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Abstract—Distance protection of flexible ac transmission lines,
including the thyristor-controlled series compensator (TCSC),
static synchronous compensator, and static var compensator has
been a very challenging task. This paper presents a new approach
for the protection of TCSC line using a support vector machine
(SVM). The proposed method uses postfault current samples for
half cycle (ten samples) from the inception of the fault and firing
angle as inputs to the SVM. Three SVMs are trained to provide
fault classification, ground detection, and section identification,
respectively, for the line using TCSC. The SVMs are trained with
polynomial kernel and Gaussian kernel with different parameter
values to get the most optimized classifier. The proposed method
converges very fast with fewer numbers of training samples com-
pared to neural-network and neuro-fuzzy systems which indicates
fastness and accuracy of the proposed method for protection of
the transmission line with TCSC.

Index Terms—Distance protection, flexible ac transmission
system (FACTS) support vector machine (SVM), thyristor-con-
trolled series compensator (TCSC).

I. INTRODUCTION

THE USE of flexible ac transmission system (FACTS) de-
vices to improve the power transfer capability in a high-

voltage transmission line is of greater interest these days. The
thyristor-controlled series compensator (TCSC) [1] is one of the
main FACTS devices, which has the ability to improve the uti-
lization of the existing transmission system. The TCSC-based
compensation possesses a thyristor-controlled variable capac-
itor protected by a metal–oxide varistor (MOV) and an air gap.
However, the implementation of this technology changes the ap-
parent line impedance, which is controlled by the firing angle
of thyristors, and is accentuated by other factors including the
MOV. The presence of the TCSC in the fault loop not only af-
fects the steady-state components but also the transient com-
ponents. The controllable reactance, the MOVs protecting the
capacitors, and the air gaps’ operation make the protection de-
cision more complex and, therefore, the conventional relaying
scheme based on fixed settings has its limitations.
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Fault classification and section identification is a very chal-
lenging task for a transmission line with TCSC. Different at-
tempts have been made for fault classification using wavelet
transform, the Kalman filtering approach, and neural network
[4], [5].

The Kalman filtering approach finds its limitation, as fault re-
sistance cannot be modeled and further it requires a number of
different filters to accomplish the task. The back propagation
neural network (BPNN), radial basis function neural network
(RBFNN), and fuzzy neural network (FNN) are employed for
the adaptive protection of such a line where the protection phi-
losophy is viewed as a pattern classification problem [4], [5].
The networks generate the trip or block signals using a data
window of voltages and currents at the relaying point. However,
the above approaches are sensitive to system frequency changes,
requiring large training sets, training time, and a large number
of neurons.

This paper presents a new approach for fault classification
and section identification of the TCSC-based line using a sup-
port vector machine (SVM). SVM is basically a classifier based
on an optimization technique. It optimizes the classification
boundary between two classes very close to each other and
thereby classifies the data sets even very close to each other.
Also, SVM works successfully for multiclass classification
with SVM regression.

The current signals for all phases are retrieved at the relaying
end at a sampling frequency of 1.0 kHz. Half-cycle data (ten
samples) and firing angle are used as an input to the SVM.
The SVM is trained with input and output sets to provide the
most optimized boundary for classification. Also, another SVM
is trained for identifying the TCSC position on the transmis-
sion line. Taking the current data samples before and after the
TCSC, the corresponding SVM is trained to identify whether
the fault includes TCSC or not. When the fault includes TCSC,
the third and fifth harmonic components are highly pronounced
compared to the fault which does not include the TCSC. This
issue is taken care of by SVMs as the total half cycles (ten sam-
ples) data of the current signal are taken into consideration for
training and testing the SVMs.

II. SYSTEM STUDIED

A 400-kV, 50-Hz power system is illustrated in Fig. 1. In
this system, a TCSC is located at the midpoint of the trans-
mission line, used for the distance protection study. The power
system consists of two sources, TCSC and associated compo-
nents, and a 300-km transmission line. The transmission line
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Fig. 1. TCSC-based line.

Fig. 2. (a) MOV protected series capacitor. (b) MOV characteristic.

Fig. 3. Fault current with TCSC at different firing angles.

has zero-sequence impedance
and positive-sequence impedance .

kV and kV. The TCSC is designed
to provide compensation varying from a minimum of 30% to a
maximum of 40%. All of the components are modeled using the
EMTDC subroutines. Fig. 3 shows the fault current at different
firing angles and Fig. 4 shows the fault current before and after
TCSC on the transmission line.

