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The November 2017 M
W

5.5 Pohang earthquake is one of the largest and most damaging seismic events to have occurred in the
Korean peninsula over the last century. Its close proximity to an Enhanced Geothermal System (EGS) site, where hydraulic
injection into granite had taken place over the previous two years, has raised the possibility that it was anthropogenic; if so, it
was by far the largest earthquake caused by any EGS project worldwide. However, a potential argument that this earthquake was
independent of anthropogenic activity considers the delay of two or three months before its occurrence, following the most
recent injection into each of the wells. A better understanding of the physical and chemical processes that occur following fluid
injection into granite is thus warranted. We show that hydrochemical changes occurring while surface water, injected into
granite, reequilibrates chemically with its subsurface environment, can account for time delays for earthquake occurrence of
such duration, provided the seismogenic fault was already critically stressed, or very close to the condition for slip. This
candidate causal mechanism counters the potential argument that the time delay militates against an anthropogenic cause of the
Pohang earthquake and can account for its relatively large magnitude as a consequence of a relatively small-volume injection.
The resulting analysis places bounds on combinations of physical and chemical properties of rocks, injected volume, and
potential postinjection time delays for significant anthropogenic seismicity during future EGS projects in granite.

1. Introduction

Anthropogenic seismicity associated with geoengineering
projects is emerging as a significant issue for society. Engage-
ment between project developers and the public requires
transparent discussion of risks, which means dealing with
low-probability adverse consequences, including conse-
quences of “unknown unknowns” affecting geomechanical
processes (e.g., [1–3]). Until recently, no deaths or injuries
had been attributed to any anthropogenic earthquake
caused by fluid injection [3]. The Newcastle, Australia,
earthquake of 27 December 1989 (M

W
5.6) resulted in

13 fatalities and ~£3 billion worth of damage but was
caused by coal mining, not fluid injection (e.g., [4]). None-
theless, the magnitude (M

W
) 5.5 earthquake that occurred

at Pohang, South Korea, on 15 November 2017, which
injured 135 people, displaced >1700 people into emergency

accommodation, and caused >US$75M in damage to
>57,000 structures along with >US$300M of total economic
impact (e.g., [5]), was tentatively linked at an early stage to
injection activity for a nearby EGS project (e.g., [6, 7]), focus-
ing attention on this topic. However, potential reasons why
this earthquake might be considered unrelated to the EGS
project include, first, the time delay of 2-3 months since the
most recent injection at the site (e.g., [8]). The second reason
is the large size (magnitude,M

W
, or seismic moment,M

O
) of

the earthquake in comparison with the relatively small
volume V of fluid injected (e.g., [6, 7]), given existing theory
for predicting the upper bound toM

W
orM

O
as a function of

V [9]. Nonetheless, an official report, commissioned by the
Republic of Korea government, released in March 2019,
has asserted that the injection activity at this EGS site
did indeed cause the 15 November 2017 earthquake [5, 10],
the proposed causal mechanism being poroelasticity, thus
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depending on the combination of injected volume and the
pressure at which it was injected, rather than just the injected
volume.

The Pohang EGS project is located ~6 km north of the
centre of the industrial city of Pohang and ~3 km east of
the town of Heunghae (Figure 1). Two deep wells have been
drilled, reaching ~4.3 km depth in Permian granite (Table 1);
one (PX-2) vertical and the other (PX-1) also initially drilled
vertically, subsequently side-tracked to a WNW deviation by
~600m (Figure 2), the bottom hole depths (below sea-level)
being 4189m for well PX-1 and 4314m for well PX-2 [5].
Magnetotelluric exploration early in the project revealed a
zone of high electrical conductivity, interpreted as a water-
bearing fault, dipping steeply NW [11, 12]. However, subse-
quent investigations (e.g., [13, 14]) led to revision of the
developers’ conceptual model which, in its final form,
envisaged utilization for fluid circulation of a WNW-ESE
fracture [15], thus not incorporating the previously identified
NW-dipping fault into the project design. A significant loss
of circulation of drilling fluid was noted at 3434m depth
during the initial (vertical) drilling of well PX-1, indicating
that a permeable fault or fracture had been crossed [16]. An
even greater loss of circulation was reported, concentrated
between depths of 3816 and 3840m, during drilling of well
PX-2, directly beneath a zone of fault gouge spanning
3790-3816m [5] (Figure 3). These observations indicate
that a major fault was transected [5] (cf. Figure 4). The
latter loss of circulation (amounting to ~650m3) in
November 2015 was followed by a “burst” of microearth-
quakes lasting roughly for a month [5], indicating that this
major fault, or other faults hydraulically connected to it,
was already critically stressed. However, this fault intersec-
tion was subsequently sealed by casing the wellbore. Injection
experiments, to attempt to stimulate the geothermal reser-
voir, using hydraulic fracturing or “hydroshearing” to
improve its hydraulic properties, took place in well PX-1 in
December 2016 and in August 2017 and in well PX-2 in
February 2016, April 2017, and September 2017 (e.g., [7]);
the overall volume injected into both wells has been
~12,000m3, with ~7000m3 of flowback [5, 17].

The “cloud” of aftershocks that followed the Pohang
mainshock (Figure 2) reveals a NW-dipping fault plane in
the same place (given the uncertainties in the studies) as
the fault recognized in the preliminary exploration [11, 12];
to facilitate discussion, we designate this hitherto unnamed
structure as the Namsong Fault, named after a nearby village
(located at 36.100°N, 129.368°E, ~1 km SW of the drilling
site; Figure 1). As shown in Figure 2, the fault plane
delineated by these aftershock locations projects across the
wellbore at ~3800m depth, consistent with the reported fault
gouge and loss of circulation in well PX-2 [5] (Figure 3). The
Pohang mainshock involved reverse slip with a component of
right-lateral slip [6, 7] (Table 2 and Figure 5). The ~4 cm
maximum coseismic uplift of the Earth’s surface, revealed
by satellite radar imaging, confirms the geometry of the fault
[6]. Logging tools inserted into well PX-2 in August 2018
could not reach below 3783m depth [5], suggesting that this
well had been sheared by the coseismic slip in November
2017 on the fault depicted in Figure 3. The Namsong Fault,

thus reactivated, has no mapped surface trace and was unrec-
ognized (except for the initial tentative interpretation [11, 12]
of the magnetotelluric evidence, which did not inform the
ultimate design of the EGS project) before the November
2017 earthquake. Although the evidence now available
reveals it to be a major structure [5] (Figure 3), it remains
unclear whether it is confined to the Pohang granite or
continues upward into any of the overlying stratigraphy
(Table 1) (cf. [18]).

The standard procedure [19] for assessing whether an
earthquake is anthropogenic considers spatial proximity
and temporal correlation with fluid injection, and geomecha-
nical calculations indicating that the injection could have
caused the seismogenic fault to slip, the latter typically relat-
ing shear and normal stresses and fluid pressure to the stan-
dard Coulomb failure criterion. For the Pohang mainshock,
spatial proximity is obvious (Figure 2). The fluid pressure
reached very high values during the first injection experiment
in well PX-2 in February 2016 (maximum wellhead pressure
89MPa causing bottom-hole pressure 132MPa at 4368m
depth[15]), exceeding theestimatedminimumprincipal stress

J
Mi

Pohang

300 km

N

40 km

0 2 4

km

N
G

T

Yangsan
Fault

U

Earthquake
epicentre

N

Mo
Yangsan

Busan

Ulsan Cheongha

Heunghae

Namsong
Fault

Pohang

2016

Gyeongju

Pohang

2017

Heunghae

Yeongdeok

Yangsan
Fault

D

Figure 1: Location map for the city of Pohang in the SE part of the
Korean peninsula (upper inset showing wider location, lower inset
showing greater local detail), showing Late Cenozoic right-lateral
faults (from [96]), the Namsong Fault (from [7]), and the
epicentres of the 12 September 2016 and 15 November 2017
earthquakes (from [7, 46]). The right-lateral faults depicted follow
prominent fault-line escarpments that dominate the local
topography, being readily visible on topographic maps and
satellite imagery (such as Figure 1 of [96]). The local inset shows
the Namsong Fault (depicted schematically at the updip limit of
coseismic reactivation in 2017, from [6]), the Heunghae alluvial
plain (pale shading), the EGS project site (G), Namsong village
(N), and the Pohang thermal spa resort that yielded
hydrochemical data (T; coordinates from [97]).
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at depth [15]; had this pressure been transmitteddirectly to the
Namsong Fault (i.e., had the fluid pressure acting on this fault
risen to 132MPa or any similar value), it would have slipped
during this injection (see below). Regarding any temporal
association, full details of the subsequent injection experi-
ments have not been reported by the developers; however,
the published summary [7] includes injection in well PX-1 in
August 2017 and inwell PX-2 in September 2017, respectively,

three and twomonths before themainshock. Although physi-
cal mechanisms are known that can cause seismicity delayed
following fluid injection (e.g., [20, 21]), none has hitherto
explained a delay as long as 2-3 months.

