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Fault Coverage Requirement in Production Testing of
LSI Circuits

VISHWANID.AGRAWAL, SENIOR MEMBER, IEEE, SHARAD C.SETH,
MEMBER, IEEE

MEMBER, IEEE, AND PRATHIMA AGRAWAL,

A bstract–A technique is deseribed for evahsating the effectiveness of
production tests for large wale integrated (LSI) circuit chips. It is
based on a model for the distribution of faults on a chip. The model
requires two pammeters, the average number (no) of faults on a faulty
chip and the yield (Y) of good chips. It is assumed that the yield either
is kmown or can be calculated from the available formulas. The other
parameter, no, is determined from an experimental procedure. Once
the model is fully characterized, it allows calculation of the field reject
rate as a function of the fault coverage. The technique implicitly takes
into account such variables as fault simulator characteristics, the feature
size, and the manufacturing environment. An actual LSI circuit is used
as an example.

I.INTRODUCTION

~rHE reasons for the practical impossibility of obtaining a

complete functional test for a large scale integrated (LSI)

circuit may be found among the following attributes: 1) im-

perfect fault modeling: an actual fault may not correspond

to a modeled fault or vice versa [1] ; ‘2) data dependency of

faults: it may not be enough to exercise all the functions on a

chip since execution of certain functions may be sensitive to

data or, worse, to data sequences [2, p. 46] ; 3) testability

limitations: some LSI circuits may be harder to test because

of the pin limitation resulting in the lack of direct access to

subcircuits, Thus, if the circuit passes the test, one still cannot

guarantee that it is free from faults.

‘rest designers consider fault coverage as a measure of a test’s

capability to isolate a faulty circuit. Most present-day sim-

ulators that are used to determine the fault coverage can simu-

late single logical (line-stuck type) faults but cannot evaluate

the coverage of actual physical faults (shorts or breaks in
metallization or diffusion runs, shorting of substrate with
metallization or diffusion [1], [2] - [4]). Multiple logical
faults are also frequent in the production environment, but the
exact relationship between single- and multiple-fault coverage
is not well understood [5, p. 21]. Also, different simulators

may employ different criteria to detect fault-induced races and
oscillations.

Detection of some faults may never be possible, or may be
quite irrelevant because of redundancies. If a test could be

generated for the complete design verification of a circuit,
Men the faults that are not detected by the test could be ig-

lWMlUSC@3t reCelVeCl March 2, 1981; revised June 2, 1981.
V. D. A~awal and P. Agrawal are with Bell Laboratories, Murray Hill,

NJ 07’974.
S. C. Seth is with the Department of Computer Science, University of

Nebraska, Lincoln, NE 68588.

nored as redundant. Even when only single stuck type faults
are targeted, the cost of test development and test application
increases very rapidly with an increasing fault coverage require-
ment.

Since stuck type faults represent only a sample of all possi-
ble faults, the coverage of such faults can be regarded as a fig-

ure of merit for a test. In this paper we try to answer the
question: how is this figure of merit related to the quality of
the tested product? It is assumed that the desired value of the
stuck-type fault coverage would depend upon the circuit im.

plementation, technology, manufacturing environment, and,
of course, the required quality level of the tested product.
The method developed is based upon a model of fault distribu-
tion on the chip. The parameters of this distribution are deter.
mined experimentally by examining an actual production lot

of chips. The analysis then gives the value of fault coverage
required for a given quality (field reject rate [6]) of the tested

chips. A previous attempt in this direction [6] was based

upon a more restrictive model for the distribution of faults. It
produced satisfactory results for chips with high yield (typ-
ically, SS1 and MSI), but predicted too pessimistic fault cover-
age values for larger chips with lower yield. Our analysis is not
restricted to any particular type or size of chips and can be
applied to all scales of integration.
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p(n)
P(f)

qk(n)

r(f)

