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This paper designed a protection scheme for utility grid with high share of renewable energy (RE) generated from wind energy and
solar energy plants. This is based on extraction of features from the current using Stockwell transform (ST), Hilbert transform
(HT), and alienation coefficient. A Stockwell index (SI) is designed by extracting current features using ST, a Hilbert index
(HI) is designed by extracting current features using HT, and an alienation index (AI) is designed by extracting current
features using an alienation coefficient. A fault index (FI) is formulated by multiplying the SI, HI, AI, and WF (weight factor).
This FI is implemented for fault detection. Fault classification is achieved considering number of fault phases and ground fault
index (GFI). This GFI is designed by processing zero sequence currents applying ST. GFI effectively identifies the ground
involved during event of a fault. A designed protection scheme is effective to identify faults in the scenario of high RE share
and during various cases of study which includes the variations of fault impedance, different fault occurrence angles (FOA),
fault incident at different nodes, and noisy condition. This protection scheme effectively discriminates the fault events from the
operational events such as feeder operation, load, and capacitor switching. Performance of hybrid protection method
formulated in this paper is better relative to alienation coefficient-based protection scheme (ACPS) reported in literature. The
ACPS has maximum error and mean error of fault detection equal to 9.54% and 5.99%, respectively, which is relatively high
compared to the respective values for the proposed method which are 1.89% and 0.978%, respectively. ACPS is effective for
detecting the fault events in noise level of 30 dB SNR (signal-to-noise ratio) whereas the proposed method effectively identifies
the faults in the high noise scenario of 20 dB SNR.

1. Introduction

Recent concerns of environmental issues, fossil fuel prob-
lems, and risks of energy security have forced all the coun-
tries for focusing to increase the use of renewable energy
(RE). This has motivated the utilities to increase level of
RE in the grids [1]. The variable and uncertain nature of
these RE sources have posed challenges to the utility network
operators in terms of grid security, power system protection,
power quality, energy management, and flexibility. The

application of machine learning (ML), signal processing,
deep learning (DL), and intelligent techniques have solved
protection problems. An ensemble deep learning approach
(EDLA) is designed by the authors of [2] for fault detection
for the utility grid network to support the automation, valida-
tion, and overfitting. In [3], the authors formulated a wavelet
transform (WT) powered fault detection method which is
implemented for providing protection to a transmission line
with availability of a wind turbine. The protection scheme
supports effective protection but performance is degraded
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with high level noise. An in-depth study for evaluating the
effect of wind and solar energy injection on the performance
of distance protection of a transmission line is presented in
[4]. Further, different relay settings have been suggested for
different penetration levels of RE. Impact of RE penetration
levels on zones of fault locations is also investigated. In [5],
the authors detailed a study of existing approaches and prac-
tices for fault detection, categorization, and location on a dis-
tribution network. Different techniques, their advantages,
disadvantages, and application for distribution grids, smart
grids, and microgrids have been discussed in detail. A com-
parative study is also presented which helps to select a partic-
ular method for specific application. A brief review of
techniques for fault diagnosis in microgrids with high contri-
bution of solar energy is discussed in [6]. A method consist-
ing of Hilbert–Huang transform (HHT) and decision tree to
detect islanding condition as well as fault events incident on a
distribution network with RE penetration is designed by
authors in [7]. This method is also effective to classify and
localize the fault events. It also effectively discriminates the
fault and islanding events from the switching transients. In
[8], authors designed a protection mechanism for a low-
voltage AC microgrids dominated by inverters to detect the
low impedance faults using direction of active power flows,
magnitude of current, and voltage sags. It is established that
developed protection strategy is effective to provide protec-
tion to the microgrid of all topology, configuration, and oper-
ational mode. A protection scheme for fault detection using a
data-driven approach and fault classification using the
Gaussian regression method is designed for smart AC micro-
grid in [9]. The study is validated using the IEEE-15 node
network (distribution system) having integrated solar photo-
voltaic (PV) distributed generator (DG). In [10], the authors
presented a study for detection of fault incident on a network
of integrated energy system by application of machine learn-
ing- (ML-) based techniques. The algorithm has achieved the
accuracy of 98.67%. The fault recognition methods are
reported in [11–14]. An optimal design of a nonfragile pro-
portional–integral–derivative (PID) controller for an auto-
matic voltage regulator (AVR) to address the challenge
presented by uncertainties in the plant model parameters
and perturbations in the controller gains to improve stability
and controller nonfragility at the same time is reported in
[15]. This method has low computational complexity and
achieves fast convergence rate because it utilized both local
and global search techniques. In [16], the authors designed
a decomposition supported multiobjective resilient control
for blade pitch of a wind energy conversion system (WECS)
to achieve better damping capability with minimum oscilla-
tion, settling time, and overshoot. This is established that
proposed technique achieved the damping with minimum
overshoot around 2.2329% and settling time around 9.2626
which is superior compared to meta-heuristics techniques.
In [17], the authors designed a direct current (DC) charging
station with bipolar properties for a microgrid system to con-
vert a two-wire system into three wires with a neutral line.
This is capable of handling different output loads where
neutral-line voltage is effective and dynamic performance is
improved relative to a traditional controller. Fuzzy logic
(FL) and Harris hawks optimization (HHO) techniques for