One potential candidate mechanism, poroelastic diffu-
sion of stress, has been proposed as the cause of “natural”
seismicity with delays of months following climatic trigger-
ing (e.g., [22]). Many case studies of seismicity associated

Table 1: Pohang borehole stratigraphy.

Lithology Name Depth (m) Age Note

Mudstone Yeonil group 0 Middle Miocene 1

Tuff Beomgokri group 206 21 7 ± 1 2Ma 2

Mudstone Yucheon group 330 66 8 ± 0 7Ma 3

Andesite Gyeongsang volcanics 1250 Late Cretaceous 4

Granodiorite Pohang granite 2356 262 4 ± 3 6Ma 5

Data for well PX-1 are from [13, 16], supplemented here with additional information. Depth is to the top of each stratigraphic division. Notes: 1: biostratigraphic
age from [93]. 2: youngest 206Pb/238U date reported on detrital zircon, from [36], in overlying mudstone. Name from [41]. 3: lacustrine mudstone with
interbedded sandstone, tuff, and rhyolitic lava. Representative 206Pb/238U date on zircon, from [36], for the rhyolite. Nomenclature from [32, 94]. 4:
interbeds of andesite and andesitic tuff. Nomenclature from [32]. 5: granodiorite with gabbroic dykes. Oldest 206Pb/238U date on zircon, from [36].
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Figure 2: Locations of earthquakes at Pohang in November 2017: foreshocks (red circles), the 15 November mainshock (red star), and
aftershocks (black circles). Also shown are stations of the local seismograph network (blue triangles), the EGS site (green square), the
thermal spa resort (red + symbol; coordinates from [97]), and the borehole that yielded the in situ stress measurements discussed by [58]
(red × symbol). Focal mechanisms of the mainshock and five principal aftershocks, each labelled by MW, are drawn as standard lower (or
back) focal hemisphere projections with compressional quadrants shaded. Modified from [7]. (a) map. (b) NW-SE cross-section
along line illustrated in (a), showing schematically the two deep wells (solid green lines) and the interpreted plane of the Namsong
Fault (dashed red line).
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with fluid injection or extraction have indeed been explained
as poroelastic effects (e.g., [23–27]). Poroelastic modelling of
the flow rate/pressure dataset for the August 2017 stimula-
tion has been reported [17, 28]. However, this work is subject
to significant limitations, first, because its analysis is two-
dimensional (2-D), assuming cylindrical symmetry, with
the injected fluid assumed to flow radially outward and not

upward or downward. Second, it assumes that the flow is
governed by matrix permeability and not fracture permeabil-
ity, let alone permeability created by the development of new
fractures as the injection proceeds. Such 2-D modelling has
no way of incorporating any interaction between the injected
fluid and the Namsong Fault; three-dimensional modelling is
evidently desirable but is beyond the scope of the present
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Figure 3: Enlargement of the intersection in Figure 2(b) between well PX-2 and the Namsong Fault, showing (a) reports of fault gouge,
cataclasite, and loss of drilling mud, from drilling logs, and (b) proportions of fault gouge from subsequent laboratory analysis of cuttings.
Modified from Figure O-3(e) of [5]. Many of the larger (centimetre-sized) cuttings from this depth range were “mud balls” containing
large proportions of fault gouge and cataclasite; [5] provides further details. Interpretation of impermeable fault core and permeable fault
damage zone, after [86, 87].
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study. Nonetheless, hypocentral locations of the microearth-
quakes that accompanied this injection experiment indicate
downward propagation below the ~4.2 km deep PX-1 injec-
tion point to a depth of ~4.4 km [17], the deepest adjoining
the projection of the Namsong Fault below the injection
point, especially if the dip of the fault is as low as 43°

(Table 1) (cf. Figure 2). The lack of any deeper propagation
suggests that the injected fluid interacted with this fault.

As was noted above, poroelasticity has also been proposed
as the cause of the 15 November 2017 Pohang earthquake [5],
the modelling for this report treating the Pohang granite as a
material of uniform (0.01m2 s-1) hydraulic diffusivity, with a
lower diffusivity for the Namsong Fault core and a higher dif-
fusivity for the adjoining damage zone (cf. Figure 3), thus—a-
gain—not explicitly incorporating the anticipated fractured
nature of these fault rocks (cf. Figure 4). This modelling did
not investigate injection into well PX-1, but determined that
the injection experiments in well PX-2 increased the fluid
pressure on the Namsong Fault by ~0.1MPa in April 2017
and by ~0.08MPa by 15 November 2017, the latter change
being the cause of theMW 5.5 earthquake [5]. However, real-

istic calculations of poroelastic stress changes for a fractured
material as complex as the Pohang granite (cf. Figure 6), as a
consequence of fluid injection under a state of triaxial stress,
would be extremely difficult and are beyond the scope of the
present study. Nonetheless, the fact that the above-
mentioned calculations predict a smaller poroelastic pressure
increase at the Namsong Fault in November 2017 compared
with at times beforehand means that the analysis (from [5])
does not in fact account for the timing of the 15 November
2017 earthquake. In addition, considerations of proximity
between the two wells and the Namsong Fault indicate the
potential importance of injection into well PX-1: top of the
open-hole section of well PX-2 is ~400m below the Namsong
Fault, whereas if this fault dips at only 43° [5], it passes barely
100m below the bottom of well PX-1, the aforementioned
limited downward propagation of the seismicity accompany-
ing this injection [17] thus suggesting that the injected fluid,
and the fracture network it created, reached this fault. Such
considerations raise the possibility that significant causal fac-
tors of the 15 November 2017 Pohang earthquake have been
overlooked in the work reported so far, including [5].
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Table 2: Earthquake source parameters.

Source MW MO (1017 Nm)
Fault plane P-axis T-axis

ϕ (°) δ (°) λ (°) θ (°) α (°) θ (°) α (°)

U.S. Geological Survey [95] 5.5 2.01 203 45 108 1 101 78 105

Kim et al. [7] 5.4 ND 216 65 150 1 268 38 177

Grigoli et al. [6] 5.5 1.73 221 66 130 12 283 51 178

Lee et al. [5] 5.56 2.45 214 43 141 12 090 55 198

Focal mechanism determinations for the Pohang mainshock. Symbols denote: ϕ, strike; δ, dip; λ, rake; θ, plunge; and α, azimuth; ND indicates “not
determined”; MW and MO denote moment magnitude and seismic moment.
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Guided in part by the above considerations, we investi-
gate another potential candidate mechanism for seismicity,
the effect of injected surface water, reacting with the granite
adjoining the fault, on the local state of stress. Such an effect
can be inferred from studies of the alteration history of gran-
ite intrusions, which demonstrate precipitation of quartz
within faults or fractures at temperatures of ~150°C (e.g.,
[29]), thus demonstrating interaction between solid and dis-
solved phases under such conditions. This interaction is
shown to be able to account for induced seismicity with
delays of this order. Anthropogenic earthquakes with longer
delays are known; for instance, the magnitude 2.7 event of 15
August 2009 at Landau, Germany, occurred two years after
hydraulic stimulation of granite [30], although no causal

mechanism has hitherto been suggested that can account
for this delay. The seismicity following the injection in 2006
into granite beneath the Swiss city of Basel included an event
of magnitude 3.2 with a delay of two months, followed by
smaller events spanning more than a year [31]. The proposed
mechanism might be applicable to other instances such as
these; hitherto, analyses of induced seismicity following
injection into granite have typically not considered ground-
water hydrochemistry, and appropriate hydrochemical data
from geothermal projects have typically been unavailable.

Our analysis will focus on the August 2017 stimulation of
well PX-1 as this is the best-documented hydrochemically of
the Pohang injection experiments. However, this does not
mean that we regard this injection as the sole cause of the
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MW 5.5 earthquake; multiple injection experiments, plus the
aforementioned release of drilling fluid, might well have con-
tributed to the hydrochemical “corrosion” of the Namsong
Fault, but the information available on these activities is
incomplete. We shall first summarize background informa-
tion on the Pohang site, including on its thermal state and
state of stress. We then describe the process of collecting
and analyzing water samples from this site. Finally, we ana-
lyze the geomechanics of the site, including calculations of
the effect of hydrochemical “corrosion” on the state of stress.

