. Supershear vr is sometimes,
but only relatively rarely, inferred for natural events. Thus
we choose parameters so that vr remains sub-Rayleigh.
Andrews [1976] shows the influence on vr of the ratio

S ¼ tp � s0yx

� �

= s0yx � tr

� �

ð2Þ

where tp = �mssyy
0 is the peak strength and tr = �mdsyy

0 is
the residual strength after slip weakening. When S is small
enough, a transition from sub-Rayleigh to supershear
propagation will occur, so we do not want S to be so small
as to allow that in our modeling. However, in a simple static
study to follow, we show that the smaller is the value of S,
the larger is the maximum distance that can be jumped, and
vice versa. So it won’t do to make S too large, and a
compromise has to be reached. Using Figure 9 of Andrews
[1976] (which shows the vr achieved as a function of S and
the ratio of the length L of the ruptured zone to the
minimum unstable crack length Lc), and the static study, we
have chosen S = 1.3. For that, vr remains sub-Rayleigh in
our configuration. It leads to syx

0 /(�syy
0 ) = 0.33.

[20] Given the principal direction at � = 30�, we can then
calculate, the remaining in-plane stress ratio as sxx

0 /syy
0 =

1.38. That corresponds to the in-plane invariant (sxx
0 +syy

0 )/2 =
1.19syy

0 .

2.2. Strength Constraints on Prestress

[21] In order to make the prestress field realistic we have
to satisfy some mechanical conditions. Since large regions
of earth cannot sustain tensile stresses, no principal stress
should be tensile. Also, the prestress field should not violate
the Mohr-Coulomb criterion for onset of frictional rupture.
[22] With the two parameters, � and syx

0 /(�syy
0 ), the

condition to avoid tension is:

s0yx

�s0yy
tan �ð Þ < 1 ð3Þ

which is respected with our parameters. Second, to make
sure that the prestress does not violate the Coulomb failure
condition, i.e., that js210 j < �mss22

0 , for any orientation of the
faults (Figure 4), syx

0 /syy
0 has to satisfy

s0yx

�s0yy
<

sin Fsð Þ sin 2�ð Þ
1� sin Fsð Þ cos 2�ð Þ ð4Þ

In this case, the condition is syx
0 /(�syy

0 ) < 0.60 which is also
respected.

3. Elastostatic Singular Crack Modeling

[23] The goal of this section is to give a general idea of
stressing near the end of an arrested rupture, to begin to
determine conditions so that a rupture can jump to another
fault, parallel [Harris and Day, 1993] or not. For simplicity,
we start with the study of an elastostatic singular crack
model of a mode II rupture.
[24] We suppose that the two ends of a finite rupture have

finished their motion and that all along the crack there is
sustained a stress equal to the residual shear strength, syx =
tr = �mdsyy

0 (as represented in Figure 5). This static study
can be understood as a study after the motion. It is
suggestive only, because we cannot preclude the possibility
that dynamic stresses very close to the stopped rupture tip
were higher than in the final static field; they cannot be on
the crack plane itself, from basic results on unsteady crack
dynamics [Fossum and Freund, 1975], but the situation is

Figure 3. Simple modeling of the faults involved in the
1992 Landers earthquake.
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more complex in the near tip field at other orientations
relative to the rupture, as well as at more distant locations.

3.1. Faults

[25] In the branching transition from the Johnson Valley
to the Kickapoo faults, we will neglect the few km contin-
uation along the former, and consider it and the Kickapoo
fault as one, and only one, main fault, whose length is 15 km.
(Of course the actual length is longer, but we do not want to
allow crack lengths in a 2-D model which are much greater
than the seismogenic thickness of the crust. From 3-D con-
siderations that thickness sets a limit, which is not contained
in 2-D models, on how much further increase of crack length
along strike can increase the stress concentration at the crack
ends.) To determine the stress distribution due to the crack for
the singular static model, the Johnson Valley and Kickapoo
faults are represented, just here but not in the elastodynamic
study to follow, as a straight fault of 15 km length. Figure 3
gives one simple modeling of the faults, with the Homestead
Valley fault at orientation angles w = 0� and 30�, in pieces,
relative to the straight fault. Actually, the smallest distance
between the Kickapoo and Homestead Valley fault is a few
hundred meters (between 200 and 300 m) [Sowers et al.,
1994], and the orientation angle w of the closest parts
of the latter fault, relative to Kickapoo is between 0�
and 10�.

3.2. Static Stress Distribution

[26] Consider a single straight crack extending from x =
�X to 0 on the x axis, with X = 15 km, in the infinite x, y
plane, in a mode II configuration. We study the stress
distribution near the crack tip x = 0. As explained by Rice

[1980] and Poliakov et al. [2002], the final stress sij is the
sum of the initial stress sij

0 and stress change Dsij due to
introduction of the crack, and is given by

sij ¼
KII
ffiffiffiffiffiffiffiffi

2pr
p Sij qð Þ þ s0xx tr

tr s0yy

� �

þ O
ffiffi

r
p� 	

ð5Þ

where (r, q) are the polar coordinates (the origin is the crack
tip), the Sij(q) are certain universal functions normalized to
Syx(0) = 1 (see, e.g., Lawn and Wilshaw [1993] or Rice
[1968] or other sources on elastic crack theory) and tr =
�mdsyy

0 the residual shear strength. In the present case the
stress intensity factor is

KII ¼ s0xy � tr

� �

ffiffiffiffiffiffiffiffiffiffiffiffi

pX=2
p

ð6Þ

and O(
ffiffi

r
p

) denotes term which vanish in proportion to
ffiffi

r
p

or faster as r ! 0.
[27] The full representation of the stress field, effectively

identifying explicitly all terms in equation (5) including
those denoted O(

ffiffi

r
p

), may be done using standard tech-
niques in the 2-D elasticity analysis of cracked solids [e.g.,
Rice, 1968] to solve for Dsij. Thus letting the complex
position be denoted by z = X/2 + x + iy,

sxx þ syy ¼ s0xx þ s0yy þ 4Re f0 zð Þ½ �
syy � sxx þ 2isyx ¼ s0yy � s0xx þ 2is0yx þ 2 zf00 zð Þ þ y0 zð Þ½ � ð7Þ

where for our mode II problem

f0 zð Þ ¼
s0yx � tr

2i

z

z2 � X 2=4ð Þ1=2
� 1

" #

; y0 zð Þ ¼ �2f0 zð Þ � zf00 zð Þ

ð8Þ

[28] Representation of the stress field for purposes of our
plots in Figure 6 is done using the full equations (7) and (8),
although the plots are very similar in appearance when we
use equation (5) and simply neglect the terms denoted
O(

ffiffi

r
p

).

3.3. Conditions for Rupture Nucleation on a
Nearby Fault

[29] In the Coulomb friction model, rupture can nucleate
at any point if the shear stress is higher that the static

Figure 5. Singular elastic crack model (mode II shear) for
static rupture. Stress state shown (left) behind the tip, near
the fault surface, and (right) far ahead, where it coincides
with the prestress.