energy management system (EMS) using modified cost
function are introduced in [18]. These methods achieved
the optimal performance of seawater desalination plants
(SWDP) with minimum feed-in-tariff. However, the perfor-
mance of the method is affected due to variation of energy
price with time and uncertainties of system parameters.
An optimization technique based on use of equilibrium
optimizer for dynamic cutting force coefficients of the
end-milling process [19] and improved bald eagle search
algorithm with dimension learning supported hunting for
autonomous vehicle considering vision dynamics [20] are
also reported in literature.

Review of existing and above discussed literature indi-
cates that simultaneous use of signal processing methods
can be used to design protection scheme with improved per-
formance for detection and classifying the fault conditions
incident on a utility network with high share of RE. Main
research contributions of this paper are mentioned below:

(i) This paper designed a scheme for protection of util-
ity grid against faulty condition with availability of
high share of RE which uses the feature extracted
from currents applying the ST, HT, and alienation
coefficient

(ii) A SI is designed extracting current features using
ST, a HI is designed extracting current features
using HT, and an AI is designed extracting current
features using the alienation coefficient. SI, HI, AI,
and WF are multiplied for computing the FI. FI is
implemented for fault detection

(iii) Fault classification is achieved applying number of
fault phases along with GFI. This GFI is formulated
by processing zero sequence currents applying the
ST. GFI effectively identifies ground involved dur-
ing fault event

(iv) Designed protection scheme effectively recognize
the faults with high share of RE and during different
case studies

(v) Performance of designed protection method is
superior relative to the alienation coefficient-based
protection scheme with respect to mean error of
fault detection and applicability of algorithm for dif-
ferent scenarios of the power system

Structuring of this paper includes the seven sections.
Introduction and research findings are described in the
Section 1. The test network of utility grid with details of
wind energy plant and solar energy plant are discussed
in Section 2. The design of the protection method includ-
ing fault detection approach and fault classification
approach are discussed in Section 3. Section 4 describes
the results of simulation to detect and classify faults. Vali-
dation of the algorithm using different case studies is
discussed in Section 5. Section 6 includes the performance
comparative discussion. Conclusions are included and
discussed in Section 7.
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2. Test System

A test network for validation of the designed protection
scheme is realized by integrating a solar energy plant (SEP)
rated at 1MW and a wind energy plant (WEP) rated at
1.5MW on a 680-numbered node of an IEEE-13 node test
feeder as illustrated in Figure 1. Therefore, the total capacity
of RE generators is 2.5MW. Details and technical parame-
ters of load, feeder, capacitor, and transformer available in
[21] are utilized for this study. SEP and WEP are connected
to the 680-numbered node of the test network through solar
plant transformer (SPT) and wind plant transformer (WPT),
respectively. SEP and WEP generate power at 0.270 kV and
0.575 kV voltage levels, respectively. A feeder transformer
(FDT) is used to operate node 634 on 0.48 kV, and all other
nodes operate on 4.16 kV. A grid substation transformer
(GSST) is used for connecting a test feeder to a large network
of utility which is operated at 115 kV. The total load con-
nected to the test feeder amounts to 5MVA. Hence, MVA
rating of the test feeder is 5MVA. A RE capacity of
2.5MW is connected to the test feeder against the 5MVA
rating; hence, RE penetration level of 50% is achieved. The
proposed fault recognition method effectively detects all
types of fault events under the condition of 50% RE penetra-
tion level. Technical parameters of solar plates and con-
verters used in this study are available in [22]. Similarly,
technical parameters of wind turbine and converters used
in this study are available in [23]. The 650-numbered node
is taken as a protection scheme node (PSN) where currents
are recorded for analysis using protection approach. The
IEEE-13 bus test network is a radial feeder fed from the node

650 which is integrated to the utility grid. Hence, the protec-
tion scheme equipped at this node will provide protection to
the complete feeder. Hence, node 650 is considered to install
the protection scheme. All the elements of distribution
system used for the study are deterministic in nature which
means that the behavior of the elements such as feeders,
loads, capacitors, and generator is well-defined. The nature
of the system voltage and current in the elements is sinusoi-
dal in nature. The proposed protection method detects the
changes observed in the current waveform from the sinusoi-
dal nature during fault event. Hence, model constraints are
not dynamic in nature rather all limitations of model are
static in nature.