2. Conditions at the Pohang EGS Site

The Korean peninsula has experienced a complex tectonic
history, with multiple phases of crustal deformation con-
tributing to the stratigraphy evident in the Pohang bore-
holes (Table 1). Details differ between accounts (e.g.,
[32–35]), and some aspects remain subject to considerable
uncertainty. Nonetheless, to summarize a complex story,
granite intrusion during the Permian is attributed to sub-
duction during the suturing together of previously sepa-
rated continental crustal provinces, now merged within

Korea. This phase of tectonic activity created the Pohang
granite and neighbouring intrusions, which are reliably
dated (e.g., [36, 37]). Subsequent phases of crustal defor-
mation during the Mesozoic reflect the changing geometry
of subduction, beneath the eastern margin of Asia, of oce-
anic plates within the Pacific basin. Thus, for example,
during much of the Cretaceous, oblique subduction of
the Izanagi Plate was accompanied by island arc volcanism
and the development of the terrestrial Gyeongsang backarc
basin in SE Korea (e.g., [32]). The Pohang granite,
unroofed by this time, was reburied beneath sediments
and volcanic rocks (Table 1). Also, during the Cretaceous,
pervasive granitic magmatism and regional hydrothermal
mineralization were consequences of low-angle subduction
of relatively young, hot, oceanic lithosphere that had
formed at the oceanic spreading centre between the Iza-
nagi and Pacific plates (e.g., [38, 39]).

The most recent tectonic processes affecting the Pohang
area relate to the Miocene crustal extension and oceanic
spreading in the Sea of Japan backarc basin (e.g., [40]) to
the east of Korea. Faulting associated with this extension
passes onshore into SE Korea, continuing southward through

Figure 6: Outcrop of Yeongdeok granite near Jipum (36.4478351°N, 129.2705272°E; near the town of Yeongdeok, ~50 km north of Pohang;
Figure 1), showing its highly fractured character. Tape measure (diameter ~8 cm) provides scale. This granite is petrologically similar to the
Pohang granite and part of the same Permian magmatic suite (e.g., [37]). Its highly fractured character can be considered indicative of the
physical state of the Pohang granite. For the Yeongdeok granite, the typical spacing of fractures has been measured as ≤0.3m [98].
However, many of these fractures will have been formed during the last ~1 km of erosional unloading (cf. [99]); we thus adopt a nominal
fracture spacing of 0.5m for our analysis of the Pohang granite.
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the Pohang area as the NNE-SSW-oriented right-lateral
Yangsan Fault (e.g., [33, 41, 42]; Figure 1). The Yangsan Fault
has slipped tens of kilometres (~35 km according to [33];
~50 km according to [43]), displacing the contacts between
zones of Cretaceous mineralization (e.g., [40]). A relatively
complex fault pattern is thus evident in the Pohang area at
this rightward step in right-lateral faulting (e.g., [33, 41,
42]). Right-lateral slip on the Yangsan Fault continues to
the present day, evidenced by palaeoseismic studies (e.g.,
[44]), historical earthquakes (e.g., [45]), and instrumentally
recorded events. The Gyeongju earthquake (MW 5.5) of 12
September 2016, which occurred ~40 km SSW of the Pohang
EGS site (e.g., [46]; Figure 1), demonstrates that this fault
remains active. Using kinematic indicators on exposures of
Quaternary faults, Park et al. [47] determined the state of
stress for the Pohang area with maximum principal stress
plunging at 8° towards an azimuth of 250°, intermediate prin-
cipal stress plunging at 7° towards 159°, and minimum prin-
cipal stress plunging at 79° towards 059°. However, no
evidence of Quaternary slip on the Namsong Fault has previ-
ously been reported; the age of its most recent slip (before 15
November 2017) is unknown.

At the time of the August 2017 injection, well PX-1 was
cased, with internal and external diameters of 6” and 7”, to
a measured depth (MD) of 4069m (4049m below sea level),
with a 313m open-hole section of diameter 8.5” in the
Pohang granite to 4382m MD. This open-hole section is at
true vertical depth (TVD) between 3940 and 4237m. For
comparison, well PX-2 is vertical, with its open-hole section
between 4228 and 4368m TVD. The August 2017 injection
experiment was intended to test a “soft” stimulation concept,
involving cyclic variations in an injection rate, with the aim
of mitigating induced seismicity, causing very small micro-
earthquakes by shearing preexisting fractures to hopefully
increase permeability and thus hydraulically connect the
two wells [48]. In these circumstances, whether shearing
of preexisting fractures propagates upward or downward
depends on whether the vertical stress gradient exceeds
the vertical fluid pressure gradient (e.g., [49, 50]). The
magnitude and orientation of the stress tensor at Pohang
are not known with confidence ([15]; see below); focal
mechanisms of the “nanoearthquakes” that accompanied
the injection experiments have not been reported. None-
theless, as already noted, the hypocentres of the events
that accompanied the August 2017 injection experiment
propagated downward below the ~4.2 km deep PX-1 injec-
tion point to the Namsong Fault around ~4.4 km depth
[17], suggesting that the “hydroshearing” caused by this
injection reached this fault.

2.1. Thermal State. The Pohang EGS project was designed
assuming a nominal bottom-hole temperature (BHT) of
180°C [51], for a nominal 5 km depth [52], but measurements
of the undisturbed BHT in wells PX-1 and PX-2 were not
made by the developers. Nonetheless, a 103°C temperature
has been reported [16] at 2250m depth, just above the
top of the Pohang granite at 2356m [16]. The surface heat
flow is 94mWm-2 in a nearby borehole [53]; given the
28°Ckm-1 geothermal gradient in the granite [53], a temper-

ature of ~160°C can be estimated at ~4.3 km depth (i.e.,
103°C + ~4 3‐~2 4 km × 28°Ckm−1 = ~160°C).

The initial temperature of the injected water reflects its
surface environment, being up to ~30°C for the injection into
well PX-1 in August 2017 (see below, also the supplementary
file available here)). On entering any fracture of width W,
this water thus experienced postinjection warming by up to
~130°C, making it important to estimate the timescale for
this warming as this will affect rates of hydrochemical reac-
tion. We have made an approximate assessment of the
required timescale using analytic theory (equation (3) on
page 54 of [54]). For a temperature difference of ~130°C,
the time required for a temperature rise to within ~1°C of
the initial temperature of the surroundings to the fracture
can thus be determined as ~1000 ×W2/κ, where κ is the ther-
mal diffusivity of water (~0.14mm2 s-1). This timescale thus
ranges from ~2 hours for W = 1mm to ~10 days for W =
10mm and ~3 years forW = 100mm. These estimated time-
scales for warming of injected water bear upon the analysis of
the geomechanics (see below).

2.2. State of Stress. The maximum principal stress beneath
Korea is roughly east-west, caused by the convergent plate
motions across the western margin of the Pacific basin (e.g.,
[55]). However, the orientations of the minimum and inter-
mediate principal stresses show considerable variability
within Korea (e.g., [55–57]). The EGS project developers esti-
mated the stress field at a representative depth of 4278m;
their arguments are set out in their publications (e.g., [15]).
They thus deduced a lithostatic vertical principal stress σV
at this depth of 110MPa, a horizontal maximum principal
stress σH in the range 116-139MPa, and a horizontal
minimum principal stress σh in the range 82-105MPa. A
wide range of uncertainty, between N65°E and S50°E (or
065-130°), was estimated for the azimuth of σH, reflecting
uncertainty in the analysis, which nonetheless indicates
σh < σV < σH. This analysis extrapolated in situ stress mea-
surements made in shallower boreholes to greater depths;
the data include the σH azimuth (with the intermediate
principal stress vertical) of 135 ± 3° (S45 ± 3°E) at ~700m
depth from hydraulic fractures and 136 ± 4° (S44 ± 4°E)
at ~800m depth from drilling-induced fractures [58], these
measurements being made in Early Miocene tuff (Table 1)
in a borehole ~4 km SW of the Pohang EGS site. However,
other case studies indicate that such extrapolation cannot
be done with confidence, as the stress tensor orientation
may change significantly with depth (especially between
contrasting lithologies) (e.g., [21, 59]), a phenomenon rec-
ognized in Korea [57]. For example, Chang et al. [56]
reported a typical WSW-ENE maximum principal stress
and a typical vertical minimum principal stress in SE
Korea from measurements in shallow (depth <350m)
boreholes. The analysis by Kim et al. [58] is also inconsis-
tent with other work (e.g., [55, 60]) which indicates
reverse-faulting focal mechanisms in the region, also con-
sistent with a vertical minimum principal stress (although
strike-slip earthquakes have also been reported). It also
contrasts with the determination, already noted, of a
near-vertical minimum principal stress in the Pohang area
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from kinematic indicators on faults [47]. These inconsis-
tencies indicate that the stress field in the Pohang area is
subject to some uncertainty.