Figure 4. Mohr circle of the prestress. Conditions required
to not violate the failure conditions in any orientation and to
favor the propagation of the rupture for some orientations.
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friction strength. So, it is relevant to consider the normal
and shear stresses (s22, s21) at a point on a potential fault,
whose polar coordinates are (r, q). Different orientation
angles w given to the second fault are analyzed, and
different situations of nucleation may arise as follows:
[30] 1. If s22 < 0 and s21 > ms(�s22), right-lateral slip

nucleates. The area where this condition is met is repre-
sented in medium gray.
[31] 2. If s22 < 0 and s21 < �ms(�s22), left-lateral slip

nucleates. The area where the condition is met is repre-
sented in light gray. In fact, we’ll find none such for our w
range studied.
[32] 3. If s22 > 0, the area is represented in dark gray.

Compressional remote stress fields only are studied so that
the faults remained closed but it is interesting to test if there
are local areas where the normal stress is predicted to be
extensional.
[33] With these different representations, we analyze

where a nearby nucleation on a second fault could occur,
at least as based on the static field. This allows a preliminary
estimate of the influence of different parameters: character-
istics of the step over (width and overlap of the second fault,
its local orientation w), prestress, stress drop syx

0 � tr, and
ratio S = (tp � syx

0 )/(syx
0 � tr).

3.4. Results for Some Second-Fault Orientations

[34] Results based on our model parameters as in
sections 2 and 3.1 are shown in Figure 6 for local w =

0�, 5� and 10�. We see that this simple static analysis is
consistent with some conclusions of the Harris and Day
[1993] dynamic study of step overs between parallel fault
strands (case w = 0�). First is the difference between the
compressional and the dilational sides. Indeed, there is no
symmetry, and the areas of possible nucleation and the
maximum ‘‘jumpable’’ distance are very different accord-
ing to the overlap.
[35] Moreover, for these orientations only right-lateral

slip is possible; there are no light gray regions signaling
left-lateral slip. The higher is the orientation of the second
fault the smaller are the maximum jumpable distance and
the area where the nucleation is possible.
[36] There are very small regions adjoining the crack tip

on the dilational side where the normal stress is positive,
signaled by dark gray shading. That means a possible
opening of the secondary fault, but strong conclusions
cannot be drawn because this is particularly near the crack
tip (where the simple model adopted has a singularity of the
stress), and also because we have not analyzed effects on
the stress field of plastic yielding in the Coulomb failure
regions shown to envelop those zones.
[37] Comparing the stress distribution calculations for

several orientations which represent where the nucleation
of a rupture is possible, given the position of the curved
Homestead Valley fault and its orientations, we can antic-
ipate that the rupture should jump from Kickapoo fault and
might nucleate in several positions along the Homestead

Figure 6. Areas where nucleation of a rupture is possible, for various orientation angles w of the second
fault. Angles w = 0�, 5� and 10�, are chosen with reference to the geometry of the Homestead Valley fault.
The medium gray regions are those for which scoul = s21 + mss22 > 0 on a fault trace with orientation w
(i.e., areas where right-lateral failure nucleation is possible). Small, dark gray regions near the crack tip
are areas where the elastically calculated normal stress on the second fault is tensile (s22 > 0); see
enlarged view of region, for the w = 0� case, in top right. The black lines in the upper two panels, for the
w = 0� case, represent the points where, for each fixed y, scoul attains its maximum with respect to x.
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Valley fault, Figure 6, although this analysis cannot tell us
which one will nucleate first.

3.5. Some Analytical Results

[38] We can use our representation of the stress field to
make simple estimates of the maximally stressed offset
location (x coordinate) for a given step over width (y
coordinate), and of the scaling of maximum vulnerable
width with other parameters, especially S. First note that
Figure 6 (top) correspond to the case of two parallel faults
(w = 0�). They show that the loci of maximal Coulomb
stress scoul = s21 + mss22, for various y, define a pair of
nearly straight lines emanating from the crack tip. Consid-
ering points where the normal stress is compressive and the
slip is right lateral, that geometry and other features of the
stressing can be understood when stresses are written like in
equation (5), and we neglect the O(

ffiffi

r
p

) terms to simplify (as
commented in section 3.2, they have little effect on the
shapes shown in Figure 6). Using x, y variables instead of r,
q, equation (5) leads to

scoul ¼ s021 þ mss
0
22

� 	

þ
ffiffiffiffiffiffi

X

yj j

s

F
x

y

� �

þ C

" #

s0yx þ mds
0
yy

� �

ð9Þ

Here the first pair of terms give the Coulomb prestress; they
are dependent on w and are linear in the sij

0. In the remaining
terms F(x/y) is a dimensionless function proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin qð Þj j
p

[S21(q) + msS22(q)] and having different forms in
y > 0 and y < 0, whereas C is a constant; both F and C
depend on w and vary linearly with ms.
[39] That expression makes it clear that scoul is maximum

relative to x, at any given y, when F is a maximum relative
to its dimensionless argument x/y. That defines loci x/y =
constant in y > 0 and y < 0, thus predicting that the heavy
lines in Figure 6 (top) should be precisely straight, to the
neglect of the O(

ffiffi

r
p

) terms in equation (5). As noted, they
are indeed nearly straight, when we include all terms like in
equations (7) and (8).
[40] Finally, for the w = 0� case of parallel faults [Harris

and Day, 1993] we can estimate the influence of the S ratio
on the maximum jumpable distance Hmax. Writing tr =
�mdsyy

0 in equation (5) and making C explicit in equation (9)
leads to

scoul ¼ �mds
0
yy þ mss

0
yy

� �

þ
ffiffiffiffiffiffi

X

yj j

s

F
x

y

� �

s0yx þ mds
0
yy

� �

ð10Þ

where F(x/y) is linear in ms. Identifying the terms
corresponding to tp and tr, and setting the argument x/y
of F to correspond to the maximal value, say Fm (>0, but
different on the two sides of the fault), and using the
definition of S, this becomes

scoul

s0yx � tr
¼ Fm

ffiffiffiffiffiffi

X

yj j

s

� 1þ Sð Þ ð11Þ

Hence the maximum jumpable distance Hmax is the largest
value of jyj for which the right side is positive, and that
yields

Hmax

X
¼ Fm

1þ S

� �2

¼ F2
m

s0yx � tr

tp � tr

 !2

ð12Þ

in which the coefficient of proportionality (Fm
2 ) depends on

ms. Thus Hmax increases when S decreases (i.e., when
prestress syx

0 is larger); Figure 6 is for S = 1.3 but the results
can thereby be scaled to other S.