Y

II.DEFINITION OF SYMBOLS

chip area

defect density

fault coverage

number of faults covered by tests

number of faults present on a chip

average number of faults on a defective chip

average number of faults on a chip

total number of possible faults on a chip

probability of exactly n faults being present on a chip

probability of a chip being found faulty when tested

to a fault coverage f

probability of detecting exactly k faults when the
chip has n faults present

field reject rate for fault coverage ~
yield of chips (probability of a manufactured chip

being good)
Ybg(~) probability of a faulty chip being tested as good

when the fault coverage of tests is f

A a parameter depending upon the variance of Do.
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111,THE MODEL

Assume that an integrated circuit chip has n faults. Al-

though there can be several types of faults on the chip, we
assume that the faults on the chip are equivalent to n single

stuck type of faults, In other words, the faults present on our
chip are such that they can be detected by tests that detect n
stuck type of faults. We further assume that the yield of good
chips is y and that the number of faults n on a faulty chip has
a Poisson distribution [7, p. 156]:

prob {number of faults = n}

p(o) =y, (1)

where no is the average number 1 of faults on a faulty chip. In

the above expression, the Poisson’s density function has been
shifted to the right by one unit since it is used for the proba-
bility of the number of faults on a defective chip, i.e., n #O,
n=l,2,3, ..”. From (l), the average number of faults is

obtained as

n,, = ~ rzp(n) =(1 - y)no. (2)
n=o

Indeed, the number of terms in the above summation should
be equal to the maximum number of faults N. In practice,
however, the value of no is much smaller than the maximum

number of faults and the use of the infinite sum, which allows
a simple result, is numerically quite accurate. The distribution
of faults, as given by (1), is characterized by the two param-

eters y and no.

Furthermore, we assume that the yield y of the chip is
known, at least approximately. In fact, the yield of integrated
circuits has been widely studied in the past [8] -[ 14]. The fol-
lowing formula is often used for calculating chip yield [12],
[13] :

y =(1 + ~o~)-(m) (3)

where [13 ]

A = chip area

Do = average number of defects per unit area

and

D: A = variance of Do.

The parameters Do and h can be determined either experi-
mentally as described in [11 ] or from the results on previously
manufactured chips that came off the same processing system.

The estimation of the remaining parameter no will be dis-
cussed later.

1Notice that the pmame~erno is different from the average numbel

of physical defects (Q# ), which is used for calculating the chip yield.
In a highly dense circuit, a physical defect can produce several logical
faults.

IV.FIELD REJECT RATE

Let us assume that the total number of possible faults on a

chip is N, where IV>> no. We test these chips by the tests

that detect m faults. The fault coverage is then .f= m/N. Let

~k(n)be the probability of detecting exactly k faults when a
chip has n faults present on it. The, qk (n) is given by the
hypergeometric density function [7, pp. 43-44]

()( )n N-n

k m-k
qk(n) = ——

()

N“

m

(4)

The probability of passing the chip, having n faults, as good is

()N- n

~O(n) = ‘- R (1 - f)”

()

N

m

(5)

where f= m/N is the fault coverage of tests. The above ap-
proximation is quite accurate for n << <N~f and it will

be used in the following analysis. For larger values of n, a
better closed form expression is derived in [15] where the
accuracy of(5) is also discussed.

Now, since the number of faults n on a bad chip is a random
number, the probability (or yield) of a bad chip being tested

as good is given by

Ybg(f)= f 40(n) P(n). (6)
n=l

On substituting from (1) and (5), and simplifying, we get

(7)‘bg(f)W(1 - f) (1 - y)e-(nO ‘1).f.

The field reject rate r(f) is defined as the ratio of the number
of bad chips tested as good and the number of all chips that
are tested as good [6]. Therefore,

r(f) = Ybg(f)/b + Ybg ml
and, upon substituting from (7), we obtain

(1 - f)(l -y)e-(no-’)f
r(f) =

Y+(l-f) (l-y) e-(nO-l)f.
(8)

Fig. 1 shows a plot of (8) for two different yields, y = 0.80

and 0.20, In each case, two curves corresponding to no = 2
and 10, respectively, are drawn. This graph illustrates the de-
pendence of test result on the parameter no. Consider the

yield of 80 percent (say, for an MSI chip). If we wish to test
the chip for a field reject rate below 0.5 percent, then the fault

coverage should be 95 percent for no = 2 or 38 percent for
no = 10. Similarly, for a yield of 20 percent (which is closer
to LSI) one would require a fault coverage of 99 or 63 percent,
depending upon whether no is taken as 2 or 10. As pointed
out earlier, the parameter no not only depends upon the chip
size, but may also be a function of technology, design rules,
processing environment, etc. We will, therefore, use an experi-
mental procedure for determining this parameter.
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Fig. 1. Field reject rate for two chips with yields of 80 and 20 percent. Fig. 2. Fault coverage required for a field reject rate of one in 100.

