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This paper develops a stochastic hybrid model-based control system that can determine

online the optimal control actions, detect faults quickly in the control process, and re-

configure the controller accordingly using interacting multiple-model (IMM) estimator

and generalized predictive control (GPC) algorithm. A fault detection and control sys-

tem consists of two main parts: the first is the fault detector and the second is the con-

troller reconfiguration. This work deals with three main challenging issues: design of fault

model set, estimation of stochastic hybrid multiple models, and stochastic model predic-

tive control of hybrid multiple models. For the first issue, we propose a simple scheme for

designing faults for discrete and continuous random variables. For the second issue, we

consider and select a fast and reliable fault detection system applied to the stochastic hy-

brid system. Finally, we develop a stochastic GPC algorithm for hybrid multiple-models

controller reconfiguration with soft switching signals based on weighted probabilities.

Simulations for the proposed system are illustrated and analyzed.

Copyright © 2007 Vu Trieu Minh et al. This is an open access article distributed under

the Creative Commons Attribution License, which permits unrestricted use, distribution,

and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Control systems are becoming more and more powerful and sophisticated. Reliability,

availability, and safety are primary goals in the operation of process systems. The aim

to develop a fast and reliable control system that could detect undesirable changes in

the process (referred to as “faults”) and isolate the impact of faults has been attracting

much attention of researchers. Various methods for fault detection and control of process

systems have been studied and developed over recent years [1–8] but there are relatively

few successful developments of controller systems that can deal with faults in stochastic
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hybrid sense where faults are modeled as multiple-model set with varying variable struc-

ture and use of stochastic model predictive control algorithm.

Faults are difficult to foresee and prevent. Traditionally, faults were handled by de-

scribing the result behavior of the system and were grouped into a hierarchical structure

of fault model [9]. This approach is still widely used in practice: when a failure occurs,

the system behavior changes and should be described by a different mode from the one

that corresponds to the normal mode. A more appropriate mathematical model for such a

system is the so-called stochastic hybrid approach. It differs from the conventional hierar-

chical structure in that its state may jump as well as it may vary continuously. Apart from

the applications to problems involving failures, hybrid systems have found great success

in such areas as target tracking and control that involve possible structure changes [10].

Hybrid systems switch among many operating modes, where each mode is governed by

its own characteristic dynamic laws. Mode transitions are triggered by variables crossing

specific thresholds.

For the fault modeling and verification, design of a model set is the key issue for the

application of multiple-model estimator and controller. For simple systems, fault model

set can be designed as a fixed structure (FS) or a fixed set of models at all times. The FS has

fundamental limitations that only one fixed model set can be represented sufficiently and

accurately by all possible failures. Actually, the set of possible system modes is not fixed.

It varies and depends on the hybrid state of the system at the previous time. As shown

in [11], use of more models in an FS estimation does not improve the performance. In

fact, the performance will deteriorate if too many models are used in one fixed model set.

Therefore, a variable structure (VS) is considered for modeling faults. The VS overcomes

limitations of FS by using a variable set of models determined in real time adaptively.

General and representative problems of model-set design, choice, and comparison for

multiple-model approach to hybrid estimation are given in [12]. In this paper, a simple

scheme for modeling of fault set as discrete and continuous random variables is proposed.

For the fault detection, various methods have been developed in [13–17]. One of the

most effective approaches for solving stochastic hybrid systems is based on the use of

multiple models (MM): it runs a bank of filters in parallel, each based on a particular

model to obtain the model-conditional estimates. MM estimation algorithms appeared

in early 1970s when Bar-Shalom and Tse [18] introduced a suboptimal, computation-

ally bounded extension of Kalman filter to cases where measurements were not always

available. Then, several multiple-model filtering techniques, which could provide accu-

rate state estimation, have been developed. Major existing approaches for MM estimation

are discussed and introduced in [18–23] including the noninteracting multiple model

(NIMM), the Gaussian pseudo-Bayesian (GPB1), the second-order Gaussian pseudo-

Bayesian (GPB2), and the interacting multiple models (IMM). Among those, we consider

and select a fast and reliable algorithm for the fault detection system applied to the above

model-set design.