3.6. Long-Range Dynamic Rupture
Propagation

[41] If the rupture has nucleated along a suitable direc-
tion, will the prestress be consistent with an arbitrary
amount of propagation along that direction? This condition
will be met for at least some orientations if some part of the
Mohr Circle lies outside the wedge of angle 2Fd, as
represented in Figure 4.
[42] Typically, syx

0 /(�syy
0 ) > md makes long-range dynamic

rupture possible along the part of Homestead Valley fault
parallel to the x axis. The condition to make it possible
along the other part of the fault, with a maximum misori-
entation w = 30�, is that s12

0 > �mds22
0 , which is satisfied if

syx
0 /(�syy

0 ) > 0.122.
[43] Thus the prestress field allows dynamic rupture along

the Homestead Valley fault. Such has been inferred, to the N
and at least for about 4 km to the SSE, in the earthquake.
[44] From this simple static analysis, we have guidelines

for knowing if a fault is near enough to the tip of another
one for slip to be nucleated. However, we do not know if the
rupture can propagate and if it does so bilaterally. A
dynamic study is required, and that analysis follows. It
includes the time dependence of fault rupture, stress waves,
and time-dependent stress concentrations generated during
the rupture process (e.g., we will show important dynamic
normal stress changes on curved parts of the fault along
which w is changing).

4. Elastodynamic Slip-Weakening Rupture
Modeling

4.1. Geometric Modeling of the Faults

[45] We again choose the x axis parallel to the northern
part of the Kickapoo fault, treating its last 4 km as straight.
We do not consider the short rupture along the Johnson
Valley fault north of its branch with Kickapoo, and treat that
pair of faults as a single fault, curved before reaching the
straight Kickapoo segment. Because the 2-D model is not
sensible for crack lengths greater than the seismogenic
thickness of the crust, we have to reduce the rupturing
length of the Johnson Valley fault to 10 km, but we keep the
actual length of the Kickapoo fault, about 5 km. The angle j
between the two faults is 30�. The origin of the x, y system
is taken at the beginning of the straight part of the Kickapoo
fault. That is also the origin for the curvilinear distance s
along the fault, so that s > 0 on the 4 km straight part. The
geometrical modeling is shown in Figure 7 in the x-y plane.
[46] For the boundary integral equation (BIE) numerical

analysis, we cover all potentially rupturing faults with
uniformly sized cells of length Ds. Our parameter choices
allow us to choose Ds = 40 m (25 cells over 1 km length),
and still reasonably meet requirements [Kame et al., 2003]
for discretized numerical BIE solutions to suitably represent
the continuum limit of the slip-weakening rupture model.
[47] Thus the straight northern segment of the Kickapoo

fault has length 4 km = 100Ds. In the s < 0 region the
Johnson Valley-Kickapoo fault begins to curve progressively
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SSE along 2 km (50Ds) and then keeps the same orientation at
26� east of south along 9 km (225Ds).
[48] For the modeling of the Homestead Valley fault, we

know that the step over with the Kickapoo fault is between
200 and 300 m) at closest approach. From Sowers et al.
[1994], the backward propagation seems to stop at about
4 km SSE from that closest region. Thus we choose to
represent the entire part of the fault modeled with a
length of 10 km (250Ds). Although rupture continues
along Homestead Valley well to the north, in our model
slip propagation is blocked on it 6 km north of the
nucleation. We have verified that all of the action as
regards forming the backward branch is over before
waves from that artificial northern blockage of rupture
propagate back into the region of interest.
[49] The northern terminus of Kickapoo is offset in a

direction perpendicular to Kickapoo by 200 m from the
Homestead Valley fault. Thus for the simulation, the center
of the 10 km long Homestead Valley fault is chosen to be at
160 m east (y = �4Ds) and 280 m north (x = 107Ds) of the
terminus of Kickapoo. The northern half of the Homestead
Valley fault (125Ds) is straight and parallel to Kickapoo.
Along the curved SSE half, the orientation of the fault
varies from 0� to 30� along 2 km (50Ds) to reach the value
of 30� and finally keeps it along the last 3 km (75Ds).

4.2. Slip-Weakening Coulomb Friction Law

[50] In our modeling, the rupture was allowed to propa-
gate spontaneously using a slip-weakening friction law [Ida,
1972; Palmer and Rice, 1973]. The fault strength t, once
reaching the peak strength tp, decreases linearly (in the
most commonly adopted variant of slip weakening) with the
slip, to the residual strength tr, and becomes constant when
the slip Du exceeds an amount Dc, the critical slip. Dc is
considered to be a parameter inherent in the rupture process.
Moreover, the Coulomb friction concept is added to the slip-
weakening law so that t is proportional to the normal stress
�sn at any particular amount of slip, as in Figure 8. That is,

t ¼ tr þ tp � tr
� 	

1� Du

Dc

� �

H 1� Du

Dc

� �

ð13Þ

where

tp ¼ ms �snð Þ tr ¼ md �snð Þ ð14Þ

[51] This criterion, contrary to the critical stress intensity
factor criterion, does not suffer the unphysical infinite
stresses at the edges: there is a continuous stress distribution
at the crack tip (see Figure 9). The notation R denotes the
length of the slip-weakening zone, i.e., the zone in which 0 <
Du < Dc and s21 > tr.
[52] Palmer and Rice [1973] and Rice [1968] showed that

if the length of the slip weakening zone, R0, of a static crack
is small compared to all geometric dimensions of the model,
such as overall crack size, then we can estimate from the
energy balance of elastic-singular crack theory, with fracture
energy G expressed in terms of the slip-weakening law, the
minimum nucleation size of an initial crack so that the
rupture can propagate. For l = m that is

Lc ¼
16

3p

mG

s0xy � tr

� �2
¼ 8

3p

m tp � tr
� 	

s0xy � tr

� �2
Dc ð15Þ

Figure 8. Slip-weakening Coulomb friction law. The peak
and residual strength (tp, tr), and strength (t) at any
particular amount of slip (Du), are proportional to normal
compressive stress (�sn).

Figure 7. Geometry of faults in the x, y plane, x* = 3x/R0
o, y* = 3y/R0

o. The x axis corresponds to the
orientation of the portion of the Kickapoo fault that is modeled straight N-S. The orientation of the
Johnson Valley fault decreases from 0� to 26�. The orientation of left half of Homestead Valley fault
decreases from 0� to 30�.
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Here, following the notation of Kame et al. [2003], Lc is the
total length of the nucleating crack (not half length like by
Andrews [1976]).
[53] The initial crack has to be long enough to permit the

rupture to propagate along the fault but should be small
compared to the fault length to not affect the dynamic
results.
[54] In order to simply estimate R0, Palmer and Rice

[1973] use another slip weakening law chosen to make t
vary linearly with x within the end zone. For the case when
the end zone size is small in comparison to the other lengths
such as the crack length and the minimum nucleation size,
they determine

R0 ¼
3p

8

m

tp � tr
Dc ð16Þ

Rice [1980] pointed out that for the same slip weakening
law, during dynamic propagation under locally steady state
conditions on the scale of the end zone, the dynamic end
zone size R is a function of the rupture velocity and
diminishes with the velocity in particular way. That is,

R ¼ R0

f vrð Þ ð17Þ

where f = 1 when vr = 0+ and f(vr) increase with vr, without
limit as vr ! cR, where cR = 0.9194cs (for l = m) is the
Rayleigh wave speed. In our model, we cannot calculate in
closed form an exact value of the end zone length R. The
results of equations (16) and (17) are quite realistic,
according to mode II simulations by Kame et al. [2003]
and our own results, and can often used as estimation of the
end zone size.
[55] Characteristics of the rupture velocity vr attained

during spontaneous dynamic propagation depend on S of

equation (2) [Andrews, 1976; Das and Aki, 1977]: vr < cR
always if S is above a threshold (1.7–1.8), but given enough
propagation distance L when S is below that threshold, vr
will ultimately transition to the range cs < vr < cp; L/Lc
diverges at the threshold. In natural earthquake studied until
now, the rupture velocity seems usually to be below the
shear wave velocity. We have chosen S = 1.3 on the straight
segment of the Kickapoo fault, which has the property that
the maximal jumpable distance calculated in the static study
is large enough but also that vr < cR during the entire
propagation along our representation of the Johnson Valley
and Kickapoo faults.