Three dimensional geomechanics case studies such as
this can in principle be analyzed trigonometrically (e.g.,
[61, 62]). However, we have instead used a vector geome-
try approach [21] as this produces equivalent results with
simpler calculations. Searching through the combinations
of magnitudes and orientations of the principal stresses
proposed by Park et al. [15], the focal mechanism by
Kim et al. [7] (Figure 5(b)) is thus consistent with a maxi-
mum principal stress oriented at azimuth N64°E (064°)
whereas that by Grigoli et al. [6] (Figure 5(c)) is consistent
with S76°E (114°). This difference in predicted orientation
is substantial, indicating that the predicted stress field orien-
tation is sensitive to modest changes to the focal mechanism
of the earthquake. In an attempt to find a solution that is con-
strained with greater confidence, we consider other options
for the relative magnitudes of the principal stresses.

We first investigate the alternative stress field for the
Pohang area, proposed by Park et al. [47] using kinematic
indicators on Quaternary faults, with σV < σh < σH. How-
ever, we have misgivings regarding the inclined principal
axes of this stress tensor, there being no geological reason
why these axes should not be vertical and horizontal in this
study region. We suspect that the analysis method used (after
[63]) may have produced this inference as an artefact of
assumptions made: for example, not all the faults analyzed
were dated and some may not reflect the present stress field;
or, the stress tensor orientation and/or ratio of principal
stresses may vary from fault to fault. Furthermore, Park
et al. [47] did not determine absolute principal stresses, only
their ratios. We thus consider a modified stress field based on
Park et al. [47], with a vertical minimum principal stress and
a horizontal maximum principal stress oriented at azimuth
250°. For the representative depth of 4278m, we retained
the lithostatic vertical stress of 110MPa with a 42MPa
hydrostatic fluid pressure (from [15]). We first chose the
principal horizontal stresses to be 200 and 170MPa to give
the “stress ratio” determined by Park et al. [47]. However,
this choice of stress field cannot account for the sense of slip
in the Pohang earthquake; it predicts rake angles indicative of
a lower proportion of right-lateral slip to reverse slip than is
observed (Figure 5).

We next consider a revised stress field for the Namsong
Fault that can account for the sense of slip, reported by Gri-
goli et al. [6] for the 15 November 2017 earthquake
(Figure 5(c)). Starting from the preceding analysis, for the
same 4278m representative depth, we retain σV = 110MPa,
σH = 200MPa, and a fluid pressure of 42MPa, but revise σh
down to 120MPa and allow the azimuths of σH and σh to
vary. This focal mechanism is thus consistent with an azi-
muth of 111° (or S69°E) for σH, whereas that in Figure 5(b)
would be consistent with 090° (or due east). We also investi-
gate another variant, with σV = σh. Figure 5(c) would now be
consistent with an azimuth of 112° (or S68°E) for σH, whereas
Figure 5(b) would be consistent with 092° (or S88°E). Taking
all these possibilities into account, and acknowledging the
uncertainties involved, and that a substantial range of

possible stress fields can account for the observed focal mech-
anism, we will adopt for our analysis of the geomechanics the
solution for 4278m depth with σV = 110MPa at 111° (or
S69°E), σH = 200MPa, and σh = 120MPa. We shall also
consider, for comparison, the solution for 4200m depth with
σV = 106MPa at 083° (or N83°E), σH = 243MPa, and σh =
120MPa, from [5]. This second alternative model stress field
was based on a review of the literature similar to that summa-
rized above, supplemented by new data: dipole sonic logging
of well PX-2 in August 2018 revealed anisotropy features at
depths between 3.4 and 4.3 km, interpreted [5] to indicate
σH oriented 077° ± 23° (i.e., between 054° and 100° or
between N54°E and S80°E). Both these alternative model
stress fields are consistent with the roughly east-west orienta-
tion expected for the maximum principal stress beneath
Korea (e.g., [55]).

To estimate the orientation of the fractures that undergo
“hydroshearing” as a result of the fluid injection, we assume
that fractures within the Pohang granite have all possible ori-
entations (cf. Figure 6) and those with preferential orienta-
tion relative to the stress field become activated. The
preferred geometry for shear reactivation is for fractures with
normal vector perpendicular to the intermediate principal
stress and at an angle of 45° + ϕ/2 to the maximum principal
stress, where ϕ is the angle of friction of the fracture (e.g.,
[50]). Thus, if the intermediate principal stress is vertical,
the reactivated fractures are vertical, but if (as the above anal-
ysis suggests) the minimum principal stress is vertical, the
reactivated fractures are inclined. Taking the coefficient of
friction, c (where c = tan ϕ ), for fractures in granite as
~0.6 (e.g., [64]; granite cuttings from the Pohang wells have
c in the range 0.54 to 0.68, with a mean value of 0.63 accord-
ing to [5]); the preferred orientation for fractures to be
sheared has a dip of 30°. If the maximum principal stress azi-
muth is 111° (see above), these fractures will dip towards
either 111° or 291°, whereas if it is 083° (see also above), they
will dip towards either 083° or 263°.

We analyze the tendency for coseismic slip in the 15
November 2017 earthquake using the standard Coulomb
approach. The Coulomb failure parameter Φ:

Φ = τ − c σN − Pf − SC, 1

will thus be evaluated where σN, τ, and c are the resolved nor-
mal stress, shear stress, and coefficient of friction on the fault
plane (or coefficient of internal friction within the rock
mass), and Pf and SC are the fluid pressure and cohesion of
the fault zone or rock mass. Φ = 0marks this condition, with
Φ < 0 indicating stability at the point analyzed under the
current state of stress. In general, the Coulomb condition
for shear failure can also be visualized graphically using the
standard Mohr circle construction, which can be plotted on

a graph of τ against effective normal stress σN
′, defined as

σN − Pf (Figure 7). Nonetheless, it should be noted that in
rocks that are impermeable and fluid pressure only acts in
the direction perpendicular to an existing fault, a conven-
tional Mohr circle has no meaning and only points in Mohr
circle space that correspond to the orientation of preexisting
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faults should be considered (e.g., [21, 62]); to emphasize this,
the Mohr circles in Figure 7 are drawn dashed. A fault within
unaltered granite is expected to have c ~0.6 (e.g., [64]; as
already noted, granite cuttings from the Pohang wells have
c in the range 0.54 to 0.68, with a mean value of 0.63
according to [5]). Moreover, the Pohang granite has a signif-
icant tensile strength (~9MPa [15]), indicating SC ~18MPa;
the failure envelope for formation of a new fault will there-

fore plot (for a given σN
′) at τ ~18MPa higher than that

for a preexisting cohesionless fault.
Figure 7(a) provides an indication of the state of stress at

the time of maximum fluid pressure during injection into
well PX-2, for the model stress field already discussed, for slip
sense indicated by the Grigoli et al. focal mechanism [6]. The
fluid pressure at this time was so high that, if the pressure
reached the Namsong Fault, this fault would be readily reac-

tivated, even if its coefficient of friction were very high
(~0.84). This diagram thus provides clear evidence that this
high injection pressure did not directly reach this fault.
Nonetheless, with an orientation oblique by ~60° to the max-
imum principal stress thus indicated, standard frictional con-
siderations (e.g., [65]) indicate (for this stress model and slip
sense, in the absence of high fluid pressure) that the
Namsong Fault is not at all close to being optimally oriented
relative to the local stress field. Moreover, as Figure 7(b) indi-
cates, for a coefficient of friction c as high as 0.6 (and, again,
for the slip sense indicated by the Grigoli et al. focal mecha-
nism [6]), the failure envelope passes well outside the Mohr
circle for the estimated stress field, predicting stability rather
than coseismic slip. Rather than appealing to higher differen-
tial stress or above hydrostatic Pf to account for the observed
seismicity, it is thus suggested that the Namsong Fault may
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Figure 7: Mohr circle representations of the state of stress estimated on the Namsong Fault. The quantities σh ′, σH ′, σV
′, σL

′, and σM ′

denote the effective stresses σh‐Pf , σH‐Pf , σV‐Pf , σL‐Pf , and σM‐Pf , where Pf is the fluid pressure at the point for which the analysis is

undertaken, σL ≡ σh + σH + σV /3, and σM ≡ σH + σV /2. Inclined line connecting σM
′ to the Mohr circle indicates the orientation—in

