
Fault Collapsing via Functional Dominance

Vishwani D. Agrawal A. V. S. S. Prasad and Madhusudan V. Atre

Rutgers University, Dept. of ECE Agere Systems

Piscataway, NJ 08854, USA Bangalore 560066, India

vishwani02@yahoo.com avssp@agere.com, mvatre@agere.com

Abstract

A fault fj is said to dominate another fault fi if

all tests for fi detect fj . When two faults domi-

nate each other, they are called equivalent. Domi-

nance and equivalence relations among faults around

a Boolean gate are called “structural” and are used

for fault collapsing in large circuits. Some fault equiv-

alences, that cannot be determined by the structural

analysis, can be found by “functional” equivalence re-

lations. This paper gives a “functional dominance”

relation, which has not been described in the litera-

ture. Since the functional analysis is computationally

expensive, it can only be applied to small circuits such

as standard cells. A graph-theoretic hierarchical fault

collapsing method from the recent literature can then

collapse faults in any large cell-based circuit. It is

found that the size of the dominance collapsed set for

an exclusive-OR cell reduces to just four faults when

functional dominance is considered. With the tradi-

tional method of structural collapsing this set contains

13 faults. When the exclusive-OR cell is used to build

an 8-bit adder circuit, the size of the dominance col-

lapsed set reduces to 112 faults from a total of 466

faults. Traditional structural dominance collapsing

would have given a set of 226 faults. Smaller fault

set can lead to more compact tests. Collapsing for

the cell-based design of benchmark circuit, c499, re-

duces a set of 2,710 faults to just 586 faults.

1. Introduction

Fault collapsing is considered a matured topic and
is discussed in text-books [1, 6]. Collapsing reduces
the number of faults to be considered in test gen-
eration and fault diagnosis and is routinely incor-
porated in test generation and fault simulation pro-
grams. The techniques used are termed “structural”
fault dominance and fault equivalence, which can re-

duce the fault set size by about 50%. Greater reduc-
tion is possible with “functional” techniques, which,
due to high complexity, can only be applied to small
circuits. They have not been used in practice. A re-
cent method applies functional equivalence collapsing
at the cell-level and then uses the result for hierar-
chical fault collapsing in large circuits [15].

While functional equivalence has been known for a
long time, functional dominance, though mentioned
in the literature [11, 12], has not received much atten-
tion. This paper redefines functional dominance and
illustrates its application in hierarchical fault collaps-
ing.

Main Contribution: A quick reading of this pa-
per may show similarities to our recent ITC’02 pa-
per [15]. Indeed, the hierarchical method of fault
collapsing described in that paper is used here. The
details of that method are not included here. The
ITC’02 paper illustrates the application to functional
fault equivalence. The topic of this paper is func-

tional dominance and its application to fault collaps-
ing. We believe the procedures given here are dif-
ferent and more effectively implemented than those
given by Al-Assad and Lee [4], Amyeen et al. [5],
Grüning et al. [8], and Lioy [11, 12]. Also, the demon-
stration of the reduction of the collapse ratio below
25% by using functional dominance is significant and
has been observed for the first time.

2. Known Results

We will first summarize the known results on fault
collapsing that form the background for the new re-
sult of this paper, discussed in the following sections.
The background material given in this section can be
found in any text-book on testing [1, 6] and in the
cited references.
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2.1. Structural Equivalence and Domi-

nance

Two faults are called equivalent if exactly the same set
of tests detect them. These faults are indistinguish-

able from each other. Single stuck-at faults at the
inputs and output of a Boolean gate have structural

equivalence relations. For example, all stuck-at-0 (s-
a-0) faults of the input and output lines of an AND
gate are equivalent. Similar structural equivalence
relations are available for other gates. Using these
relations, faults of a circuit are grouped into sets of
equivalent faults. One fault is then selected from each
equivalence fault set to form an equivalence collapsed

set, which is used for test generation and fault cover-
age measurement. This process of reducing the fault
set is known as equivalence fault collapsing.

Another type of fault collapsing is based on fault
dominance [1, 6]. A fault is said to dominate another
fault if all tests for the second fault detect the first
fault. For example, a s-a-1 fault on the output line of
an AND gate dominates a s-a-1 fault on any input line
of that gate. This kind of dominance relations across
Boolean gates are known as structural dominances

and are used to find dominance collapsed fault sets.
Tests that detect all faults in a dominance collapsed
set also detect all testable faults of the circuit.

As an example, the test generation program,
Hitec [13], produces an equivalence collapsed set
of 1,574 faults for the benchmark circuit c1355,
which has a total of 2,710 faults. Another program,
Fastest [10], finds a dominance collapsed set of 1,210
faults. Both programs use structural collapsing.