Finally, for the controller reconfiguration (CR), we propose the use of stochastic model

predictive control (MPC) algorithm applied to stochastic hybrid multiple models. The

problem of determining optimal control laws for hybrid systems has been widely inves-

tigated and many results can be found in [24–28]. However, the use of MPC applied to
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stochastic hybrid systems is unfavorable since the general MPC algorithms follow deter-

ministic perspective approaches. Thus, we propose use of generalized predictive control

(GPC), a stochastic MPC technique developed by Clarke el al. [29, 30]. GPC uses the

ideas with controlled autoregressive integrated moving average (CARIMA) plant in adap-

tive context and self-tuning by recursive estimation. Kinnaert [31] developed GPC from

CARIMA model into a more general one in MIMO state-space form. We propose the use

of a bank of GPC controllers, each based on a particular model. The optimal control ac-

tion is the summation of probabilistic weighted outputs of each GPC controller. A similar

soft switching mechanism based on weighted probabilities has been developed. Simula-

tions for the proposed controller are illustrated and analyzed. Results show its strong

ability for real applications to detect faults in dynamic systems.

The outline of this paper is as follows: Section 2 introduces the stochastic hybrid sys-

tem and fault modeling design; Section 3 considers the selection of a fault detection sys-

tem; Section 4 develops a controller reconfiguration integrated with fault detection sys-

tem; examples and simulations are given after each section to illustrate the main ideas of

the section; finally conclusions are given in Section 5.

2. Hybrid system and fault modeling design

An important requirement currently exists for improving the safety and reliability of pro-

cess systems in ways that reduce their vulnerability to failures. When a failure occurs, the

system behavior changes and should be described by a different mode from the one that

corresponds to the normal mode of operation. An effective way to model faults for dy-

namic failures, which state may jump as well as vary continuously in a discrete set of

modes, is the so-called a hybrid system.

A simplest continuous time hybrid system is described by the following different linear

state update equation:

ẋ(t)= A
(
t,m(t)

)
x(t) +B

(
t,m(t)

)
u(t) +T

(
t,m(t)

)
ξ(t),

z(t)= C
(
t,m(t)

)
x(t) +η

(
t,m(t)

)
,

(2.1)

and a discrete-time hybrid system is the following:

x(k+ 1)=A
(
k,m(k+ 1)

)
x(k) +B

(
k,m(k+ 1)

)
u(k) +T

(
k,m(k+ 1)

)
ξ(k),

z(k)= C
(
k,m(k)

)
x(k) +η

(
k,m(k)

)
,

(2.2)

where A, B, T , and C are the system matrices, x ∈ Rn is the state vector, u ∈ Rm is the

control input, z ∈Rp is the measured output, ξ ∈Rnξ and η ∈Rpη are independent noises

with means ξ(t) and η(t), and covariances Θ(k) and Ξ(k). In this equation, m(t)∈M is

the system mode, which may jump or stay unchanged, x is the state variable, which varies

continuously. The system mode sequence is assumed to be a first-order Markov chain

with transition probabilities:

Π
{
m j(k+ 1) |mi(k)

}
= πi j(k), ∀mi,m j ∈Mk, (2.3)
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where Π{·} denotes probability, m(k) is the discrete-valued modal state, that is, the index

of the normal or fault modes at time k, Mk = {m1, . . . ,mN} is the set of all possible system

modes at time instant k, πi j(k) is the transition probability from mode mi to mode m j at

time instant k. Obviously, the following relation must be held for any mi ∈Mk:

Mk∑

j=1

πi j(k)=
Mk∑

j=1

Π
{
m j(k+ 1) |mi(k)

}
= 1, mi,...,N ∈Mk ⊂M. (2.4)

Faults can be modeled by changing the appropriate matrices A, B, C, or T representing

the effectiveness of failures in the systems. They can also be modeled by increasing the

process noise covariance Θ or measurement noise covariance Ξ in ξ and η. Mk denotes

the set of models used at time instant k and M denotes the total set of models used, that

is, M is the union of all M′
ks:

mi ∈Mk =

⎧⎪⎨
⎪⎩
x(k+ 1)=Ai(k)x(k) +Bi(k)u(k) +Ti(k)ξi(k),

z(k)= Ci(k)x(k) +ηi(k),
(2.5)

where the subscript i denotes the fault modeling in model set, mi ∈Mk = {m1,m2, . . . ,
mN}, each mi corresponds to a node (a fault) occurring in the process at time instant k.