The sampling frequency is 1.0 kHz at the 50-Hz base fre-
quency. The MOV consists of a number of zinc–oxide disks
electrically connected in series and parallel. The purpose of the

Fig. 4. Fault current before and after TCSC at the 160 firing angle.

MOV is to prevent the voltage across the capacitor from rising
to levels which will damage the capacitor. This is most likely
to happen when a fault occurs at a point on the compensated
line which minimizes the impedance of the fault loop. When in-
stantaneous voltage across the capacitor approaches a dangerous
level, the MOV begins to draw a significant proportion of the
line current thereby limiting the voltage across the capacitor at
that level. This action alters the impedance in the series path
and, hence, the fault-loop impedance. In the event that the MOV
remains in conduction long enough to raise its temperature (en-
ergy) to a dangerous level, an air gap is triggered to short out



DASH et al.: FAULT CLASSIFICATION AND SECTION IDENTIFICATION 69

Fig. 6. Proposed scheme for protection. Fault classification (SVM-1), ground detection (SVM-2), and section identification (SVM-3).

Fig. 5. Variation of capacitive reactance with the firing angle.

both the MOV and the capacitor, again changing the fault loop
impedance. The operation of the MOV can be within the first
half cycle of fault and depending on the severity of the fault, it
may continue to operate until the air gap is triggered cycles later.
This is precisely the time when a digital relay makes a protec-
tion decision. Further, a bypass switch in parallel with the gap
automatically closes for abnormal system conditions that cause
prolonged current flow through the gap. Fig. 2(a) shows a typ-
ical series capacitor arrangement for one phase of a transmission
line and the typical voltage-current characteristic of an MOV is
shown in Fig. 2(b).

The small inductance in the arrangement limits the current
through the air gap or switch circuit. The TCSC is designed such
that it provides 30% compensation at 180 (minimum) and 40%
compensation at 150 (maximum) firing angle and, in this study,
the firing angle is varied within this range as shown in Fig. 5.
The proposed protection scheme is shown in Fig. 6.

The TCSC is placed at 50% of the transmission line with
300-km line length, which is 150 km from the relaying end.
The simulation for all 11 types of shunt faults (L-G, LL-G,

LL, LLL, LLL-G) is made on the transmission line with dif-
ferent fault resistance, source impedance, and incident angles
at different fault locations with varying the firing angle from
150 –180 with (after) and without including (before) TCSC.
The half-cycle signal having ten samples from the fault incep-
tion is retrieved at the relaying end and is normalized to be used
as an input to the corresponding SVMs.

III. SVM FOR CLASSIFICATION

SVM [8]–[16] is a relatively new computational learning
method based on the statistical learning theory. In SVM, the
original input space is mapped into a high-dimensional dot
product space called a feature space, and in the feature space,
the optimal hyperplane is determined to maximize the general-
ization ability of the classifier. The optimal hyperplane is found
by exploiting the optimization theory, and respecting insights
provided by the statistical learning theory.

SVMs have the potential to handle very large feature spaces,
because the training of SVM is carried out so that the dimen-
sion of classified vectors does not have as a distinct influence
on the performance of SVM as it has on the performance of
conventional classifiers. That is why it is noticed to be espe-
cially efficient in large classification problems. This will also
benefit in fault classification, because the number of features
to be the basis of fault diagnosis may not have to be limited.
Also, SVM-based classifiers are claimed to have good general-
ization properties compared to conventional classifiers, because
in training the SVM classifier, the so-called structural misclas-
sification risk is to be minimized, whereas traditional classifiers
are usually trained so that the empirical risk is minimized. SVM
is compared to the radial basis function (RBF) neural network
in an industrial fault classification task, and it has been found to
give better generalization. SVMs may have problems with large
data sets, but in the development of fault classification routines,
these are usually not even available.

Let -dimensional input , be the number of
samples) belong to class-I or Class-II, and associated labels be

for Class I and for Class II, respectively. For
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linearly separable data, we can determine a hyperplane
that separates the data

(1)

where “ ” is an -dimensional vector and “ ” is a scalar. The
vector “ ” and the scalar “ ” determine the position of the sep-
arating hyperplane. Function is also called the de-
cision function. A distinctly separating hyperplane satisfies the
constraints if and , if .
This results in

for (2)

The separating hyperplane that creates the maximum distance
between the plane and the nearest data (i.e., the maximum
margin) is called the optimal separating hyperplane. An ex-
ample of the optimal separating hyperplane of two datasets is
presented in Fig. 7. From the geometry, the geometrical margin
is found to be . Taking into account the noise with slack
variables and error penalty C, the optimal hyperplane can be
found by solving the following convex quadratic optimization
problem:

minimize

subject to

for

for all (3)

where is measuring the distance between the margin and
the examples lying on the wrong side of the margin. The
calculations can be simplified by converting the problem with
Kuhn–Tucker conditions into the equivalent Lagrange dual
problem, which will be

maximize

subject to

(4)