4.3. Numerical Modeling of Dynamic Rupture:
Boundary Integral Equation (BIE) Method

[56] The fault, represented by G in Figure 10, is approx-
imated by a polygon consisting of elements of constant
length Ds. The time is also discretized by a set of equally
spaced time steps with an interval of Dt.
[57] The difficult step of the implementation is how to

choose Ds according to our model. The size of the zone
where the slip weakening Coulomb friction law is influent
decreases from a static value R0, defined in section 4.2 to 0
as the rupture velocity increases. The smaller Ds is, the
longer is the time when the law is properly represented.
Once the size of the end zone R is too small, we are not
suitably resolving the slip-weakening process and so cannot
have confidence in the numerical result. Ds is chosen as a
compromise between precision and time of calculation. In
applications [e.g., Koller et al., 1992; Kame and Yamashita,
1999] the ratio cpDt/Ds has been chosen equal to 1/2. This
value is smaller than 1/

ffiffiffi

2
p

, and therefore respects the
stability conditions of corresponding two-dimensional finite
difference methods, as explained by Koller et al. [1992].
[58] We use a discretized BIE to evaluate the changes in

tangential and normal tractions, i.e., in s21 and s22, respec-
tively, on the faults due to dynamic slip. Those are changes
relative to values in an initial static state at t = 0.
[59] Following earlier works by, e.g., Andrews [1985],

Das and Kostrov [1987], Koller et al. [1992], Cochard and
Madariaga [1994], Tada and Yamashita [1997], Kame and
Yamashita [1999], and Kame et al. [2003], the displacement
discontinuities along the fault are represented in the BIE
using a piecewise constant interpolation. A constant slip
velocity V i,k, to be determined, is assumed within each
spatial element (cell i of length Ds) and during each time
step k, which runs from (k � 1)Dt to kDt; here k = 1, 2,..
Since we start from a static state we set V i,0 = 0.
[60] The resulting expressions for s21

l,n and s22
l,n, at the

center of cell l at the end of time step n, are

sl;n21 ¼ � m

2cs
V l;n þ

X

n�1

k¼0

X

i

V i;kK l;i;n�k
t þ sl;021 ; ð18Þ

sl;n22 ¼
X

n�1

k¼0

X

i

V i;kK l;i;n�k
n þ sl;022 ð19Þ

for n = 1, 2,.. Here Kl,i,n�k represents the stress at the center
of cell l, at the end of time step n due to a unit slip velocity
within cell i during time step k. These kernels can be

Figure 9. Fault and distribution of shear stress s21 and slip
displacement Du.
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calculated analytically in 2-D by appropriate integrations of
the stress field in response to impulsive point double
couples. Also, Kt

l,i,0 = �m/(2cs) when i = l and is 0
otherwise, given that our Dt is less than a p wave travel time
over a cell; m/(2cs) is the radiation damping factor or fault
impedance [Cochard and Madariaga, 1994; Geubelle and
Rice, 1995] and represents the instantaneous contribution of
the current slip velocity to the shear stress at the same
position. Kn

l,i,0 = 0 is zero because we consider no opening
along the fault. Also, s21

l,0 and s22
l,0 are the tractions in the

static initial state at t = 0. Because of the proprieties of wave
propagation, the convolution sums have to be done only for
those cells i and prior time steps k that fall inside the p wave
cone of l, n, as illustrated in Figure 10.

4.4. Nucleation of the Rupture

[61] In order to nucleate dynamic rupture, we first assume
[Kame et al., 2003] a nucleation zone in a static equilibrium
state (corresponding to the state at t = 0 discussed in
section 4.3) on the Johnson Valley-Kickapoo fault whose slip
respects the slip-weakening boundary condition. We allow
slip in a region of length Lnucl slightly larger than the
minimum nucleation size Lc given by equation (15) but
prevent slip outside this region until t > 0, so that a dynamic
rupture begins with nonnegligible slip rate at the crack tip at
time step n = 1. The static equilibrium is found when the slip
and the stress field due to the initial stress and the slip in the
nucleation region satisfies the slip-weakening law.
[62] If the nucleation zone consists of N cells, then their N

unknown preslips Dl (the notation D is synonymous with
Du) alter the tectonic prestress (s21

0 )pre
l at the center of cell

l to a new static stress

sl21 ¼
X

i

DiK
l;i
t;static þ s021

� 	l

pre
ð20Þ

That s21
l will be identified as the term s21

l,0 in dynamic
representation equation (18). Here Kt,static

l,i is the correspond-
ing static stress kernel. Because we nucleate here along a
straight segment of the fault, that kernel depends there only

on l � i. Also, sliding gives no change in the normal stress
on that same planar segment from its value (s22

0 )pre due to
the prestress field.
[63] We must choose the Dl for the N cells of the

nucleation zone so that stresses at each cell are consistent
with the slip-weakening strength of equations (13) and (14)
and Figure 8. That is, if the law is represented as t =
�snF(Du), then we require that the s21

l for the N cells also
satisfy

sl21 ¼ � s022
� 	l

pre
F Dl
� 	

ð21Þ

The solution of equations (21) and (20) is numerically
determined using the Newton-Raphson method. The result-
ing slips Dl are identified as D l,0, i.e., at time 0, for the
dynamic analysis.
[64] The distribution of slip along this initial nucleation

region causes an initial stress concentration which is slightly
larger than the peak strength at the both tips of the zone and
so enables propagation of the rupture at the first dynamic
time steps.