2.2. Functional Equivalence

For an input vector, V , to be a test for a fault, we
have

f0(V ) ⊕ f1(V ) = 1 (1)

where f0 is the fault-free function and f1 is the faulty
function, respectively. Consider a second fault that
produces a faulty function f2. According to the defi-
nition of fault equivalence, two equivalent faults have
exactly the same tests. Therefore, for two faults to
be equivalent, we have

[f0(V ) ⊕ f1(V )] ⊕ [f0(V ) ⊕ f2(V )] = 0 (2)

Manipulation of the above equation leads to the fol-
lowing result:

f1(V ) ⊕ f2(V ) = 0 (3)

2

f 1

f 0

f 2

V 0
Always

f 1

f

0V
Always

Figure 1: Two ways to view fault equivalence.
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Figure 2: An xor cell.

which means that the two faulty functions are identi-
cal. This is the most general definition of fault equiv-
alence and is known as functional fault equivalence [6].
Equations 2 and 3 are functionally depicted in Fig-
ure 1.

Consider the exclusive-OR cell shown in Figure 2.
It has a total of 24 single stuck-at faults that can be
reduced to an equivalence collapsed set of 16 faults if
we use the structural collapsing as outlined in the
previous subsection. All equivalences, both struc-
tural and functional, as shown in Table 1, can only be
found when either exhaustive fault simulation or sym-
bolic analysis of faulty circuits is performed. Here we
have used subscripted notation for faults. Thus, a0

is the fault “line a s-a-0.” Functional equivalences,
that cannot be identified structurally, are shown in
“double-quotes.” Taking one fault from each equiva-
lent set, we get a collapsed set of 10 faults. This set is
smaller than the set of 12 faults found in a previous
paper [15] since the functional equivalences in sets 5
and 8 were not identified there.

The result of Table 1 first appeared in the papers by
Lioy [11, 12], who proposed functional fault collapsing
based on D-frontiers used in the automatic test gener-
ation (ATPG) procedures of Roth et al. [16]. Proving
the equivalence of two faulty circuits is another pos-
sible way of identifying functional equivalence. Effi-
cient methods of proving equivalence have been used
by Grüning et al. [8] and Amyeen et al. [5]. High

Paper 11.1

275



Table 1: Equivalent fault sets for xor cell.

Set No. Equivalent faults Faulty function

1 a0 b

2 a1 b

3 b0 a

4 b1 a

5 c0, “e1”, h0, j1 ab

6 “c1”, “f1” ab

7 d0, e0, g1, “h1”, “i1” a + b

8 “d1”, f0, i0, k1 ab

9 “g0”, “m0” 0

10 j0, k0, m1 1

complexity still prohibits application to large circuits.
Al-Assad and Lee [4] give a simulation-based proce-
dure for finding global equivalences in large circuits.
However, their method is approximate and may fail
to find many equivalences.

In practice [10, 13], functional equivalences are not
used due to the high complexity of analysis. We
also do not suggest direct identification of functional
equivalences in a large circuit. However, the result
of small subnetworks can be used to advantage if
hierarchical fault collapsing is adopted [15]. Once
the fault equivalences of small cells are given, col-
lapsing in large circuits can be performed by using a
transitive closure graph. Although some global func-
tional equivalences may not be found, the effects of
cell equivalences are globally analyzed.

Consider c499, which contains 104 exclusive-OR
gates. If each exclusive-OR gate is replaced with the
four-NAND xor cell of Figure 2 then we obtain a cir-
cuit that is functionally and structurally identical to
c1355. We will call this expanded version of c499 as
c499exp. Similar to c1355, c499exp has a total of
2,710 faults and conventional techniques produce an
equivalence set of 1,574 and a dominance set of 1,210
faults. When we consider the functional equivalences
for the xor cell, the hierarchical fault collapsing [15]
provides an equivalence set of 950 faults and a domi-
nance set of 690 faults. These numbers are lower than
those published for c499exp in an earlier paper [15]
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Figure 3: Fault dominance.

because some functional equivalences of the xor cell
were not used there.

3. Functional Dominance – New Result

Consider again two faults, which produce faulty
output functions f1(V ) and f2(V ), respectively,
where V is an input vector. Extending the concept
of functional equivalence Abramovici et al. [1] define
fault dominance: If a fault f1 dominates the fault f2

then the two faults are functionally equivalent for the
input vector set that tests the fault f2, i.e., all tests of
f2 satisfy Equation 3. To define the functional dom-

inance we will derive an equation involving the two
faulty functions and the fault-free function that must
be satisfied by all input vectors.