3. Proposed Methodology

The fault detection and categorization approach used to
design scheme for protection of the utility network against
fault events in the availability of high share of RE generation
(wind and solar) is described in this section.

3.1. Fault Detection. Schematic diagram including all steps
for detection of fault events is elaborated in Figure 2. All
steps and indexes used to design a fault index (FI) to detect
the faults incident on power network are elaborated in the
below subsections.

3.1.1. Hilbert Index. Hilbert transform is applied to process
the current waveform (iðtÞ) at sampling frequency of
3.84 kHz with the help of the below detailed mathematical
formulation and output matrix HðiðtÞÞ is computed [24].
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Figure 1: Wind energy and solar energy plants connected to the IEEE-13 node test network.
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H i tð Þð Þ = 1
π
PV

ð∞
−∞

i τð Þ
t − τ

dτ: ð1Þ

Here, PV is the principle quantity for Cauchy’s integral,
τ is the time period, t is the momentary time, and HðiðtÞÞ
is the matrix of HT output. The Hilbert index (HI) is
designed by taking absolute magnitudes of matrix HðiðtÞÞ
which is a row matrix.

HI = abs H i tð Þð Þð Þ: ð2Þ

3.1.2. Stockwell Index. Stockwell index (SI) is applied to
decompose the current using ST, and the output matrix hav-
ing absolute magnitudes (STOMA) is obtained as detailed
below [25]:

STOMA = abs
ð∞
−∞

i tð Þ fj jffiffiffiffiffiffi
2π

p e− f 2 τ−tð Þ2ð Þ/2e−j2πf tdt
� �

: ð3Þ

Median of STOMA (MST) is computed as detailed below:

MST =median STOMAð Þ: ð4Þ

Summation of all elements of column matrix of STOMA
(SST) is computed as detailed below:

SST = sum STOMAð Þ: ð5Þ

Covariance of SST (COFT) is computed as detailed below:

COFT = sum SSTð Þ: ð6Þ

The Stockwell index is computed by multiplication of
MST, SST, and COFT as detailed below:

SI =MST × SST × COFT: ð7Þ

3.1.3. Alienation Index. The current variables i1 and i2 are con-
sidered at quarter cycle time difference to compute correlation
coefficient (CRC) as described below:

CRC =
Ns∑i1i2 − ∑i1ð Þ ∑i2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ns∑i21 − ∑i1ð Þ2Â Ã
Ns∑i22 − ∑i2ð Þ2Â Ãq : ð8Þ

Here, Ns is the number of samples of a cycle, i1 is the cur-
rent samples at time t0, i2 is the current samples at −T + t0
time, and T is the time period of the current cycle.

Start

Process current using alienation
coefficient and compute AI

Current is processed using ST and
MS, SS and COF are computed

Current is processed using
HT and HI is computed

Multiply MS, SS, and COF to compute SI

Multiply HI, SI, AI and WF to compute FI. Set threshold magnitude (TH).

Is
FI > TH for
any phase

?

No

Yes
Use classification algorithm

for fault classification

Fault event is simulated on test node of test utility grid.
Record current signals at PSN node of test grid.

Figure 2: Fault detection approach.
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The alienation index (AI) is computed using CRC by the
below detailed mathematical formulation:

AI = 1 − CRC2: ð9Þ

3.1.4. Fault Index. The FI is formulated by multiplying the
HI, SI, AI, and a weight factor (WF). WF is assigned a value
of 5000 for this study. This value of WF is selected after test-
ing the approach on different cases of study which include
variations of fault impedance, fault occurrence angle
(FOA), different fault occurrence nodes (FON), and opera-
tional events. A threshold (TH) magnitude of 20,000 is
decided to discriminate the fault event from the healthy
events. During fault events, the magnitude of FI becomes
greater compared to the TH and during the conditions of

healthy scenario the FI magnitude is low relative to TH.
Again TH magnitude is finalized by testing algorithm for
various case of study like variations of fault impedance, fault
occurrence angle (FOA), different fault occurrence nodes
(FON), and operational events.