4.5. Rupture Dynamics Procedures

[65] At time 0+, we begin the dynamic analysis. For n = 1,
2, .., stresses at the end of the nth time step are determined
in terms of slip rates V i,k by

sl;n21 ¼ � m

2cs
V l;n þ sl;n21

� �

past
ð22Þ

sl;n21

� �

past
¼
X

n�1

k¼0

X

i

V i;kK l;i;n�k
t þ

X

i

Di;0K
l;i
t;static þ s021

� 	l

pre
ð23Þ

sl;n22 ¼
X

n�1

k¼0

X

i

V i;kK l;i;n�k
n þ

X

i

Di;0K
l;i
n;static þ s022

� 	l

pre
ð24Þ

and, of course, slips are updated to the end of the step by
Dl,n = Dl,n�1 + DtVl,n. Here (s21

l,n)past is the stress at time nDt

Figure 10. Nomenclature used in the crack analysis and schematic diagram of the discretized BIE
method. The points represent the cells with non zero slip velocity.
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due to the history of slip everywhere up to time (n � 1)Dt; it
is equal to s21

l,n for cells which do not slip in that nth time
step.
[66] To solve for the slip rate in each time step, we assure

that the stresses and slip at the end of that step precisely
satisfy the slip-weakening constitutive law. Thus, as in
equations (13) and (21), let t = �snF(Du) represent the
strength. Then if

sl;n21

� �

past
< �sl;n22F Dl;n�1

� 	

ð25Þ

we must set Vl,n = 0, which is consistent with Dl,n = Dl,n�1

and s21
l,n = (s21

l,n)past. For the cells at each rupture tip, that test
becomes (s21

l,n)past < �s22
l,n F(0) = �mss22

l,n and, if met, it
means that the rupture front does not advance in that time
step.
[67] On the other hand, for all cells satisfying

sl;n21

� �

past
� �sl;n22F Dl;n�1

� 	

ð26Þ

we must choose Vl,n to satisfy

sl;n21

� �

past
� m

2cs
V l;n ¼ �sl;n22F Dl;n�1 þ DtV l;n

� 	

ð27Þ

Kame et al. [2003] stated conditions on Dt to ensure that
there exists a unique solution of equation (27) satisfying
Vl,n � 0. For the linear slip-weakening law adopted here,
that reduces to

m

2cs
> �sl;n22 ms � mdð Þ Dt

Dc

ð28Þ

(It assures, e.g., that if there is equality in (26), then the
obvious solution Vl,n = 0 is the only possible one.) For
the linear law the solution is readily written out explicitly,
with different forms depending on whether Dl,n�1 < Dc or
Dl,n�1 � Dc. In the latter case the result is just Vl,n =
(2cs/m) [(s21

l,n)past + mds22
l,n]. Thus we determine the slip

velocity on each fracturing element.
[68] If we use the definition of the different parameters

given earlier, the above inequality (equation (28)) assuring a
unique nonnegative slip velocity becomes [Kame et al.,
2003]:

Ds=R0 < 8=
ffiffiffi

3
p

p
� �

ð29Þ

i.e., Ds/R0 < 1.47. Here, however, it is important to
understand that the R0, which scales inversely with tp � tr
[= (ms � md) (�sn)] as in equation (16), must be evaluated
with sn equated to the momentary normal stress s22

l,n. That is
not constant in time for propagation along branched or
curved faults, and the criterion, which must be satisfied all
along the rupturing zone(s) considered, can only be tested
for certain during the solution itself (which may then have
to be redone with a more refined Ds, and hence Dt). This is
important in propagation along faults which curve toward
the compressional side of the advancing rupture, because
that locally increases the fault-normal compression and can

invalidate the choice of a Ds that seemed acceptable in
terms of the prestress field.
4.5.1. Regularization: Smoothing the Slip Rate
Distribution
[69] Following Yamashita and Fukuyama [1996], we

introduce what they call ‘‘artificial attenuation’’ to eliminate
short-wavelength oscillations which appear in slip velocity,
due to the abrupt progress of the fracture front along the
discretized fault trace. The oscillations only gradually
become evident for large numbers time steps, but then they
grow rapidly, and invalidate the results [Yamashita and
Fukuyama, 1996; Kame and Yamashita, 1999; Kame et
al., 2003]. We likewise try to eliminate the oscillations by
their regularization procedure. Thus, after calculating the
slip velocity Vover the ruptured region, at each time step, n,
we transform it to a smoothed one by

V i;n
sm ¼ V i;n þ a V I�1;n

sm þ V iþ1;n
sm � 2V i;n

sm

� 	

ð30Þ

The unknown V sm
i,n is then solved for numerically, along the

currently ruptured zone where V i,n � 0 (but with V sm
i,n set to

0 for all cells where V i,n = 0), using a matrix inversion. The
V sm

i,n are then used to redefine Vi,n for updating the slip and
doing future convolution sums.
[70] The choice of the smoothing factor a is delicate:

stronger smoothing suppresses not only the oscillations but
the amount of slip. A compromise has to be made between
stability and plausibility of the solution. Comparing their
numerical results using this procedure with an analytical
solution, Yamashita and Fukuyama [1996] have shown that
the value a = 1/2 gives stable and reasonably accurate
results. This value is chosen for our simulations.
4.5.2. Procedures for Rupture Transfer to the Second
Fault
[71] We will apply our procedures to study rupture along

the Johnson Valley-Kickapoo fault and then address whether
and how rupture could jump to the second fault, the Home-
stead Valley fault. As shown byHarris and Day [1993], three
scenarios are possible, depending on the geometrical charac-
teristics of the faults: (1) The rupture dies at the end of the first
fault segment. (2) The rupture triggers on the second fault
segment but cannot absorb enough energy to propagate.
(3) The rupture triggers the second fault segment and
then continues propagating.
[72] With the slip rate history of the first fault given from

a prior calculation, we study the possibility for the rupture
to jump, considering time steps when the rupture has not yet
completed on the first fault. We calculate the tangential and
normal tractions all along the second fault for each time
step, understanding that slip, if not a propagating rupture,
can nucleate when in one cell the tangential traction is
higher than the local peak strength. If this happens, in
section 4.5 we apply the algorithm explained above for
the calculation of slip velocity in the ruptured region and the
propagation of the rupture. To reduce computation time we
suppose that the rupture on the second fault has no influence
on the first; that means that we do not calculate the change
of the stress on the first fault due to the rupture on the
second one. This is sensible because slip on the first fault
has stopped or nearly stopped by the time waves would
reach it from the second fault. By the time waves from any
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small further slip on the first fault made their way back to
the second, the rupture front would have moved much
further along the second fault.
[73] Depending on the geometry of the second fault,

multiple nucleation sites may exist, as showed in the static
study. A rupture can nucleate in different time steps and at
different isolated locations. So, if a rupture has already
nucleated, we continue to test along the region which has
not ruptured if a nucleation is possible (Figure 11). If two
nucleations are possible for example, we just must take care
to join the tips (iL(i) and iR(j) represented in Figure 11) of
the two ruptured regions when it is possible. For the
propagation of the rupture and the calculation of slip
velocities for each region, the same algorithm as above is
used.