Let the fault-free output be denoted as f0(V ). Any
vector V that detects the first fault must satisfy
Equation 1. Similarly, if V is a test for the second
fault, then it must satisfy:

f0(V ) ⊕ f2(V ) = 1 (4)

If the first fault dominates the second fault then any
vector that satisfies Equation 4 must satisfy Equa-
tion 1. Also, by contra-positive law, any vector that
does not satisfy Equation 1 must not satisfy Equa-
tion 4. These conditions are combined in the fol-
lowing equation that must be satisfied by all input
vectors:

[f0(V ) ⊕ f2(V )][f0(V ) ⊕ f1(V )] = 0 (5)

This relation is depicted in Figure 3. Equation 5
reduces to:

f1(V )f2(V )f0(V ) + f1(V )f2(V )f0(V ) = 0 (6)

Although it is not obvious, this condition is con-
sistent with the D-frontier representation of func-
tional fault dominance given by Lioy [11, 12]. We
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Figure 4: Hierarchical design of an 8-bit ripple-carry adder.

re-examine the circuit of Figure 2, which is small
enough for the application of Equation 6. We find
many non-obvious dominances, such as, j0 dominates
d0, and g0 dominates k1. This circuit has 24 faults
and all of the pair-wise dominances are represented
as a 24×24 dominance matrix of [0,1] elements as de-
scribed by Prasad et al. [15]. The transitive closure
of this matrix then provides additional global dom-
inances. Analyses of the transitive closure provide
equivalence and dominance collapsed fault sets. The
reader is referred to a recent paper for the details of
this technique [15].

When we obtained all pairwise dominances
from Equation 6 and used the dominance matrix
method [15], the equivalence collapsed set had 10
faults: a0, a1, b0, b1, c0, c1, d0, d1, m0, m1, and
the dominance collapsed set had four faults: c0, c1,
d0, d1.

The 10-fault equivalence collapsed set is consistent
with Table 1, which was obtained using functional
equivalence. Here this set is obtained by the use
of functional dominances. We should point out that
dominance is a more basic property than the equiv-
alence. If two faults dominate each other, then they
will be equivalent. Thus, when all dominances are
known all equivalences can be deduced. The converse

is not always true.
These are smallest possible equivalence sets. We

notice that coincidentally the four faults in the dom-
inance collapsed set are mutually independent. Two
faults are called independent if they do not have any
common test [3]. In this case the four faults give the
exhaustive set of four vectors. Derivation of indepen-
dent fault sets is an open problem.

4. Hierarchical Fault Collapsing Results

Figure 4 shows an eight-bit ripple-carry adder cir-
cuit with three levels of hierarchy; first level is the xor

cell, second level is the full-adder subnetwork contain-
ing the xor cell, and the top level is the ripple-carry
adder circuit. The circuit consists of eight full-adder
subnetworks, which are constructed with xor, AND
and OR cells.

Once again, the reader is referred to the recent ITC
paper [15] for the graph-theoretic method of hierar-
chical fault collapsing that we have used in this ex-
ample. In that method, dominance matrices for all
standard cells are obtained by taking all structural
and functional dominances. Since a cell is small, ex-
haustive simulation or symbolic analysis is possible.
Our cell library for this example consists of the re-
duced (collapsed) dominance matrices for xor, AND
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Table 2: Fault collapsing results.

Number of collapsed faults (Collapse ratio [6])
Circuit All Structural Functional Functional
name faults only equivalence dominance

Equivalence Dominance Equivalence Dominance Equivalence Dominance

xor cell 24 16 (0.67) 13 (0.54) 10 (0.41) 8 (0.33) 1 0 (0.41) 4 (0.17)
full-adder 60 38 (0.63) 30 (0.50) 26 (0.43) 20 (0.33) 26 (0 .43) 14 (0.23)
8-bit adder 466 290 (0.62) 226 (0.49) 194 (0.42) 156 (0.34) 194 ( 0.42) 112 (0.24)

c499exp 2710 1574 (0.58) 1210 (0.45) 950 (0.35) 690 (0.26) 950 (0.35) 586 (0.22)

and OR cells. Similarly, fault collapsing libraries can
be made for any set of standard cells. We first analyze
the full-adder subnetwork using the reduced domi-
nance matrices from the cell library. Using the tran-
sitive closure, we reduce the dominance matrix of the
subnetwork. Next, eight copies of this reduced ma-
trix are combined for the ripple-carry adder. In this
way, the entire circuit is never flattened and the full-
adder subnetwork data, analyzed once, is repeatedly
reused. Also, functional fault dominances, incorpo-
rated in the xor cell, are automatically used in the
analysis of the larger circuit. However, to avoid high
complexity, some functional dominances that may be
present in the full-adder subnetwork or in the 8-bit
adder are ignored.