FI = HI × SI × AI ×WF: ð10Þ

3.2. Fault Classification. The fault classification algorithm is
illustrated in Figure 3. Fault classification is established con-
sidering the numbers of faulty phase and a ground fault
index (GFI). GFI helps in detecting the ground involved dur-
ing a fault condition. Computation of GFI is described in
below subsections.

Record current at PSN node of test grid. Compute zero
sequence current from three phase currents
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?
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Multiply SM, SCE and CV to compute GFI. Select ground threshold magnitude (GTM) to identify involvement
of ground with fault event. Also identify faulty phase numbers (FPN) by comparing FI with TH.
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ABCG fault ABG fault

ABC or ABCG fault AB or ABG fault

AG fault

AB
fault

No No
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compute output matrix with absolute values (SOMA).

Figure 3: Fault classification approach.
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3.2.1. Ground Fault Index. The zero sequence current is
decomposed by the application of ST, and GFI is computed.
The following are steps to compute the GFI:

(i) Current of zero sequence (I0) is computed using the
currents associated with all three phases as described
below:

I0 =
I1 + I2 + I3ð Þ

3
ð11Þ

(ii) Process I0 applying the ST and compute output
matrix with absolute values (SOMA)

(iii) Compute median of SOMA (MS) as described
below:

MS =median SOMAð Þ ð12Þ

(iv) Compute summation of column elements of
SOMA(SCE) as described below:

SCE = sum SOMAð Þ ð13Þ

(v) Compute covariance of SCE (COF) as described
below:

COF = covar SCEð Þ ð14Þ

(vi) Compute GFI using multiplication of MS, SCE, and
COF as detailed below:

GFI =MS × SCE × COF ð15Þ
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Figure 4: AG fault condition: (a) phase current waveforms, (b) HI, (c) SI, (d) AI, (e) FI, and (f) high-resolution FI plot.

Table 1: Time for detection of faults by the use of PSM.

S. no. Fault category Fault identification time (s)

1 AG 10−5 s

2 AB 5 × 10−6 s
3 ABG 3 × 10−6 s
4 ABC 10−6 s

5 ABCG 10−6 s
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A ground threshold magnitude (GTM)) of 50 is decided
for investigating the ground involved during a fault condi-
tion. This value of GTM is selected by testing the approach
for various case studies like variations of fault impedance,
fault occurrence angle (FOA), different fault occurrence
nodes (FON), and operational events.

3.3. Tuning of Parameters. All parameters of the protection
algorithm for fault detection and classification have been
adjusted using a hit and trial approach by testing the algo-
rithm on 25 data sets of each fault event. Parameters for
which highest accuracy is obtained are considered for the
method. It is established that parameters considered resulted
in accuracy of algorithm higher than 99%.

4. Discussion of Simulation Results

The simulation results for detection of fault conditions
associated with utility grid network having 50% RE power
(solar and wind) injection are discussed in this section.
The faults include phase-A to ground (AG), phase-A and
phase-B (AB) fault, phase-A and phase-B with ground
(ABG) fault, three-phase fault (ABC), and three-phase fault
with ground (ABCG).

4.1. AG Fault. An AG fault occurs on node 671 of the utility
system. Currents pertaining to all phases are measured at
PSN and illustrated in Figure 4(a). Currents are analyzed

by application of the designed protection approach to com-
pute HI, SI, AI, and FI which are shown in Figures 4(b)–4(e)
sequentially. A high-resolution FI plot is depicted in
Figure 4(f). Time in which the AG fault has been identified
is provided in Table 1.

This is seen in Figure 4(a) that current associated with
faulty phase-A is increased just after fault occurrence. How-
ever, current associated with healthy phases-A and B change
by small quantum. Figure 4(b) details that HI of phase-A is
increased due to AG fault. However, deviations in magni-
tude of HI for phases-A and B (healthy in nature) is small.
Figure 4(c) details that SI corresponding to every phase has
become high because of fault occurrence. Figure 4(d) shows
that AI pertaining to every phase has increased because of
AG fault occurrence at 0.1 s. Figure 4(e) describes that FI
of faulty phase-A is increased due to AG fault occurrence
at 0.1 s and crossed the TH. However, FI for healthy
phases-A and B remains below TH. Figure 4(f) gives an indi-
cation that FI pertaining to phase-A has become higher
relative to TH in time interval of 10−5 s which indicates that
protection algorithm is fast to detect AG fault.

4.2. AB Fault. Fault which includes phases-A and B and not
the ground (AB) is simulated to occur on 671-numbered
node of utility system. Currents of all phases are recorded
at PSN (node 650) and illustrated in Figure 5(a). These cur-
rents are analyzed using the designed protection approach
for computing HI, SI, AI, and FI which are shown in
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Figure 5: AB fault: (a) currents, (b) HI, (c) SI, (d) AI, (e) FI, and (f) high-resolution FI plot.
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Figures 5(b)–5(e) sequentially. A high-resolution FI plot is
depicted in Figure 5(f). Time in which the AB fault has been
identified is provided in Table 1.