V. EXPERIMENTAL CHARACTERIZATION OF MODEL

Consider the fraction of chips that have been rejected by
tests having a fatilt coverage ~. This fraction is equrd to the
foil owing probability

P(,f) = 1- y - Y@ (f).

Upon substitution from (7), we get

.P(jf)=(l -y) [1 - (1 -~)e-@O-lJf] . (9)

For a given chip, the yield y can be calculated from (3). In

order to determine no, we start with a set of test patterns
which need not have a high fault coverage. These patterns are
evaluated on a fault simulator in the same order as they would

be applied to the chip. A cumulative fault coverage as a func-
tion of the number of test patterns is thus obtained. Next, the
patterns are used for testing the chips that are being produced
in the processing line. A chip is rejected at the first pattern

that it fails. A sufficiently large number of chips (say 100-200)

are tested so that the cumulative fraction of rejected chips can

be plc)tted as a function of the fault coverage. The calculated
yield f’(f), as computed from (9), is also plotted on the same
graph for various values of no. The value of no that is closest
to the experimental curve is then selected for use in the calcu-
lation of the required fault coverage.

Experience has shown that in LSI testing a large proportion

of the chips is rejected by the first few test patterns. Thus, the
graphs of the fraction of rejected chips and the function ~(~)

exhibit a steeply rising straight-line behavior near the origin.
The experimental value of this slope can also be used for deter-

mining no since from (9)

P’ (f)= %=(1 - y) [1 +(1 -f) (n. - 1)] e-(no-’)~

and

P’ (0)=(1 - y)no. (lo)

Notice that the slope P’(O) is equal to the average number (naV)
of faults as given by (2). One can determine an experimental
value of P’(O) by applying a relatively small number of test

ooL_LLu_L~
O 0.4 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

YIELD, Y

Fig. 3. Fault coverage required for a field reject rate of one in 200.

patterns to the chips. Also, when the yield is not known, no =
P’(O) can be used as an estimate. Notice that P’(O) will be a

close approximation for no for low-yield chips. Since, for a
nonzero yield, P’(O)< no, use of P’(O) in place of no will give
a pessimistic (or safe) value of fault coverage; in Fig. 1, a lower

value of no means a higher fault coverage for a given field
reject rate.

The procedures for determining no as outlined here will be
illustrated by an example in a later section.

VI. FAULT COVERAGE REQUIREMENT

Once no has been evaluated for a chip, the required fault
coverage for any specified field reject rate can be computed
from (8). It is, however, not very convenient to solve (8) for
f. If the required field reject rate is r, then from (8) we get

(1 - r)(l - f)e-fno-’)f .

y ‘T+(l - r) (1 - f)e-(nO-l)f
(11)

This result is plotted in Figs. 2-4 for r = 0.01, 0.005, and
0.001, respectively. One can easily obtain the fault coverage
from these graphs. For example, if the field reject rate was

specified as 1 in 1000, i.e., r = 0.001, then from Fig. 4 for
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Fig. 4. Fault coverage required for a field reject rate of 1 in 1000.

yield y = 0.3 and no = 8, the fault coverage should be about 85
percent.