5. Rupture Along the Johnson Valley and
Kickapoo Faults

[74] The nucleation is simulated near the center of the
Johnson Valley segment of the fault around cell �150
(represented by a circle in Figure 7). According to the

prestress sij
0 and the 26� orientation of the fault around this

location, equation (15) determines the minimum nucleation
size as Lc = 5Ds. That is about 2R0, which does not fully
respect the assumption needed to validate equation (15) (R0

should be much smaller than Lc). To enable the initiation of
the rupture, the length of the initial crack is taken as Lnucl =
20Ds.
[75] The rupture propagates bilaterally along the Johnson

Valley segment and continues along the curved part and
along the Kickapoo fault, as shown in Figures 12 and 13,
which represent the slip Du (as D* = 3mDu/(�syy

0 R0
o) for

each 0.18s (that is 9R0
o/cp) and the slip velocity V, respec-

tively (as V* = mV/(�syy
0 cp)) for several time steps (N = 6cpt/

R0
o), all along the fault (as s* = 3s/R0

o where s is the
curvilinear coordinate). Here the scale length R0

o refers to
the static end zone size R0 as calculated from the normal
prestress on the straight part of the Landers fault; R0

depends on the orientation considered. Note that the slight

Figure 12. Along Johnson Valley and Kickapoo faults,
slip Du (as D* = 3mDu/(�syy

0 R0
o) versus s* = 3s/R0

o where
s is the curvilinear coordinate) for each 0.18 s (that is
9R0

o/cp).

Figure 11. Multiple nucleations. The first fault has
ruptured. The iL and iR represent the left and the right
tips, respectively, of each ruptured region.

Figure 13. Along Johnson Valley and Kickapoo faults.
Slip velocity V (as V* = mV/(�syy

0 cp) versus s* = 3s/R0
o

where s is the curvilinear coordinate) for several time steps
N = 6cpt/R0

o.
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decrease in slip at the nucleation location is an artifact of the
nucleation process. Actually, the rupture reaches the SSE
end of the region of Johnson Valley fault modeled at N =
531 (1.77 s). Going NNW, it reaches the curved part (at cell
�50) at time step N = 437 (1.47 s), the straight part of
Kickapoo fault at N = 629 (2.1 s) and its end at N = 1011
(3.37 s).
[76] The slip velocity increases slightly along the curved

part and it is higher along the Kickapoo than along the
Johnson Valley fault. This is partly because of the decrease
of the normal stress along the fault and because the ruptured
zone is getting longer. We notice too that as we wanted at
the beginning, reaching the SSE end of Johnson Valley
seems to have no influence on the propagation of the
rupture at the other end. After slipping, the end of the
Kickapoo fault seems to lock very rapidly and stop slipping,
which is represented between the time N = 1060 and N =
1200 but continues after.
[77] According to the representation of slip (Figure 12)

the maximum of slip is 4.4 m. The average along Johnson
Valley is 3.3 m, whereas Hardebeck and Hauksson [2001]
reported it as 2.0 ± 0.5 m. The difference is likely because
of the assumptions of the slip weakening model and perhaps
because of the simplicity of the prestress field and the 2-D
approximation itself. The average predicted along Kickapoo
is about 3.6 m.
[78] As shown in Figures 12 and 13, the rupture is not

inhibited by the curvature of the fault toward its extensional
side (an inhibiting effect of curving away from the exten-
sional side will be seen later for the SSE Homestead Valley
fault). This is consistent with the results of Kame et al.
[2003] which suggest that for this orientation of the compres-
sive principal stress, rupture along the branch (Kickapoo
fault) is favored.
[79] Figure 14 represents the propagation of each tip of

the ruptured zone. The velocity of the right tip does not
change when it reaches the curved part (s* = �50) or the
straight part parallel to the x axis (s* = 0). The rupture

velocity vr, represented in Figure 15 (as vr/cs) increases and
keeps a roughly constant value along the curved and the
straight parts. That is around 0.9cs, i.e., very close to cR. The vr
reported by our procedures is in the form 3Ds/nDt where n is
the number of time steps for the rupture to advance by 3 cell
sizes; hence vr is always quantized, as in Figure 14.

6. Does the Rupture Jump From the Kickapoo
Fault to the Homestead Valley Fault?

[80] Using the slip history rate of the Johnson Valley-
Kickapoo fault, we want to know now if a rupture, or more
than one, can nucleate along the Homestead Valley fault,
and if it does, if it propagates bilaterally or not and finally
what is the influence of the geometry on the propagation.

6.1. Stress Distribution Near the Homestead
Valley Fault

[81] We first ignore rupture on that latter fault, and simply
evaluate the stresses radiated from the first one, and if and
where they are large enough to initiate slip weakening
elsewhere. For that we have considered a region (contoured
in Figure 16) with the same local orientation as the
Homestead Valley fault, with the same length and a thick-
ness of 320 m (8 cells). The Homestead Valley fault is in the
center of the region. For purposes of defining stress com-
ponents on the 1, 2 system, the 2 direction at any point in
the region is the local perpendicular direction to the Home-
stead Valley fault. The quantity s21/(�mss22) is contoured
for several time steps in Figure 16.
[82] First, we notice something which does not happen in

the stress distribution around the straight fault for parallel
elements described in the static study: this is the region
which moves from the time step N = 800 to N = 1200 and
which represents a negative ratio s21/(�mss22). (The static
study in the first part suggests that a tensile domain (s22 > 0 >)
will not exist in the region now studied.) Indeed, the calcu-
lations shows that for these regions the shear stress is negative
which would imply a left-lateral slip if the ratio ever becomes

Figure 14. Position of the left and right ends of the
ruptured zone along Johnson Valley and Kickapoo (as s* =
3s/R0

o, where s is the curvilinear coordinate, the origin is the
beginning of the part of the fault parallel to the x axis) for
each time step (as N = 6cpt/R0

o). The two lines at each edge
indicate the length of the ruptured zone. The length of the
right part of the fault is about 4 km (s* = 100); the length of
the left part is 11 km (s* = �275).

Figure 15. Rupture velocity vr (as vr/cs) between the
initiation of the rupture and the moment when it reaches the
end of Kickapoo fault (in terms of time step N = 6cpt/R0

o)
along first the Johnson Valley fault and afterward Kickapoo
fault.
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Figure 16. Stress distribution around Homestead Valley fault for elements locally parallel to it. The
contoured quantity is s21/(�mss22), where (x1, x2) are the tangential and the normal directions relative to
the Homestead Valley fault (see text). Here x* = 3x/R0

o and y* = 3y/R0
o. Representation for several time

steps is N = 2cpt/R0
o.
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more negative than�1. Only right-lateral slip was allowed in
our calculation.
[83] The critical value of 1 for the ratio s21/(�mss22)

(which means that a rupture is possible) is first reached in
the curved part around the time step N = 1040. The region
where the rupture is possible expands especially in the
straight part and keeps a constant shape after the time step
N = 1300 which is shown in the last picture. Note that there
is reasonable correspondence, at the longer times shown
here, of the region s21/(�mss22) > 1 and the static prediction
of that region in Figure 6.