These results are shown in Table 2. Sizes of col-
lapsed fault sets and collapse ratios are given. The
latter is defined as [6]:

Collapse ratio =
|Set of collapsed faults|

|Set of all faults|

A collapse ratio around 0.6 is quite typical of the
conventional structural equivalence collapsing. It is
about 0.5 for structural dominance collapsing. How-
ever, functional dominance collapsing, which is the
main topic of this paper, reduces the collapse ratio to
below 0.25 (see the last column in Table 2).

The flat fault collapsing is conventional and is done
by flattening the hierarchy to the Boolean gate level.
The total number of faults, listed as “all faults” is
counted at this level. Collapsing in this case is struc-
tural only. Equivalence collapsed faults were ob-
tained by ATPG programs, Gentest [7], Hitec [13]
and Fastest [10], all of which gave identical results.
Dominance fault collapsing numbers were obtained
from Fastest. The same equivalence and dominance
numbers were obtained when the graph method was
applied to the flat gate-level circuits.

Hierarchical fault collapsing, both equivalence and
dominance, were done by the graph method with
“functional” equivalences incorporated in the xor

cell [15]. The total number of faults remains the same
as that at the flat level. Functional equivalences pro-
vided smaller collapsed fault sets and we observed a
35% reduction in the CPU time over that needed for
collapsing at the flat level. The collapsed set sizes in
columns 5 and 6 of Table 2 are smaller than those
previously reported [15] because two of the five func-
tional equivalences (see Table 1) were ignored there.

The last two columns in Table 2 give the new re-
sult of this paper. Most commercial ATPG tools use
structural equivalence collapsing and will therefore
have 290 faults for the 8-bit adder circuit. This num-
ber is reduced to 112 by the functional dominance
collapsing.

The last row in Table 2 gives the results for the
c499exp circuit discussed in Section 2. Once again,
the numbers for functional equivalence are lower than
those reported in an earlier paper [15] because all
functional equivalences of the xor cell are considered
here. The results for functional dominance are being
reported for the first time.

We performed a test generation experiment using
Gentest [7]. Tests for 100% coverage were generated
for the 8-bit adder using the collapsed sets of 290
faults (conventional) and 112 faults (functional dom-
inance). We used several modes available in Gentest
that either leave the don’t care inputs of a test as
such, or fill them by 0, 1, or random bits, respectively,
before fault simulation for dropping other detected
faults. The results, as shown in Table 3, though not
dramatic, distinctly show that the functional domi-
nance collapsing does reduce the test set size. For
circuits with greater logic depth, we should expect
larger reduction in test vectors.

We should point out that even the smallest test
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Table 3: 100% fault coverage tests for 8-bit ripple-carry adder.

Fill Number of vectors generated from
mode 290 faults 112 faults

don’t care 65 49
0s 35 31
1s 32 27

random 16 13

set in Table 3 is not minimal. There are ATPG pro-
grams [14] that try to construct small test sets from
any given fault list. Besides, considering the repeated
structure of the ripple-carry adder it is found that all
faults can be covered by eight or fewer vectors [6]. In
general, the smallest test set is found by an ATPG
program if an independent set of faults is targeted [3].
In such a fault set no two faults are detectable by the
same vector. Although we notice that the set of four
faults found by dominance collapsing in the xor cell
is an independent set, in general, the collapsing pro-
cedure does not produce an independent fault set.
This is because it is possible to have a common test
for certain fault pairs where neither of the two faults
dominates the other. When the dominance collapsed
set contains such a fault pair, one must find a con-

current test for it. A concurrent test for two faults
is a single test that detects both faults. These topics
require further investigation.

5. Conclusion

When functional fault dominances are used, the
sizes of both equivalence and dominance collapsed
sets reduce. The concept of fault dominance is more
general than fault equivalence and leads to an ele-
gant graph-theoretic analysis [15]. The advantage of
functional dominance collapsing in reducing the test
length, though not too significant for the example of
8-bit ripple-carry adder, can be large for circuits with
deep logic levels. Another possible application is in
identifying sets of independent faults. Such faults
have disjoint sets of tests and their use in test gener-
ation provides the smallest possible test sets [3].

The use of dominance fault collapsing for ATPG
requires caution. It is known that when a dominated
fault in the collapsed set is found to be redundant,
the dominating fault (not included in the collapsed
set) can be testable [2]. Thus, unless at least one of
the dominated faults is tested the dominating fault
cannot be considered as covered.

In general, smaller collapsed fault set can improve
the diagnostic resolution in fault diagnosis. This is
because it is impossible to distinguish between equiv-
alent faults. Such applications, which generally use
equivalence rather than dominance collapsing, have
been discussed by Hartanto et al. [9].
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