The number of variables of the dual problem is the
number of training data. Let us denote the optimal solu-
tion of the dual problem with and . According to the
Karush–Kuhn–Tucker theorem, the equality condition in (2)
holds for the training input–output pair ( ) only if the
associated is not 0. In this case, the training example is a
support vector (SV). Usually, the number of SVs is consider-
ably lower than the number of training samples making SVM
computationally very efficient. The value of the optimal bias
is found from the geometry

(5)

Fig. 7. f(x) as a separating hyperplane lying in a high-dimensional space. Sup-
port vectors are inside the circles.

where and are arbitrary support vectors (SVs) for Class
I and Class II, respectively. Only the samples associated with
the SVs are summed, because the other elements of the optimal
Lagrange multiplier are equal to zero.

The final decision function will be given by

(6)

Then unknown data example “ ” is classified as follows:

Class if
Class otherwise.

(7)

SVM can also be used in nonlinear classification tasks with
the application of kernel functions. The data to be classified
are mapped onto a high-dimensional feature space, where the
linear classification is possible. Using a nonlinear vector func-
tion , to map the “ ”-di-
mensional input vector “ ” into the “ ” dimensional feature
space, the linear decision function in dual form is given by

(8)

Working in the high-dimensional feature space enables the
expression of complex functions, but it also generates problems.
Computational problems occur due to the large vectors and the
danger of overfitting also exists due to the high dimensionality.
The latter problem is solved above with the application of the
maximal margin classifier, and so-called kernels give solution to
the first problem. Notice that in (8) as well as in the optimization
problem (3), the data occur only in inner products. A function
that returns a dot product of the feature space mappings of orig-
inal data points is called a kernel . Ap-
plying a kernel function, the learning in the feature space does
not require an explicit evaluation of . Using a kernel function,
the decision function will be

(9)

and the unknown data example is classified as before. The
values of over all training samples, , ,
form the kernel matrix, which is a central structure in the
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TABLE I
TESTING OF SVM-1 FOR FAULT CLASSIFICATION

kernel theory. Mercer’s theorem states that any symmetric
positive–definite matrix can be regarded as a kernel matrix.

The polynomial learning machines of degree “ ” have the
inner product kernel

(10)

and radial basis function machines have the inner product kernel

(11)

where the “ ” is the width of the Gaussian function.

IV. SVMS TRAINING AND TESTING

A. SVM for Fault Classification

The half-cycle fault current signal samples after the fault in-
ception are taken as input to the SVM. The corresponding output
is either a fault or no-fault condition. Ten samples (half cycle at
1.0-kHz sampling frequency) of fault current from the fault in-
ception are retrieved at the relaying end are normalized along
with the firing angle of TCSC and are used as input (11 inputs)
space which is termed as “ .” “ ” is the corresponding output
which results in “1” for fault and “ 1” for no fault. The op-
timal marginal classifier is designed with a polynomial kernel
with a different order and Gaussian kernel with a different pa-
rameter value. Both results are compared as depicted in Table I.
The SVM-1 is trained with 500 data sets and tested with 200
data sets, each set comprised of 11 data points (10 for half cycle
current signal and 1 for the firing angle of TCSC) for “ ” as
input and (1, 1) for “ ” as corresponding output.

Faults on the line are simulated with various operating
conditions including different incident angles, fault resistance

TABLE II
CLASSIFICATION RATES OF SVM-1 FOR FAULT

CLASSIFICATION WITH 200 DATA SETS

(10 –200 ), source capacities, and various locations with dif-
ferent firing angles for 11 types of shunt faults. When the pa-
rameter values of the polynomial kernel and Gaussian kernel
are changed, the numbers of support vectors on the optimized
marginal plane vary accordingly as seen from the result depicted
in Table II. Here “ ” stands for the order of the polynomial and
“ ” stands for the width of the Gaussian function. The bound
on the Lagrangian multipliers “ ” is selected as 10 after testing
the SVM for other values of “ .” The conditioning parameter
for QP method lambda is chosen as .