This is seen in Figure 5(a) that current of phases-A and B
(faulty in nature) has increased after fault incidence. How-
ever, current of healthy phase-C changes by small quantum.
Figure 5(b) shows that HI of phases-A and B (faulty in
nature) has become high due to AB fault. However, change
in the magnitude of HI associated to phase-C (healthy
nature) is small. Figure 5(c) depicts that SI corresponding
to phases-A nd B has become high because of fault inci-
dence. However, the SI of phase-C remains near to zero.
Figure 5(d) shows that AI associated with every phase has
become high because of AB fault occurrence at 0.1 s.
Figure 5(e) details that FI associated to phases-A and B has
become high due to AB fault occurrence at 0.1 s and crossed
the TH. However, FI for healthy phase-C remains below TH.
Figure 5(f) describes that FI associated to phases-A and B
has become high in comparison to TH in time interval of 5
× 10−6 s which indicates that the protection algorithm is fast
to detect AB fault.

4.3. ABG Fault. Fault incident on phases-A and B with
ground (ABG) is simulated to occur on the 671-numbered
node of the utility system. Currents of all phases are
recorded at PSN (node 650) and illustrated in Figure 6(a).
Currents are analyzed by application of the designed protec-

tion approach to compute HI, SI, AI, and FI which are
shown in Figures 6(b)–6(e) sequentially. A high-resolution
FI plot is depicted in Figure 6(f). Time in which the ABG
fault has been identified is provided in Table 1.

This is seen in Figure 6(a) that current associated to
phases-A and B has become high after fault incidence. How-
ever, current of healthy phase-C changes by small quantum.
Figure 6(b) describes that HI of phases-A and B (faulty in
nature) has become high due to ABG fault. However, change
in HI magnitude for phase-C (healthy nature) is small.
Figure 6(c) depicts that SI associated to all phases has
become high due to fault incidence. Figure 6(d) shows that
AI associated to all phases has become high due to ABG fault
occurrence at 0.1 s. Figure 6(e) details that FI of faulty
phases-A and B has become high due to ABG fault occur-
rence at 0.1 s and crossed the TH. However, FI for healthy
phase-C remains below TH. Figure 6(f) shows that FI asso-
ciated with phases-A and B has become high relative to
TH in time interval of 3 × 10−6 s which indicates that protec-
tion algorithm is fast to detect ABG fault.

4.4. ABC Fault. Fault which includes all phases but not
ground (ABC) is simulated to occur on 671-numbered node
of the utility system. Currents of all phases are measured at
PSN and illustrated in Figure 7(a). Currents are analyzed
by application of the designed protection approach to com-
pute HI, SI, AI, and FI which are shown in Figures 7(b)–7(e)
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sequentially. A high-resolution FI plot is depicted in
Figure 7(f). Time in which the ABC fault has been identified
is provided in Table 1.

This is seen in Figure 7(a) that current associated to
every faulty phase has become high after fault incidence.
Figure 7(b) details that HI of every faulty phase has become
high due to ABC fault. Figure 7(c) depicts that SI of all
phases has become high due to fault incidence. Figure 7(d)
shows that AI of all phases has become high due to ABC
fault occurrence at 0.1 s. Figure 7(e) details that FI of all
faulty phases is increased due to ABC fault occurrence at
0.1 s and crossed the TH. Figure 7(f) details that FI for all
phases has become high in comparison to TH in time inter-
val of 10−6 s indicating that protection algorithm is fast to
detect ABC fault.

4.5. ABCG Fault. Fault which includes all phases and also
ground (ABCG) is simulated to occur on node 671 of the
utility system. Currents pertaining with all phases are mea-
sured at PSN and illustrated in Figure 8(a). These currents
are processed by applying the designed protection approach
to compute HI, SI, AI, and FI which are shown in
Figures 8(b)–8(e) sequentially. A high-resolution FI plot is
depicted in Figure 8(f). Time in which the ABCG fault has
been identified is provided in Table 1.

This is seen in Figure 8(a) that current associated to all
faulty phases has become high after ABCG fault incidence.
Figure 8(b) details that HI of all faulty phases has become

high due to ABCG fault. Figure 8(c) depicts that SI of every
phase has become high due to ABCG fault incidence.
Figure 8(d) shows that AI of every phase has increased due
to ABCG fault occurrence at 0.1 s. Figure 8(e) shows that
FI of all faulty phases has increased due to ABCG fault
occurrence at 0.1 s and crossed the TH. Figure 8(f) details
that FI for all phases has become high in comparison to
TH in time interval of 10−6 s indicating that protection algo-
rithm is fast to detect ABCG fault.