6.2. Stopping as an Aid to Jumping

[84] We can see in Figure 16 that a rapidly propagating
rupture is much more effective at generating high stresses
on parallel, or roughly parallel, nearby faults once its
propagation has been abruptly stopped by a barrier than it
was just before that blockage. For example, the rupture
reaches the barrier formed by the northern termination of
Kickapoo, moving at high speed, at time step N � 1000. As
Figure 16 shows, it is only some time later, as something
resembling the static field of Figure 6 starts to develop, that
a large region near the fault experiences failure level
stressing near the rupture tip.
[85] Thus it is much more likely for rupture to jump from

a first to a roughly parallel second fault if its propagation
has been abruptly stopped on the first. Jumps not associated
with sudden slowing of propagation on the first fault are
expected to be rare in nature. These observations are in
accord with a basic result of dynamic crack theory for the

singular model [Fossum and Freund, 1975], namely, that
the stress intensity factor at a rapidly propagating crack tip
increases significantly when that propagation is suddenly
stopped. A case of rupture jumping when rupture velocity
slows (rather than stops) is examined in Oglesby et al.
[2003a], and other cases of rupture jumping between faults
are examined by Harris et al. [1991] and Harris and Day
[1993, 1999] as mentioned earlier, as well as in Yamashita
and Umeda [1994], Kase and Kuge [1998, 2001], Harris et
al. [2002] and Oglesby et al. [2003b].
[86] We can conclude from this analysis that a rupture is

likely to nucleate along the Homestead Valley fault and
perhaps in several location. Further, stresses large enough to
initiate right-lateral slip weakening ultimately extend over
the entire region between the Kickapoo and Homestead
Valley faults.

6.3. Jump of the Rupture and Bilateral Propagation

[87] The last calculations lead to the possibility of mul-
tiple nucleation along the second fault. However, as a matter
of fact, a detailed calculation of the rupture shows that it
nucleates at a single location: along the curved part at cell
�8 (x* = 99 and y* = �4.18), which is just below the
termination of Kickapoo (in terms of x*, y*, the end of the
Kickapoo fault is at x* = 100 and y* = 0) and which has an
orientation of w = 2.8�. The initiation of slip occurs at N =
1022 (3.4s) and rupture starts propagating bilaterally, almost
instantaneously, at N = 1028 (3.43 s). Figure 17 represents
the slip velocity V (as V* = mV/(�syy

0 cp)) along the Kickapoo
and Homestead Valley faults represented in the x-y plane

Figure 17. Slip velocity V (as V* = m V/(�syy
0 cp) versus x* = 3x/R0

o and y* = 3y/R0
o) for several time

steps N = 4cpt/R0
o, along the faults, around the step over.
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Figure 18. Slip velocity V (as V* = m V/(�syy
0 cp) versus x* = 3x/R0

o and y* = 3y/R0
o) for several time

steps N = 4cpt/R0
o, along the faults.
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around the step over before and after the jump. Figure 18
represents the slip velocity and so the rupture propagation at
larger scale, along Johnson Valley and Kickapoo, and finally
Homestead Valley, showing all the modeled region.
[88] The rupture propagates bilaterally on the Homestead

Valley fault: forward along the straight part parallel to the
Kickapoo fault and backward along the curved part and then
the straight part at orientation w = 30�. The rupture velocity
slows down noticeably along the curved part of the Home-
stead Valley fault, as shown in Figure 19. The northern end
of the ruptured zone moves forward more quickly than the
SSE end, which has to contend with the curvature, which in
this case is away from the extensional side. The effect is to
increase normal stress along that curved part. Bouchon and
Streiff [1997] have investigated rupture of a curved fault
similar to the Homestead Valley fault, and also found a
reduction in rupture velocity and slip. In more severe cases
it is clear that such adverse curvature could arrest rupture
propagation, although that does not happen in this case.
[89] Forward, the rupture reaches the end at N = 1513

(5.04 s) of the northern portion of the Homestead Valley
fault modeled. The actual rupture did not end there (instead
continuing well to the NNW), but its stoppage in the
simulation is too late for waves from that to compromise
the modeling of the propagation to the SSE. Backward, it
finishes crossing the curved part at N = 1287 (4.29 s). Its
velocity increases again (as the discontinuity of the line at
the cell �50 suggests) and then remains roughly constant
along the oblique straight part. It reaches the end of the SSE
zone at N = 1648 (5.49 s), leaving in its wake the backward
branch which motivated our study.
[90] Figure 20 compares the slip velocity along the

different part of the fault. It is higher along the straight part
than along the curved part where it decreases dramatically.
However, when the rupture reaches the oblique straight part,
the slip velocity increases again but remains lower than the
section with an orientation parallel to the x axis. Besides, as
remarked, the end of the rupture forward has no influence
for the rupture backward.

[91] Finally, Figure 21 represents the slip Du (as D* =
3mDu/(�syy

0 R0
o)) all along the fault (in terms of cells s* = 3s/

R0
o). It is not the location of nucleation which corresponds to

the maximum slip (4 m) but rather the region around cell
�10. That corresponds to the beginning of the straight north
directed segment which is close to the nucleation site and on
which high shear stress is applied, as the stress distribution
around the fault (Figure 16) suggests. The average of slip is
2.4 m. We thus observe the high drop of slip along the
adversely curved part. The rupture would stop if the fault
did not stop curving, both because of the induced compres-
sional normal stress discussed and because of increasingly
unfavorable orientation relative to the prestress field.

7. Discussion and Conclusions

[92] Our work has addressed the relation between fault
branches left after a large, complex earthquake and rupture
directivity in the event. For that we investigated a new
dynamic mechanism which leaves behind a feature that
looks like a backward fault branch, that is, a branch directed
opposite to the primary direction of rupture propagation.
The mechanism consists of the stopping of the rupture on
one fault strand and jumping to a neighboring strand, by
stress radiation to it and nucleation of rupture on it which
propagates bilaterally. Rare as such a feature might be, it
could mislead observers attempting to understand the di-
rectivity of a past complex earthquake [Nakata et al., 1998].
We conclude that it is difficult to judge the directivity of the
main event from the pattern of branches it left and that
additional understanding of the structure near the fault
junction is needed to reach definitive conclusions.
[93] We analyze a field example of a backward fault

branch formed during the Landers 1992 earthquake, when
rupture propagating along the Kickapoo fault stopped at the
end of that strand and then jumped to the Homestead Valley
fault, where it developed bilaterally. The southern end of the
Homestead Valley rupture formed a backward branch, while
the main rupture continued NNW. We have no observational
proof, other than the clear patterns of damage to a particular
side of the Southern Homestead Valley fault (see Figure 2
and Poliakov et al. [2002]), that this is what really hap-
pened; existing analysis of coseismic observations have not
clarified that picture. It is even possible to assume that the
southern end of the Homestead Valley fault broke in an
early aftershock. However, we have developed relevant
theory for rupture transfer, and have simulated such a
mechanism numerically, with a simplified geometry of the
region under discussion.
[94] We conclude that what we describe is definitely

possible mechanically, that it very plausibly was the rupture
mechanism in the Kickapoo to Homestead Valley transition,
and that it could act more generally in other large earth-
quakes which rupture through complex fault systems. This
means that caution is needed when relating fault branches of
past earthquakes with their directivity. Simple forward
branching, even if probably most common, might not be
the only branching mechanism.
[95] Our work has broadened the mechanical analysis of

fault jumping, the basis of which is due to Harris et al.
[1991], Harris and Day [1993] and Harris and Day [1999]
who numerically analyzed ruptures jumping between paral-