Table I shows the results for fault classification for various op-
erating conditions. As seen from the table, for the “ ” fault
at 30%, , , the “ ” ph output is “1” but
the output for “ ” and “ ” phases is “ 1” for both polynomial
and Gaussian kernels, which depicts that the fault occurs only
on the “ ” phase. Also, for the “ ” fault at 65%, ,

, the output for all of the phases is “1.” As seen,
the misclassification occurs for the above operating condition
with the polynomial kernel with “ ”= 2 resulting in the output
of “ ” phase as “ 1” instead of “1.” Table II depicts the classi-
fication rates at different faults and corresponding support vec-
tors with the polynomial and Gaussian kernel of different pa-
rameter values. The classification rate is 95.23% (minimum) at
the L–G fault with a Gaussian kernel with and the sup-
port vectors are 13. Similarly, the classification rate is 97.84%
(maximum) fir LL-G fault with a Gaussian kernel with
which results seven support vectors on the hyperplane.

B. SVM for Ground Detection

The ground detection is done separately by training another
SVM. The peak value of the zero-sequence component of the
fault current signal for a half cycle is found out for the funda-
mental, third, and fifth harmonic component. The peak value of
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TABLE III
TESTING OF SVM-2 FOR GROUND DETECTION

zero-sequence components and firing angle of TCSC are used
as the input-“ ” (4 inputs) to the SVM-2 and the corresponding
output ( ) is “1” for the fault involving ground and “ 1” for the
fault without involving ground. As the zero-sequence compo-
nents for these three harmonic components are pronounced in
case of a fault involving the ground compared to a fault without
involving ground, the SVM-2 is trained to design an optimized
classifier for ground detection.

The order of the polynomial is “ ” and the width of the
Gaussian function is “ .” The Lagrangian parameter is selected
after testing the SVM with other values, but provides
the best result compared to other values. Thus, the bound on the
lagrangian multipliers “C” is selected 5.0 and the conditioning
parameter for the QP method lambda is chosen as .
The SVM is trained with 500 data sets and tested for 200 data
sets. The average classification rate for ground detection for
200 test cases is found to be 98.05% for all types of faults with
different operating conditions. It is found from Table III that
for an “a-g” fault at 10%, , , the output
is “1” which shows that the fault involves ground. But the “bc”
fault at 30%, , , the output is “ 1”
which clearly shows that fault without involving ground. Also,

TABLE IV
TESTING OF SVM-3 FOR SECTION IDENTIFICATION

misclassification is observed for the ac fault at 45%, ,
with the polynomial kernel for , which

produces output “1” instead of “ 1.” Also, a similar case
occurs for the abc-g fault at 85% ,
with a polynomial kernel for .

C. SVM for Section Identification

Section identification for the transmission line with TCSC is
accomplished by training the SVM-3 to build up an optimized
classifier. The half-cycle data (ten samples) after the fault incep-
tion and firing angle of TCSC are used as input-“ ” (11 inputs)
to the SVM and the output-“ ” is the output. The output “ ” is
“1” or “ 1” for faults including TCSC and without TCSC, re-
spectively. For any fault beyond 50% of the line, the output of
the SVM should be “1,” otherwise “ 1.” The SVM is trained
with the bound on the Lagrangian multipliers with “ ” selected
as 20 and the conditioning parameter for QP method lambda
chosen as . The Lagrangian parameter “ ”’ is se-
lected after testing the SVM with other values. The SVM is
trained with 500 data sets and tested for 200 data sets. The av-
erage classification rate for section identification for 200 test
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cases is found to be 95.09% for all types of faults with different
operating conditions.

Table IV depicts the results for section identification for
TCSC on the transmission line. For the “ac-g” fault at 30%,

, , the output of SVM is “ 1” which
shows that the fault occurred before TCSC on the line. But for
the “bc-g” fault at 55%, , , the output
of SVM is “1,” which clearly depicts that the fault occurred
after the TCSC on the line. Also, misclassification is observed
for the “abc-g” fault at 30%, , with a
polynomial kernel with and for the “ab” fault at 15%,

, with source changed with a Gaussian
kernel with . Also, a similar result occurs for the “abc”
fault at 65% , with a source changed
for the polynomial kernel with .

V. CONCLUSION

A new approach for the protection of a flexible ac transmis-
sion Line with TCSC using the SVM is presented in this paper.
Half-cycle postfault current samples and firing angles are used
as input to the SVMs and the output is the corresponding classi-
fication. SVM-1 is used for fault classification, SVM-2 is used
for ground detection, and SVM-3 is used for section identifi-
cation for the TCSC on the line, respectively. It is found that
SVMs are trained to result in most optimized classifier and with
less numbers of training samples compared to the neural net-
work and neuro-fuzzy systems. Also, the error found is less than
5%, taking all SVMs into consideration. Hence, the proposed
method is very accurate and robust for the protection of trans-
mission line including TCSC.
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