Mohr circle space—of the pole of the fault. Angles between the maximum principal stress and the normal to the fault plane are labelled
(cf. [100, 101]). Failure envelopes are drawn for different values of the coefficient of friction of the Namsong Fault, c. (a) Stress state
represented by a lithostatic σV of 110MPa, with σh = 120MPa and σH = 200MPa, the latter oriented at an azimuth of 111° to provide
consistency with the focal mechanism in Figure 5(c). Pf is set to 132MPa, the peak value during the initial stimulation of well PX-2 in
February 2016 [15]. This diagram indicates that unless c > 0 84 the resulting conditions would have caused this fault to slip. Since such a high
coefficient of friction is unlikely, it is concluded that this high fluid pressure was not transmitted to the Namsong Fault. (b) For the same
depth and stress state as (a) except Pf is set to the hydrostatic value of 42MPa, to represent the conditions after the injection and flowback
experiments in August-September 2017 and before the November 2017 earthquake. Under these conditions c ~0.29 would place the
Namsong Fault at the threshold of stability. Also shown for comparison (dashed) is a failure envelope for c = 0 6, a representative value for a
fault in granite that is unaffected by alteration to authigenic minerals (e.g., [64]). (c) Preferred stress state from [5] for 4200m depth,
represented by a lithostatic σV of 106MPa, with σh = 120MPa and σH = 243MPa, the latter oriented at an azimuth of 083°. Under these
conditions, c = 0 6 would place the Namsong Fault at the threshold of stability for slip in the oblique sense indicated in the focal mechanism
in Figure 5(d). A similar plot to this is provided in [5] (their Figure O-11), in which principal stresses of the same magnitudes are oriented
slightly differently, with σH at an azimuth of 077° rather than 083°. With this adjustment, the focal mechanism in Figure 5(d) is consistent

with σN
′ ~97MPa and τ ~54MPa; this stress state plots near the threshold for slip for c = 0 6 (square symbol in the figure), as was noted in [5].
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have a much lower coefficient of friction; for example, c as
low as ~0.2 has been determined for faults in granitic rocks
with clay minerals present in fault gouge (e.g., [64]), having
plausibly been formed by hydrolysis of plagioclase (see
below). A coefficient of friction as low as 0.2 would not be sta-
ble under the inferred conditions, but a slightly higher value,
≥0.29, would be consistent with frictional stability.

For comparison, Figure 7(c) illustrates an alternative solu-
tion, consistent with the analysis in [5], including their pre-
ferred stress state at 4200m depth (represented by the
aforementioned lithostatic σV = 106MPa, with σh = 120MPa
and σH = 243MPa) and the slip sense indicated by their focal
mechanism in Figure 5(d). Under these conditions, σH ori-
ented at an azimuth of 083° would place the Namsong Fault
at the threshold of stability for c = 0 6. However, this set of
parameter values was evidently chosen in [5], from a wide
range of possibilities, to be consistent with this stability thresh-
old, rather than it being an independent deduction made
directly from evidence. The difference between Figure 7(b)
and Figure 7(c) indicates the range of possible conditions that
can place the Namsong Fault at the threshold of stability.

3. Water Sampling and Analysis

The August 2017 injection into well PX-1 utilized local surface
water, 1756m3 being injected. After the injection ended, on 14
August, the experimental protocol required flowback of the
injected water. The resulting produced water, 1773m3 in total,
was repeatedly sampled as progressive compositional changes
were anticipated, reflecting varying durations of chemical
interaction with the Pohang granite. Given the aforemen-
tioned dimensions, the volume of the PX-1 wellbore was
74m3 (cased) and 11m3 (open-hole), a total of 85m3. This
means that the last 74m3 of water injected, and therefore,
the first 74m3 produced, remained within the casing and thus
had no opportunity to react with the granite.

3.1. Water Sample Collection.Water for this injection exper-
iment was taken from an irrigation pond ~300m west of
the geothermal project site. Water sampled from this pond
was analyzed in the field using an Ultrameter II 6PFC
hand-held instrument (Myron L Company, Carlsbad, Cal-
ifornia), which determined water temperature, pH, electri-
cal conductivity (EC), total dissolved solids (TDS), and
oxidation-reduction potential (ORP). Five samples were
collected for preliminary analysis at site and for subse-
quent laboratory analysis, three from different parts of
the pond and two others from points before and after
the filter on the pipe leading to the site. Considerable var-
iability in water composition was thereby demonstrated.
Water samples previously collected, before, during, and
after previous stimulation experiments, in each of the
Pohang wells, were also analyzed using the Ultrameter
and retained for laboratory analysis.

Flowback from well PX-1 was initiated at 09:34 (local
time) on 14 August 2017; water samples were again collected,
the analysis in the field again utilizing the Ultrameter. During
the early stages of flowback, the produced water was dis-
charged via a pipe into a mud tank ~10m from the wellhead.

This tank was periodically emptied, and its contents were
transported away in tanker lorries for treatment and disposal.
Sample collection at this stage involved one of the rig crew
(wearing appropriate waterproof and heat-resistant protec-
tive clothing) climbing down into the mud tank to access
its inlet pipe. Later, after the flow rate decreased, the pipe
leading from the wellhead to the mud tank was disconnected
and samples were collected directly from the PX-1 well-
head or, during operations to cut the well casing, from a
valve in the housing pipe for the casing cutter. The water
in the small (1.2ml) analysis cell of the Ultrameter cooled
rapidly, so its initial temperature was underestimated. For
many samples, temperature was therefore also read from a
thermometer attached to a pole, which one of the rig crew
held in the flow. Immediately after collection, samples
were taken to a site building where pH and EC were
remeasured using a Thermo Scientific Orion Star A329
portable meter (Thermo Fisher Scientific Inc., Waltham,
Massachusetts). These replicate measurements were partic-
ularly significant on the first day of flowback, because at
this stage, the Ultrameter was not correctly calibrated
and so yielded incorrect pH and ORP values; it was
calibrated using standard buffer solutions in time for the
sampling at 10:00 on 15 August.

Rates of injection into well PX-1 were logged at inter-
vals of one minute between the start of injection at 07:00
on 7 August and the end of injection at 09:33 on 14
August. The volume of water injected between these times
was thus determined by summation, giving the aforemen-
tioned 1756m3. Rates of flowback were determined by
repeated measurement of changes to the water level in
the mud tank, making allowance for the intermittent emp-
tying of this tank as water was removed for treatment and
disposal. The resulting measurements were fitted by a
polynomial production-decline curve, which has been used
here to determine the volume produced at the time of col-
lection of each of the water samples. Flowback began at a
rate of ~6.6 l/s but by midnight on August 20, when
1028m3 had been produced, had decreased to ~0.5 l/s.
The total volume produced, both by “natural” flowback
and subsequent pumping, 1773m3, thus exceeded the vo-
lume injected.

Activity at the site, related to the DESTRESS Horizon
2020 project, officially ended at 19:00 on 16 August. From
then on, it was difficult to access the wellhead of well PX-1
for collecting water samples, as the rig crew immediately
began to work on other tasks (including installing a casing
cutter, cutting the 7” casing at ~800m depth to install a
pump, and extracting the cut casing, leaving surrounding
casing with external and internal diameters 9 5/8” and
8 5/8”); for safety reasons, each access required the approval
of the site manager and the shift foreman of the rig crew.
Water samples collected during this process show short-
timescale variations in composition, presumably as a result
of mixing of the water being produced with water that had
resided within the annulus between the 7” casing, which
was cut, and the surrounding cemented casing. Further-
more, removal of the 7” casing increased the volume of
the wellbore by ~5m3, affecting calculation of the volume
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of produced water. After flowback ceased, pumping tests
took place within well PX-1; produced water was again
sampled during these tests, Ultrameter measurements
being made later (in the laboratory), rather than at the
site. The supplementary file lists the set of water samples
collected and the field measurements made.

3.2. Laboratory Analysis of Water Samples. Anion and cation
concentrations were determined simultaneously by ion chro-
matography using Dionex (Thermo Fisher Scientific Inc.,
Waltham, Massachusetts) equipment at the School of Engi-
neering of the University of Glasgow. For anions, a 10 μl
sample was passed through a Dionex IonPac AG14A guard
column and an AS14A-5u analytical column before analysis
on an ICS-900 ion chromatography system, with the aid of
displacement chemical regeneration suppression (ACRS
500). A mix of 8mM sodium carbonate/1mM bicarbonate
eluent and 72mN H2SO4 regenerant was pumped through
the system at 0.5ml/min. For cations, a 10μl sample was
passed through a Dionex IonPac CG12A guard column and
CS12A analytical column, set to 30°C, before analysis on an
ICS-1100 ion chromatography system. Alkalinity was
determined as CaCO3 with a Hach Model 16900 digital titra-
tor (Hach Company, Loveland, Colorado), using 0.16 and
1.6M nitric acid and bromocresol green—methyl red pH
indicator. Recorded values were factored by 1.22 to calculate
HCO3

- concentrations. Full details of the analysis method-
ology are reported elsewhere [66]. Results of this analysis
are listed in the supplementary file, along with calculations
of the volume of water produced by the times when sam-
ples were collected.