Figure 19. Position of the left and right ends of the
ruptured zone (as s* = 3s/R0

o, where s is the curvilinear
coordinate, the origin is the center of Homestead Valley
fault) for each time step (as N = 6cpt/R0

o). The two lines at
each edge indicate the length of the ruptured zone. The half
length of the fault is fixed to about 5 km (s* = 125).
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Figure 20. Along the Homestead Valley fault, slip velocity V (as V* = mV/(�syy
0 cp) versus s* = 3s/R0

o,
where s is the curvilinear coordinate) for several time steps N = 6cpt/R0

o.
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lel faults. Here we analyzed ruptures jumping onto possibly
nonparallel faults, and subsequent propagation along grad-
ually curving faults, using the elastodynamic boundary
equation (BIE) method with a Coulomb type of slip
weakening. A fully systematic analysis of such jumps has
to be left for future work. However, we can offer some
insights into the mechanics of such jumps.
[96] First, it seems important that the rupture on the main

fault stops or at least slows down if successful transfer of
rupture to the neighboring, nonparallel fault is to be
accomplished. This is because the stress concentration
carried by the rupturing front diminishes with rupture
velocity [Fossum and Freund, 1975] and is largest when
propagation stops.
[97] We showed that stresses radiated to the curved

Homestead Valley fault, while the rupture tip was still
propagating along the Johnson Valley-Kickapoo fault sys-
tem, would be unlikely to nucleate rupture on the Home-
stead Valley fault. Rather, the jump was made possible by
the much higher stresses radiated when the rupture stopped
at the northern termination of the Kickapoo fault. Those
stresses succeeded in nucleating on the Homestead Valley
fault because the two fault traces are close to parallel there;
the less parallel orientation of the curved Homestead Valley
fault further to the southeast would not have allowed
jumping.
[98] When rupture stops at the termination of one fault

strand, like on the Kickapoo fault here, the Coulomb
stresses radiated to neighboring strands which are either
parallel or only slightly misoriented relative to the first
strand will increase in an approximately monotonic manner
with time, and approach the final static stress distribution
associated with the stopped rupture ([Harris and Day,
1993]; also, compare dynamic stressing in Figure 16 with
the static results of Figure 6).
[99] Thus, to simply estimate maximum jumpable dis-

tances, we have provided an analysis here of the static stress
field also. We find that there is a strong sensitivity to the
orientation of the target fault, even for misorientations as

small as 5� to 10� (Figure 6). Focusing on parallel faults, we
show that the maximum jumpable distance scales as a
function of the seismic S ratio, being proportional to 1/(1 +
S)2. Thus lower S values (i.e., prestress syx

0 closer to the static
friction strength �mssyy

0 ) favor jumping a greater distance
from a blocked rupture tip.
[100] Low S values also favor transition to supershear

propagation speed vr [Andrews, 1976]. We chose S = 1.3 for
the simulation presented here, which was large enough to
keep vr sub-Rayleigh on our representation of a part of the
Johnson Valley fault and the Kickapoo fault. The jumpable
distance was then, nevertheless, still great enough to enable
nucleation of propagating rupture on the Homestead Valley
fault. While not shown here, we have also done a version of
the same analysis with a lower S ratio, which allowed
supershear vr along the Kickapoo fault. As would be
expected because the maximum jumpable distance, scaling
as 1/(1 + S)2, was greater in that case, it too showed a jump
of rupture to the Homestead Valley fault. The case presented
here provides a more stringent test because of the larger S
(i.e., because of the lower shear prestress).
[101] Of course, there will exist a range of sufficiently

larger S values for which rupture could not jump from the
Kickapoo fault, then under yet lower prestress, to the
Homestead Valley fault. In those cases the Landers earth-
quake could not extend beyond the northern termination of
the Kickapoo fault. Such differences in the jumpable
distance, depending on prestress along the main fault, might
be responsible, among other mechanical reasons, for repeat
earthquakes behaving in a variety of ways, sometimes
rupturing single fault structures, and sometimes being able
to continue, via multiple jumps, to other fault systems.
[102] A phenomenon revealed in our simulations is how

adverse curvature of a fault, like for the southern Homestead
Valley fault in this modeling, can slow (and surely, some-
times stop) rupture propagation. By adverse curvature, we
mean curvature toward the compressional side of a fault, like
seen for the southern Homestead Valley fault in Figure 2
[Sowers et al., 1994], just south of the presumed jump site,
and Figure 7. Rupture is right lateral and propagates to the
SSE on that segment, so the compressional side, toward
which the fault curves, is the eastern side. With such
curvature, nonuniform slip like that occurring near the
rupture tip induces locally increased normal stress, and
assuming as we have here that friction strength is propor-
tional to effective normal compression, that locally increases
the resistance to slip-weakening failure compared to that
which could be estimated based on the fault-normal compo-
nent of the prestress field. While the curvature significantly
slowed, but did not stop, the rupture propagation in our
simulations (Figures 17, 19, and 21), it is clear that stronger
curvature could stop propagation.
[103] Our analyses here have been based on 2-D model-

ing. Such modeling has obvious limitations since we
address 3-D phenomena. For example, in a 3-D study of
the backward branch left by the rupture path in the 1999
Hector Mine earthquake, discussed previously, Oglesby et
al. [2003a] found that the branch could not be produced if
they allowed, in their simulation, for slip to extend all the
way to the Earth’s surface along the fault on which rupture
nucleated and propagated into the branch junction. They
could, however, produce that backward branch if they

Figure 21. Along the Homestead Valley fault, slip Du (as
D* = 3mDu/(�syy

0 R0
o) versus s* = 3s/R0

o, where s is the
curvilinear coordinate) for each 0.18 s (that is 9R0

o/cp).
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assumed that rupture on the first fault was blocked at
shallow depths by a strong barrier, thus radiating stress
increases to the second fault; that is, in fact, consistent with
lack of observed surface slip on the first fault. These results
suggest that 3-D dynamic effects may be quite important in
determining the rupture path through some complex fault
junctions.
[104] Nevertheless, given current computer limitations, it

is possible in 2-D modeling, but often not in 3-D, to choose
sufficiently small numerical cell sizes as to reasonably
resolve the underlying continuum solution (e.g., by having
several cells within the region of the fault undergoing slip
weakening, a region which contracts in size as rupture speed
increases [Rice, 1980; Kame et al., 2003]). Also, the 2-D
representation may often be justified when length scales of
phenomena modeled are small compared to the thickness of
the seismogenic zone, as in this case for the small jump
distance involved in the transition from the Kickapoo to
Homestead Valley faults.
[105] Such a process as we have investigated, of stopping

on one fault strand but thereby radiating stresses to nucleate
bilateral propagation on a nearby strand, may provide a
general mechanism of backward branching.
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