4.6. Fault Classification. Faults are classified using faulty
phase numbers and GFI. Faults involving only one phase
and ground (AG, BG, and CG) is incident when only one
phase becomes faulty. Peak magnitude of FI pertaining with
all phases during investigated fault events are provided in
Table 2. Two faulty phase indicates the presence of two
phase fault which does not involves ground (AB, BC, and
AC) or two phase fault which involves ground (ABG,
BCG, and ACG). Three faulty phase indicates availability
of fault on all three phases but not ground (ABC) or fault
on three phases and also ground (ABCG). Availability of
ground with a fault is identified using GFI. The GFI for
AB and ABG faults is demonstrated in Figure 9. This is rec-
ognized that the peak of GFI is high relative to GTM (50)
during the ABG fault due to availability of ground and low
relative to GTM for AB fault. Hence, AB and ABG faults
are differentiated from each other accurately. In the similar
way, ground involvement with a three-phase fault can also
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Figure 7: ABC fault: (a) current waveforms, (b) HI, (c) SI, (d) AI, (e) FI, and (f) high-resolution FI plot.
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be effectively identified using GFI to differentiate the ABCF
and ABCGF faults.

Robustness of the proposed method to classify the differ-
ent faulty events and discriminate these events from each
other is performed by testing the algorithm on 25 data sets
of each fault event. The data set is obtained by changing
the different parameters such as fault incidence angle, fault
resistance, fault location node, and level of RE penetration.
Data of accurately classified and inaccurately classified faults
are provided in Table 3. After detailed analysis of the results
provided in Table 3, it is observed that average fault accuracy
above 99% is obtained using the proposed protection algo-
rithm which indicates the robustness of the algorithm.

5. Performance Validation of Protection
Algorithm: Case Studies

Performance of the designed protection algorithm has been
validated for case studies to generalize and check the robust-
ness of the algorithm to detect fault events during all possi-
ble fault and healthy conditions. Simulation results for
various cases of study are detailed in this section.

5.1. Fault Impedance Variations. Fault on phase-A with
ground (AG) is realized to occur on node 671 of utility sys-
tem considering fault impedance of 0.01 Ω, 2Ω, 4Ω, 6Ω,
8Ω, and 10Ω. The currents pertaining to all phases are mea-
sured at PSN for all investigated fault impedance. These cur-
rents are analyzed applying the formulated protection
approach for computing FI which are recorded in Table 4.
Detailed analysis of data shows that FI pertaining with faulty
phase-A is high relative to TH. However, FI is lower relative
to TH for the phases-B and C (healthy in nature). Hence, the
designed protection approach effectively detect the fault
incident on the network for fault impedance up to 10Ω with
high share of RE.

5.2. Variations of Fault Incidence Angle. Fault on phase-A
with ground (AG) is realized to occur on node 671 of utility
system considering fault occurrence angle (FOA) of 0°, 30°,
45°, 60°, 90°, 120°, and 150°. Currents of all phases are
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Figure 8: ABCG fault: (a) current waveforms, (b) HI, (c) SI, (d) AI, (e) FI, and (f) high-resolution FI plot.

Table 2: Maximum magnitude of FI of all phases during fault
events.

S. no. Fault type
Phase

A B C

1 AG 1:8405 × 105 477.08 1735.2

2 AB 1:1602 × 106 1:4206 × 106 7.4807

3 ABG 8:043 × 105 3:5743 × 106 3480.6

4 ABC 8:6227 × 105 8:2113 × 106 4:1432 × 106

5 ABCG 8:6862 × 105 8:1277 × 106 4:7571 × 106
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measured at PSN for all investigated FOA. The currents are
analyzed by application of designed protection approach to
compute FI which are recorded in Table 5. Detailed analysis
of data shows that FI of phase-A (faulty in nature) is high
relative to TH for all investigated FOA. However, FI is low
relative to TH for phases-B and C (healthy in nature).
Hence, the designed protection approach effectively identi-
fied the fault incident on the network for all investigated
FOA with high share of RE.