3.3. Hydrochemical Description and Interpretation. The pond
water used for the August 2017 injection (represented by
samples SK01, 02, 03, 20, and 21; see the supplementary file)
was relatively fresh (EC 1000-1300 μS/cm), of circumneutral
pH, and dominated by Ca-(Na)-SO4-(Cl) hydrochemistry.
The produced water also had a circumneutral pH, but by 1
September, its EC had risen to ~3600μS/cm, with a composi-
tion dominated by sodium and chloride and strongly
depleted in magnesium. During the early phases of flowback,
the temperature reached a maximum of 65°C (on 17 August;
sample SK41; after 823m3 of water had been produced), sub-
sequently declining as the flow rate decreased, providing
more time for heat loss to the surroundings of the borehole
during the ascent of the water. Figure 8 summarizes the
variations in character of this produced water in compari-
son with that injected.

We do not know the exact nature of the “pristine”
groundwater, as none of the samples analyzed was
collected before injection experiments at the site began.
Furthermore, as already noted, during the drilling, fluid
was lost into the Namsong Fault, potentially affecting the
composition of the groundwater there. We thus investi-
gated the composition of water sampled in 2009 from
the Pohang thermal spa resort, ~2 km south of the EGS
project site (Figure 2(a)), which utilizes water produced
from the Pohang granite via a deep borehole [67]. The
properties of this water include temperature 44.0°C,

pH8.4, redox potential 87mV, electrical conductivity
1977μS/cm, and concentrations (in mg/l) of K+ 3.57,
Na+ 536, Ca2+ 3.6, Mg2+ 1.65, SiO2 20.1, Li+ 0.23, Sr2+

0.222, HCO3
- 991.6, F- 4.58, Cl- 122, SO4

2- 17.5, and Br-

<0.2 [67]. This water classifies [67] as of Na-HCO3 hydro-
chemistry and thus differs significantly from all our sam-
ples. Samples of water collected from well PX-2 are
different yet again; those collected on 16 March (SK16;
before the April 2017 stimulation of well PX-2) and on
27 and 28 August (SK52 and 53; after the August 2017
stimulation of well PX-1 and before the September 2017
stimulation of well PX-2) were much more saline than
the waters from well PX-1, being Na-Ca-Cl waters with
~5000mg/l chloride. The position of the Namsong Fault,
with its impermeable core, between wells PX-1 and PX-2
(Figures 2(b) and 3), provides a natural explanation for
the significant differences in hydrochemistry of the two
sets of water samples; they have been drawn from reser-
voirs that are hydraulically isolated from each other. The
existence of this impermeable “barrier” means that the
development plan for this geothermal project, requiring
the creation of a hydraulic connection between these two
deep wells, was always problematic.

Nonetheless, six samples of water from well PX-1 were
collected before the August 2017 stimulation: two (SK19
and 09) in March-April 2017, before and after the April
2017 stimulation of well PX-2, and four (SK10-13) in early
August 2017, during well-testing and bleed-off before the
August 2017 injection began. These samples are similar to
the limiting composition of the samples produced during
the flowback following this injection experiment (Figure 8)
and thus provide the best estimate of the composition of
the groundwater in hydraulic connection with well PX-1
before the August 2017 injection experiment.

Like many granitic intrusions, the Pohang granite con-
sists of quartz, potassic feldspar, plagioclase, and biotite
[36]. Potential hydrolysis reactions thus include the dissolu-
tion of quartz (e.g., [68])

SiO2 s + 2H2O l ↔ Si OH 4 aq 2

and plagioclase (e.g., [69])

NaCaAl3Si5O16 s

+ 4H2O l + 12H+ aq ↔Na+ aq + Ca2+ aq

+ 3Al3+ aq + 5Si OH 4 aq

3

or the hydrolysis of plagioclase to produce the hydrous clay
mineral smectite (montmorillonite) (e.g., [64])

2NaCaAl3Si5O16 s

+ 3n − 4 H2O l

+ 6H+ aq + 2Si OH 4 aq → 3Al2Si4O10 OH 2 n H2O s

+ 2Ca2+ aq + 2Na+ aq

4

Other reactions can include the precipitation of Mg2+ and
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associated uptake into solution of Ca2+ during alteration of
primary igneous minerals to clay minerals and chlorite
(e.g., [70]). Equilibrium concentrations of dissolved quartz
have been calculated using PhreeqcI version 3.3.5 software
(U.S. Geological Survey, Reston, Virginia) with phreeqc.dat
internal database [71]. It is thus 6.3mg of SiO2 per litre under

near-surface conditions (pressure 0.3MPa; temperature
25°C; density of water 997 kgm-3) and 186mg of SiO2 per
litre at 4300m depth (pressure 416 atm or 42.2MPa; temper-
ature 160°C; density of water 930 kgm-3).

Multiple characteristics of the limiting composition of
the produced water and of the waters sampled from well
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Figure 8: Summary of variations over time in the composition and other properties of the water injected into, and subsequently produced
from, well PX-1 in August 2017, using data from the supplementary file.
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PX-1 before its August 2017 stimulation (e.g., its Na+/Cl- and
Br-/Cl- ionic ratios) resemble seawater (Figures 9 and 10). As
recently as the Middle Miocene [72], this locality was sub-
merged beneath the sea, during deposition of mudstone
(the Yeonil Group; Table 1), which crops out locally; we infer
that pervasive circulation of seawater through the granite,
dating from this time, established this composition, which
we thus deduce indicates the “natural” groundwater within
the granite. Conversely, other properties differ from those
of seawater, providing clear evidence of water-rock interac-
tion, for example, the low Mg2+/Ca2+ and high SO4

2-/Cl-

ratios, potentially explicable as consequences of increased
Ca2+ from dissolution of plagioclase or from ion exchange
associated with precipitation of Mg2+ during hydrolysis of
other igneous minerals to clay minerals and chlorite, and
increased SO4

2- from oxidation of pyrite, FeS2. Such com-
plexity, indicating interactions between the rock and water
that originated as meteoric water or palaeoseawater, has
been recognized previously in hot spring waters from SE
Korea (e.g., [67, 73]).

The variations in composition (e.g., for SO4
2-/Cl- and

Na+/Cl-; Figure 10) can be approximated as indicating pro-
duction of an initial ~100m3 of surface water, followed by
~400m3 of water that provides evidence of water-rock reac-
tion, reflected in the elevated Na+/Cl- ratios, followed by pro-
duction of a large volume of water that is similar to, if not
indistinguishable from, the preexisting groundwater. This
Na+/Cl- “spike” reflects an excess of Na+ ions in the produced
water, which we attribute to hydrolysis by the injected water
of plagioclase within the granite (cf. [69]). Approximating
the pattern crudely as indicating the proportion of surface
water to groundwater decreasing linearly from 100% to 0%
as the produced volume increases from 100 to 500m3, the
volume of surface water recovered by flowback can be
roughly estimated as ~300m3; given the 1756m3 of surface
water injected, this implies that ~1400m3 of the injected
surface water remained in the subsurface at the end of
the flowback.

4. Hydrochemical/Geomechanical Model

The hydrochemical dataset presented in Figures 8–10
indicates that well PX-1 is hydraulically connected to the
groundwater within the granite. Moreover, although the
volume of water produced from well PX-1 roughly equalled
that injected in August 2017, because much of the produced
water was “natural” groundwater, it follows that much of the
injected surface water (~1400m3 or ~80%) remained within
the granite. Figure 11 illustrates a conceptual model that
might thus account for the 15 November earthquake. It
assumes that the August 2017 injection into well PX-1 indeed
enhanced fracture permeability downward, releasing surface
water into the Namsong Fault. Subsequent flowback drew
water from this fault: initially, injected surface water; subse-
quently, a mixture of surface water and groundwater; and,
ultimately, groundwater, thus leaving a “pocket” of surface
water “trapped” within the fault.

A major fault such as the Namsong Fault can be
inferred to have a complex structure, as detailed in

Figure 4. Much work has been carried out on interactions
between fluids within faults and earthquake processes (e.g.,
[74, 75]). A fault can thus be regarded as consisting of
“patches” in frictional contact, “asperities,” which provide
frictional strength, separated by volumes occupied by fluid
(as in Figure 12). This fluid is usually at its equilibrium
concentration; pressure solution resulting from the normal
stress across a fault thus dissolves the tips of asperities,
which are in contact, causing reprecipitation around their
edges, widening the area in contact and strengthening
the fault [74]. However, if the fluid is not in chemical
equilibrium, as in Figures 11(d) and 11(e), dissolution at
asperities will not be accompanied by reprecipitation else-
where. Dissolution of a thin layer at any asperity will cre-
ate space to enable the fault wall rocks to decompress
towards the fault, reducing the compressive normal stress
and “unclamping” the fault.