VII. AN LSI EXAMPLE

In this example, we consider an LSI chip containing about
25000 transistors for which test patterns had been evaluated

oli the LAMP fault simulator [16] . The results used here were
obtained from the testing of wafers on the Fairchild Sentry
test system [17]. The yield for this chip was estimated to be
about 7 percent. For each chip, the test pattern number on

which the chip first failed was recorded. The cumulative
number of failing chips as a function of the fault coverage is
shown in Table 1. The procedure for obtaining the entries in
this table can be understood by examining the first line. After
the initialization sequence, on the first pattern at which the

tester strobed the chip output, 113 of 277 (i.e., 41 percent)
chips failed. From fault simulation, the fault coverage on this
pattern was obtained as 5 percent. The results of Table I are
plotted in Fig. 5, where a family of curves, ~(.f) versus ~ for
no = 1-12, is also plotted. The experimental points closely

match the curve corresponding to no = 8. Also, if we ap-

proximate the slope of ~(j) at the origin from the data in the
first line in Table I, we get P ‘(0) = 0.41/0.05 = 8.2. Now from

(10), no= 8.2/0.93 = 8.8.

Taking no =8, we notice from Fig. 2 that for a 1 percent

field reject rate, the fault coverage should be about 80 per-
cent. As Fig. 4 indicates, the fault coverage should be im-
proved to 95 percent in order to achieve a field reject rate of 1
in 1000.

The above conclusions differ significantly from those ob-
tained in [6] where the field reject rate was obtained as

l-=(1 -y)(I -f).

From this formula, for r = 0.01, y = 0.07, we get ~ = 99 per-
cent and for r = 0.001, ~= 99.9 percent. These fault coverages
are significantly higher than those obtained by the analysis
presented here and, in fact, represent almost unachievable
numbers for LSI circuits. Our analysis would have given simi-
lar results for no = 3 or 4. But no = 3 or 4 produces a P(f)

versus .f curve which significantly disagrees with the experi-
mental result (see Fig. 5).

TABLE I
RESULTOFCHIPTEST

YIELD-0.07
TOTALNUMBEROFCHIPS❑ 277

Cumulative Cumulative
Fault Coverage Number of Fraction of

(percent) Chips Failed Chips Failed

5 113 0.41
8 134 0.Q8

10 1U4 0.52

15 186 0.67

20 209 0.75

30 226 0.82

36 242 0.s7

45 251 0.91

50 256 0.92

65 257 0.93

09
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: 05-1
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03

02

01

--
0 ol 02 03 0405 06 07 08 09 ~0

FAULT COVERAGE, f

Fig. 5. Determination of no from experimental data.

A large chip can be considered as composed of several

smaller chips and thus the average number of faults on a large
faulty chip would be higher. Also, for a given chip area, one
would expect the average number of logical faults to be higher
for greater circuit density (e.g., in the case of fine-line tech-
nology). The strength of our model lies in the experimental
process by which the model parameter (no) is determined for
the actual chip being studied. The influence of the fault
model used in determining the fault coverage (e.g., stuck type
faults) also influences the value of no. For instance, let us

assume that the tests that detect the stuck type faults detect
only very few of the actual fault modes of the chip. As the
tests are applied, the chips will be rejected at a slower rate and
(see Fig. 5) we will get a smaller value of no. This would mean
(see Figs. 2-4) that the fault coverage (as measured in terms of
stuck type faults) will have to be higher.

VIII. CONCLUSION

Besides finding the fault coverage requirement for a chip
processing line, there are other applications of the technique
presented here. One such application is in prediction of the
influence of fine-line technology on the testing problem. A
given circuit, when implemented with finer design rules, oc-
cupies a smaller area. The yield, which largely depends upon
the chip area, would be higher. In Figs. 2-4, a higher yield
indicates a lower fault coverage requirement if no was kept
freed. However, when the circuit is shrunk into finer features,
one should expect many logical faults to be produced by a
physical defect. This phenomenon could result in a higher
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value of no, thereby further reducing the fault coverage

requirement.
In our theory, we have introduced a new parameter no, the

average number of faults on a defective chip. No attempt has

been made to relate no to the yield. Yield, which has been

extensively studied in the past, is known to depend upon the

chip area and the defect density. The average number of faults
also depends upon the chip area and defect density. Further

work should establish at least an empirical relationship be-

tween yield and the average number of faults.
Since the completion of this work, the authors have learned

of similar work being pursued elsewhere [18].
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