5.3. Performance of Algorithm in Noisy Condition. The AG
fault is realized to occur on node 671 of the utility system.
Currents associated to all phases are recorded at PSN.
Gaussian noise of level of 20 dB signal-to-noise ratio (SNR)
is added to these current signals and noisy currents. These
current waveforms with noise are illustrated in
Figure 10(a). Currents are analyzed by application of the
designed protection approach to compute HI, SI, AI, and
FI which are shown in Figures 10(b)–10(e) sequentially.
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ABG Fault
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Figure 9: GFI discriminating AB and ABG faults.

Table 3: Data of accurately and inaccurately classified faults.

S.
no.

Fault
type

Nos. of fault
data

Nos. of accurately classified
faults

Nos. of inaccurately classified
faults

Fault classification efficiency
(%)

1 AG 25 25 0 100%

2 AB 25 24 1 96%

3 ABG 25 25 0 100%

4 ABC 25 25 0 100%

5 ABCG 25 25 0 100%

Average fault classification accuracy (%) 99.20%

Table 4: FI during AG fault considering different fault impedance.

S. no. Phase
Peak of FI with different fault impedance

0.01 Ω 2 Ω 4 Ω 6 Ω 8 Ω 10 Ω

1 A 1:8405 × 105 1:3319 × 105 97938 72762 54953 42096

2 B 477.08 365.03 298.05 248.93 216.92 189.14

3 C 1735.2 1166.9 820.84 587.37 481.91 386.49

Table 5: FI during AG fault event for different FOA.

S. no. Phase
Maximum magnitude of FI with various fault occurrence angles

0° 30° 45° 60° 90° 120° 150°

1 A 1:8405 × 105 4:5307 × 105 6:644 × 105 5:7621 × 105 4:1027 × 105 5:7817 × 105 5:0787 × 105

2 B 477.08 3043.4 8334.9 1922 1943 763.58 127.639

3 C 1735.2 1268.1 1111 771.21 281.46 85.744 137.473
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This is seen in Figure 10(a) that current of phase-A
(faulty nature) has increased because of fault occurrence.
However, currents of phases-B and C (healthy nature)
change by small quantum. Figure 10(b) details that HI of
phase-A (faulty nature) has become high due to AG fault.
However, change in HI magnitude for phases-B and C
(healthy nature) is small. Figure 10(c) depicts that SI per-
taining to all phases has become high due to fault incidence.
Figure 10(d) shows that AI pertaining to all phases has
become high due to AG fault occurrence at 0.1 s.
Figure 10(e) describes that FI of faulty phase-A has become
high due to AG fault occurrence at 0.1 s and crossed the TH.
However, FI for healthy phases-B and C remains below TH.
Hence, AG fault event has been determined accurately and
effectively in noisy condition.

5.4. Effect of Fault Location on Different Nodes of Test Feeder.
Fault on phase-A with ground (AG) is realized at different
nodes of the test utility system. Currents pertaining to all
phases are recorded at PSN. The currents are analyzed
applying the designed protection approach to compute HI,
SI, AI, and FI. Peak magnitude of FI for all three phases with
AG fault occurred at all nodes is detailed in Table 6. This is
seen that for all the fault locations on the test utility network,
FI associated to phase-A is high relative to threshold TH
(20,000) and FI pertaining with phases-B and C has values
lower relative to TH. Hence, it is realized that the designed

method is effective for detecting the fault occurred on all
the nodes of test grid.

5.5. Load Switching. A load of capacity 843MW and
462MVAR connected to 675-numbered node is turned off
at 4th cycle. This load is again reconnected at 8th cycle.
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Figure 10: AG fault in noisy condition: (a) current waveforms, (b) HI, (c) SI, (d) AI, and (e) FI.

Table 6: Peak Magnitude of FI of All Phases during Fault Events.

S. no. Fault type
Phase

A B C

1 671 1:8405 × 105 477.08 1735.2

2 632 2:4581 × 105 502.92 2012.9

3 645 2:3109 × 105 499.05 1992.6

4 646 2:0576 × 105 488.62 1872.1

5 633 2:3218 × 105 490.70 1891.5

6 634 1:0901 × 105 480.99 1765.2

7 692 1:7092 × 105 462.18 1702.8

8 675 1:6054 × 105 443.21 1672.4

9 684 1:7149 × 105 465.64 1698.1

10 611 1:5108 × 105 436.09 1658.4

11 652 1:5098 × 105 421.71 1634.9

12 680 1:6107 × 105 446.01 1678.7
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Currents pertaining to every phase is recorded at PSN. The
currents are analyzed applying the designed protection
approach to compute FI which is illustrated in Figure 11.
This can be seen that FI for all phases has become slightly
high at the moment of disconnecting the load as well as
reconnecting the load. However, FI is always low in compar-
ison to TH. Therefore, event of load switching is a nonfaulty
event and discriminated from the faulty events.