Although our data (Figure 10) indicatemineral hydrolysis
or dissolution (probably of plagioclase), we have no direct evi-
dence for hydrolysis of quartz, as silica has not beenmeasured
inourwater samples.However, this canbe inferredbycompar-
ison of the rate constants for hydrolysis of plagioclase and
quartz (cf. [68, 69]). At the ~160°C bottom-hole temperature
at Pohang, the equilibrium concentration of dissolved silica is
several hundred mg/l; timescales for reequilibration of silica
as a function of temperature, in fractures of a given width, are
shown in Figure 13. Chemical reequilibration of water within
a fault thus provides amechanism for postinjection anthropo-
genic seismicity, with a time delay governed by the dissolution
rate. Provided thisprocess is governedby thekinetics ofhydro-
lysis of quartz, Figure 13 indicates that at 160°Ca three-month
duration of hydrochemical and stress reequilibration, and
thus a three-month delay of postinjection seismicity, is
feasible for a fault of a typical width W = 0 6mm.

The magnitude MW and seismic moment MO of the
largest earthquake that might thus be caused, after a volume
V of surface water becomes “trapped” within a fault (cf.
Figure 11(d)), can also be estimated. We adopt a conceptual
model of a fault as illustrated in Figure 12. The model fault
is assumed permeable, with a typical width W, and filled by
fluid, the bounding rocks being impermeable. If the fault thus
occupied has a square cross-section of side length L, then
V =W × L

2. If this area of fault slips, then from standard
theory (e.g., [76]) MO = μ × u × L

2, and the stress drop
Δσ = μ × u/L, μ being the shear modulus of the adjoining
rocks and u the spatial average coseismic slip. Combining
these equations gives

MO = Δσ ×
V

W

3/2

5

MW can be calculated from MO using the standard
equation

log10 MO/Nm = 9 05 + 1 5 ×MW 6

[77]. Taking V = 1400m3 for the August 2017 injection,
W = 0 6mm (Figure 13), and Δσ = 10MPa (an upper
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Figure 9: Variations in molar ionic ratios for the water produced from well PX-1 in August-September 2017, compared with equivalent ratios
for seawater and for samples of the surface water used for injection (samples SK01-03 and SK20-21) and of groundwater previously recovered
from well PX-1 (samples SK09-13 and SK19). Data for all samples are from the supplementary file. Calculations here and for Figure 10 use
molar masses: Ca2+, 40.08 g; Mg2+, 24.305 g; Na+, 22.99 g; Br-, 79.9 g; Cl-, 35.453 g; and SO4

2-, 96.06 g. Comparisons with seawater are based on
a notional representative composition of seawater, defined as the mean of the Lenntech [102] and Stanford University [103] standards.
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Figure 10: The same hydrochemical data as in Figure 9, for water produced from well PX-1 during August-September 2017, compared with
five analyses of the surface water used as the source and six analyses indicative of the composition of preexisting groundwater in this well, but
plotted as a function of the volume of produced water rather than as a function of time. Patterns, as flowback proceeds, include the tenfold
decrease in the SO4

2-/Cl- ratio, in a manner explicable by mixing of a progressively greater proportion of groundwater with a progressively
smaller proportion of surface water. Conversely, the Na+/Cl- ratio is similar in the surface water and groundwater, thus insensitive to
mixing, but “spikes” by a factor of ~2 during the initial ~500m3 or ~30 hours of flowback, this variation being explicable as a result of
reaction between the injected water and the granite. Note that the first 74m3 of produced water remained within the casing of well PX-1
after injection and so did not interact with the Pohang granite.
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Figure 11: Conceptual model linking injection into well PX-1 to the 15 November 2017 earthquake. Panels depict NW-SE cross-sections
across the Namsong Fault (cf. Figure 2(b)), not to scale. The “zig-zag” pattern of fracturing reflects the analysis indicating a preferred
orientation, given the local stress field, at 30° dip towards S69°E or N69°W, or towards N83°E or S83°W, depending on the choice of model
stress field. Using standard theory, the largest earthquake in August 2017 (MW 1.9; [17]) would correspond to shearing of a fracture with
dimensions no greater than ~50m, indicating the probable upper bound to the individual “zig-zag” fracture segments. See text for discussion.
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bound; e.g., [78, 79]), one obtains MO = 4 × 1016 Nm and
MW = 5 0, in a reasonable agreement with the observed
MW = 5 5. Taking V = 2800m3, to allow for the possibility
that an equal volume of surface water remained underground
after the December 2016-January 2017 injection into well
PX-1, but keeping the other parameter values the same
gives MO = 1 × 1017 Nm and MW = 5 3. Calculation assum-
ing V = 80% of the overall injected ~12,000m3 [5, 17], or
~10,000m3, gives MO = 7 × 1017 Nm and MW = 5 9.

For comparison, existing theory [9] predicts

MO = μ ×V , 7

(with V now denoting the net volume injected) thus giving
(in granite with μ = 20GPa) MO = 4 × 1013 Nm and MW =
3 0 for injected volume V = 1756m3 or MO = 2 × 1014 Nm

and MW = 3 6 for V = 12,000m3 (or even lower values of
MO andMW if one uses net injected volumes at Pohang, tak-
ing into account volumes of water subsequently produced).
However, the derivation of this theory [9] assumes that the
injected water floods pore-space in the rock volume sur-
rounding a fault rather than being localized within the fault;
this assumption is inappropriate for injection into granite
that has essentially zero porosity and permeability except
within faults and fractures.

The rocks bounding the model fault in Figure 12 are
assumed to be held in frictional contact at asperities, which
are assumed to follow a fractal size distribution; this means
that they occupy the area AR that is proportional to the effec-

tive normal stress σN ′ (e.g., [80, 81]), such that

AR = kσN ′A, 8

A being the overall fault area. Dissolution of these fault wall
rocks, of density ρR, in response to chemical disequilibrium
within this fluid, is assumed to be localized at these asperities
(as a result of pressure solution; cf. [74]), and to remove a
thickness δW of rock from each as the fluid reequilibrates.
The mass of rock that dissolves is thus ρR × AR × δW. This
can be equated to the mass of material entering solution
which will be C × A ×W if its concentration in the volume
A ×W increases from zero to C; one thus obtains

δW

W
=

C

ρRkσN ′
9

As the asperities dissolve, the fault wall rocks will decom-
press towards the fault, moving inward on either side by dis-
tance δW/2, thus reducing the effective normal stress on the

fault by δσN
’ where

δσN ′ =
EδW

2D
, 10

D being the width (perpendicular to the fault) of the adjoin-
ing blocks and E their Young’s modulus. Thus,

δσN
′ =

ECW

2DρRkσN ′
11

To apply this analysis to Pohang, we take E = 50GPa

(nominal value for granite), kσN
′ = ~0 03 (from [81]), from

a numerical simulation of a fault with fractal roughness, for

σN
′~135MPa after Figure 7, ρR = 2650 kgm−3 for quartz, C

~200mg l-1 for dissolution of quartz under the conditions at
Pohang (from the earlier calculation using PhreeqcI), W =
0 6mm (from the present analysis of the time delay for the
induced seismicity; Figure 13), and D ~0.5m (cf. Figure 6),

obtaining ~80 kPa for δσN ′. If the Namsong Fault was
already very close to the Coulomb condition for slip stability,
as in Figures 7(b) or 7(c) (depending on the choice of local
stress field model and slip sense in the MW 5.5 earthquake),

a small change in σN
’ such as this might cause for slip

A

N AR

F

W

Figure 12: Conceptual model for a fault, modified after [81]. The
fault is regarded as a fluid-filled volume of area A and typical
width W , its surfaces—with fractal distributions of
irregularities—being in contact at asperities of area AR , with
AR≪A. N and F are the normal and shear forces acting across the
fault, associated with the normal and shear stresses σN and τ. This
model simplifies the features depicted in Figure 4 for calculation
purposes.
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Figure 13: Timescales for equilibration of concentration of
dissolved silica (i.e., Si(OH)4) in fractures of width W (where
W = 0 06, 0.6, and 6mm), after Rimstidt and Barnes [68].
Calculations assume Si(OH)4 concentrations of zero, initially,
increasing to 99.3% of the equilibrium value, thus depicting five
times the “time constant” for the dissolution. Box represents a
160 ± 10°C temperature and a 2-3 month timescale, consistent
with the bottom-hole temperature and postinjection time-delay
observed at Pohang in 2017.
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instability. Regardless of the choice of stress field model and
slip sense, the relatively small magnitude of this change to
the state of stress means that this fault must have already
been very close to the condition for slip for this mechanism
to explain the seismicity. Nonetheless, from equation (11),

the predicted value of δσN
′ is proportional to W. Thus, for

example, if the chemical disequilibrium within the Namsong
Fault was caused by the first stimulation of well PX-2, start-
ing in January 2016, the delay of ~1.8 years indicates W

~5mm, giving δσN ′ ~0.6MPa. If caused by the aforemen-
tioned loss of circulation into the fault during the drilling of
well PX-2 in November 2015 [5], the ~2-year delay indicates

similar values for W and δσN ′. Furthermore, if the disequi-
librium was caused by the loss of circulation into the fault
during the drilling ofwell PX-1,with its original vertical orien-
tation, in the autumn of 2013 [16], the ~4-year delay indicates

W ~10mm, predicting δσN ′ ~1.2MPa. These calculations
omit any cooling effect of the injected water, on the basis that
any such effect will be minor (with duration much less than
these timescales), in accordance with earlier discussion.