5.6. Capacitor Switching. A capacitor load of capacity
600MVAR connected to 675-numbered node is turned off
at 4th cycle. This capacitor is again reconnected at 8th cycle.
Current pertaining to every phase is recorded at PSN. The
currents are analyzed by applying the designed protection
approach to compute FI which is illustrated in Figure 12.
This can be seen that FI for all phases has increased at the
time of disconnecting the capacitor load as well as recon-
necting the capacitor load. However, FI is always lower rela-
tive to TH. Therefore, event of capacitor switching is a
nonfaulty event and differentiated from faulty events.

5.7. Feeder Tripping. Feeder comprising of 692- and 675-
numbered nodes is tripped at 4th cycle. This is reconnected
at 8th cycle. The currents pertaining with all phases are
recorded at PSN. The currents are analyzed by applying
the designed protection approach to compute FI which is
illustrated in Figure 13. This can be seen that FI for all
phases has increased at the time of disconnecting the feeder
as well as reconnecting the feeder. However, FI is always
lower relative to TH. Therefore, event of feeder operation
is nonfaulty event and discriminated from the faulty events.

6. Performance Comparison

Effectiveness of the designed protection scheme for a utility
grid having high RE (wind and solar energy) contribution
is tested by comparing performance with an alienation
coefficient-based protection schemes (ACPS) discussed in
[26] considering the maximum error, mean error, noisy sce-
nario, fault impedance variability, and fault occurrence angle
variations. The performance of algorithm is also compared
with the discrete wavelet transform- (DWT-) based protec-
tion algorithm reported in [27]. This is established that the
proposed protection scheme performs efficiently and effec-

tively relative to alienation-based protection approach
reported in [26] and DWT-based technique reported in
[27]. In a noisy condition, the performance of the alienation
protection scheme of [26] has deteriorated with noise levels
greater compared to 30dB SNR whereas the designed pro-
tection scheme performs well up to noise level of 20 dB
SNR. Impact of noise on the DWT-based protection algo-
rithm has not been investigated. A performance comparison
of the designed algorithm, alienation coefficient-based tech-
nique, and DWT-based method for fault recognition is
included in Table 7.

7. Concluding Remark

A protection scheme for utility grid having high contribu-
tion of RE (wind and solar energy) is designed in this paper.
This method extracts the current features using ST, HT, and
alienation coefficient for fault detection. Fault classification
is performed using number of fault phases and a zero
sequence current-based GFI.

This is concluded that the protection scheme effectively
detect and classify the faults such as AG, AB, ABG, ABC,
and ABCG in the presence of 50% RE contribution level in
the utility system. The protection scheme is effective to
detect faults for different case studies such as variations of
fault impedance, variations of fault occurrence angle
(FOA), fault incident at different nodes, and noisy condition
(20 dB SNR). It is also concluded that the protection scheme
effectively discriminates the fault events from operational
events such as feeder operation, load, and capacitor switch-
ing. The performance of the designed protection approach
is superior relative to alienation coefficient-based protection
method reported in literature. ACPS has maximum error
and mean error of 9.54% and 5.99%, respectively, for fault
detection which is high compared to respective values for
the proposed method which are 1.89% and 0.978%, respec-
tively. ACPS is effective for detecting fault events in noise
level of 30 dB SNR whereas the proposed method effectively
identifies the faults in the high noise scenario of 20 dB SNR.
The study is performed on the IEEE-13 bus test network
which interfaced a solar and a wind power plant. The perfor-
mance of the proposed method is also superior relative to
the DWT-based technique.

Table 7: Performance comparative study.

S. no. Parameter of comparative study Reference [26] Reference [27] Proposed method

1 Maximum error of fault detection (%) 9.54 11.27 1.89

2 Sampling frequency (kHz) Not specified Not specified 3.84 kHz

3 Fault classification Investigated Investigated Investigated

4 Minimum noise level for which performance is not deteriorated 30 dB SNR Not investigated 20 dB SNR

5 Effect of loading Not investigated Not investigated Investigated

6 Synchronized data at both ends of line Required Not required Not required

7 Effect of fault angle Investigated Not investigated Investigated

8 Effect of fault resistance Investigated Not investigated Investigated

9 Mean error of fault detection (%) 5.99 6.95 0.978
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Parameters of the proposed protection algorithm can be
adjusted using an optimization technique which has been
considered the future scope of the research work. Further,
hybrid combination of signal processing techniques, artifi-
cial intelligent techniques, and optimization techniques
may be explored to design intelligent and self-learning-
based protection algorithms.
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