Nonetheless, this mechanism can only account for small
changes in the state of stress on a fault, by ≤~0.1MPa for
the analysis relating to the August 2017 injection into well
PX-1, implying that the Namsong Fault must already have
been very close to the condition for slip. Given the interrela-
tionships between W, temperature, and time delay
(Figure 13), an anthropogenic earthquake with MW > 5 0,
with a shorter delay, might be predicted in rocks at 160°C
for V = 1400m3 for a fault with W < 0 6mm, although it
requires the fault to already be even closer to the slip condi-
tion. Conversely, a longer delay might result for a fault with
larger W, enabling a greater change in the stress state to the
slip condition, although from equation (5) the largest
earthquake feasible after a longer delay, for a given injected
volume, would be smaller; furthermore, injection into a wider
fault might in principle cause significant cooling (as noted
above), slowing the hydrochemical reactions and prolonging
the time delay (cf. Figure 13).

5. Discussion

This analysis indicates that hydrochemical “corrosion”
following injection of water into granite, under conditions
that make the water silica undersaturated, can affect the state
of stress on a fault on subsequent timescales of months,
potentially years, bringing the fault closer to the condition
for slip. The analysis might be developed to incorporate
hydrolysis of other minerals. Nonetheless, this mechanism
can only cause seismicity on a fault already close to the con-
dition for slip (i.e., critically stressed). It is widely accepted
that intraplate continental crust is indeed critically stressed,
meaning that in each region, the faults most favourably ori-
ented to the stress field lie close (within one earthquake stress
drop, or ≤10MPa; e.g., [78, 79]) to the slip condition (e.g.,
[82–84]). The small magnitude predicted for the hydroche-
mical changes to the stress state at Pohang indicates that
the Namsong Fault was already extremely close to slipping.
It is noted in passing that much published discussion of “crit-

ically stressed’” crust, meaning crust containing faults that
are within one earthquake stress drop of the Coulomb failure
condition, assumes that “Byerlee’s Law” is applicable to these
faults (i.e., they are subject to hydrostatic fluid pressure and
have a coefficient of friction of ~0.6 [85]). However, these
are really two separate concepts: as already noted, faults lined
with clay minerals can have coefficients of friction as low as
~0.2 (e.g., [64]), a point that was indeed noted in the classic
paper by Brace and Kohlstedt [85] that defined “Byerlee’s
Law” in the first place, but might still be “critically stressed”
(i.e., be within one earthquake stress drop of the Coulomb
failure condition). The present deduction that the Namsong
Fault is critically stressed is thus independent of any infer-
ence regarding the coefficient of friction of this fault. This
case study indeed highlights the importance of establishing
whether faults adjoining other EGS sites are critically
stressed, before injection takes place.

Like poroelasticity, this hydrochemical “corrosion”
mechanism has the potential to account for seismicity after
significant time delays following fluid injection. This mecha-
nism has been shown in the preceding calculations to be able
to account for changes in the state of stress on the Namsong
Fault, by the time of the 15 November 2017 earthquake, that
are at least as large, and possibly larger, than the ~80 kPa
effect of poroelasticity previously estimated [5]. Although
only the hydrochemical consequences of the August 2017
injection experiment have been analyzed in any detail, this
mechanism will have a cumulative effect on the state of stress
throughout the programme of injection experiments in each
of the wells and over time thereafter. From this point of view,
this mechanism differs from the poroelastic effect on the state
of stress following each injection experiment, which will ulti-
mately dissipate leaving no permanent effect. Although cyclic
stimulation was adopted for the August 2017 injection exper-
iment in an attempt to mitigate induced seismicity [17], this
technique will have no mitigating effect on seismicity caused
by hydrochemical “corrosion.”However, in principle (setting
aside issues of cost), the latter effect could be mitigated by
injecting water that is in chemical equilibrium with the pre-
existing groundwater at the injection point. This might be
achieved by injecting local groundwater or treating surface
water before injection to increase the concentrations of dis-
solved ionic species to mimic the composition of local
groundwater. The effect might also be mitigated through geo-
physical and geomechanical investigations to identify any
large, critically stressed faults in the vicinity of any fluid injec-
tion site, prior to injection taking place. The March 2019
report to the Republic of Korea government [5] offers other
recommendations regarding the governance of future EGS
projects.

The preliminary analysis of hydrochemical “corrosion,”
presented here, can be developed through analysis and
modelling of changes to the concentration of additional ionic
species. Such work is beyond the scope of the present study
and will be presented elsewhere. A related additional task,
also beyond the scope of the present study, is to develop the
present conceptual model of a fault (Figure 13) to incorpo-
rate the complexity of actual fault zones, notably the distinc-
tion between impermeable fault core and permeable damage
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zone (cf. Figures 3 and 4). Preliminary models of fault zones
have envisaged a central fault core with damage zones of an
equal width on either side (e.g., [86, 87]). However, where
transected by well PX-2, the Namsong Fault is asymmetric,
with its damage zone on the footwall side of the fault core
(Figure 3). Such asymmetry has been noted on other faults,
along with complex lateral variations in the disposition of
the damage zone relative to the fault core on a variety of
scales (e.g., [88–91]). It is thus feasible for the damage zone
of the Namsong Fault to be differently disposed below well
PX-1, either symmetrically about the fault core or concen-
trated in its hanging wall, thus making this part of this fault
potentially susceptible to hydrochemical “corrosion” follow-
ing injection into well PX-1. For example, the theory pre-
sented here might be adapted to reflect observations of fault
damage zones that indicate multiple subparallel fractures,
with a characteristic spatial frequency F that depends on fac-
tors such as lithology and fault displacement (e.g., [88]); the
theory might thus be refined by associating the parameter
D, as currently defined, with 1/F. A further refinement might
be to recognize the tensile nature of secondary fractures that
are oriented obliquely to faults in granite [92]; the width of
these will contribute to the overall value of the parameter
W, in addition to the direct contribution of fault-parallel
shear zones in any “transitional zone” bounding the imper-
meable fault core (cf. [88]; Figure 4). Elaborations such as
these, beyond the scope of the present study, will be
addressed in future research.

6. Conclusions

The 15 November 2017MW 5.5 Pohang earthquake occurred
months after the most recent injection of surface water into
granite as part of development of the Pohang EGS project.
Having noted that most of the water produced by flowback,
following the injection experiment in August 2017, was orig-
inally groundwater, and that much of the injected surface
water therefore remained in the subsurface; we have investi-
gated the possibility that hydrochemical “corrosion” of the
granite by the injected surface water contributed to the earth-
quake. To test this possibility, we have derived a theory
linking the postinjection time delay of the seismicity to the
temperature at depth by considering the kinetics of dissolu-
tion of quartz within the granite and linking the volume of
surface water that remains in the subsurface to the seismic
moment of the resulting earthquake. We thus show that at
a temperature of 160°C, the retention in the subsurface of
1400m3 of surface water, injected in August 2017, can
change the state of stress of a fault that is typically 0.6mm
wide by ~80 kPa and can thus cause an earthquake of seismic
moment as large as 4 × 1016 Nm, withMW 5.0. Surface water
injected at other times, or drilling fluid that entered the fault
when it was transected during drilling, may well have also
contributed to “corroding” this fault, explaining why the
earthquake was somewhat larger than is predicted by this
theory. The new theory predicts a significantly larger upper
bound to the seismicity that might result from a given vol-
ume of fluid injection compared with existing theory [9], as
a result of the different assumptions made: the injected fluid

is assumed to only occupy the seismogenic fault rather than
flooding the surrounding rock volume. For the small calcu-
lated change to the state of stress to have resulted in an earth-
quake, the Namsong Fault must have already been critically
stressed, i.e., very close to the condition for slip. The pro-
posed “hydrochemical corrosion” mechanism is thus shown
to be a plausible candidate, in this instance, demonstrating
the need to consider this mechanism for future EGS projects
in granite. This case study also highlights the importance of
establishing whether faults adjoining EGS sites are critically
stressed before injection takes place.
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