In fixed structure, the model setMk used is fixed over time, that is,Mk∆=M, for all k, to be

determined offline based on the initial information about the system faults. Otherwise,

we have a variable structure or the model set Mk varies at any time in the total model

set M or Mk ⊂M. Variable structure model overcomes fundamental limitations of fixed

structure mode set because the fixed model set used does not always exactly match the

true system mode set at any time, or the set of possible modes at any time varies and

depends on the previous state of the system.

For faults varying as continuous variables, we can handle them via probabilistic mod-

eling techniques. In these cases, faults can be modeled as discrete modes based on their

cumulative distribution function (CDF) and probability density function (PDF). Data

of the past operation fault records (fault rate and percentage of fault type) provide the

required probability distribution of the mode. More methods on design of model set as

continuous random variables can be read in [12]. In this paper, we just propose the sim-

plest method of equal probability to model a continuous random variable into discrete

modes. We assume that the CDF Fs(x) of the true continuous variable s is known and

we want to reconstruct it into the CDF Fm(x) of discrete modes. In the equal probability

method, we propose to group the CDF Fs(x) into |M| discrete modes of equal probabili-

ties, mi = 1/|M| (preferably an odd number 3,5,7, . . . , for symmetric distributions). The

design of a continuous variable into discrete modes is shown in Figure 2.1 with |M| = 5

and PDF is a normal distribution f (x;µ,σ) = (1/σ
√

2π)exp(−(x− µ)2/2σ2) with mean

µ= 0 and variance σ2 = 1.

In Figure 2.1, we group a continuous random variable with a normal distribution into

five equal probabilities (discrete modes) with a model set (mode set) of M = {m1,m2, . . . ,
m|M|}.
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Figure 2.1. Group a normal CDF into equal probabilities.

Example 2.1 (fault model-set design). Consider a continuous process system with the

state space model in (2.1):

ẋ(t)= Aix(t) +Biu(t) +Tiξi(t),

z(t)= Cix(t) +ηi(t),
(2.6)

where Ai, Bi, Ti, and Ci are system matrices, ξi and ηi are independent noises with zero-

mean ξ = η = 0 and constant covariance Θ = Ξ = 0.022I , Ti = I . We assume that at the

normal operation mode N , two generic types of faults might take place: one static fault

mode S0 and one varying fault mode V0. This example is modeled from a chemical pro-

cess model with four state variables, two inputs and two outputs. For simplicity, we verify

only one input.

We have the normal operation mode:

AN =

⎡
⎢⎢⎢⎣

1 0 0.1 0

0 1 0 0.1
−0.08 0.06 0.7 0

0.1 −0.1 0 0

⎤
⎥⎥⎥⎦ , BN =

⎡
⎢⎢⎢⎣

−0.2
0.03

2

1

⎤
⎥⎥⎥⎦ , CN =

[
1 −0.5 1 1

−1 0.6 0 1

]
.

(2.7)

A static failure mode S0 happens when an interrupted actuator failure, −50%,

BS0 = 0.5BN =

⎡
⎢⎢⎢⎣

−0.1
0.015

1

0.5

⎤
⎥⎥⎥⎦ . (2.8)
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A varying failure mode V0 happens when a continuous varying variable appears in AN ,

AV0 =

⎡
⎢⎢⎢⎣

1 0 0.1 0

0 1 0 0.1
−0.08 0.06 0.7 sin(ω)

0.1 −0.1 0 0

⎤
⎥⎥⎥⎦ , (2.9)

where ω is a continuous varying variable (deg/s).

We assume that at the static mode S0, two other generic types of static faults might

take place: mode S1 with sensor 1 failure −50% or

CS1 =
[

0.5z1

z2

]
=
[

0.5 −0.25 0.5 0.5
−1 0.6 0 1

]
, (2.10)

and mode S2 with sensor 1 failure +50% or

CS2 =
[

1.5z1

z2

][
1.5 −0.75 1.5 1.5
−1 0.6 0 1

]
. (2.11)

We continue to assume that the PDF of the continuous varying variable ω in matrix AV0

is the mixture of three normal distributions:

f (ω)= 1

3
√

2π
exp

(
− (ω− 3)2

2

)
+

1

3
√

2π
exp

(
− (ω)2

2

)
+

1

3
√

2π
exp

(
− (ω+ 3)2

2

)
.

(2.12)

Since the PDF of ω is the combination of three normal curves with three mean values

ω1 = −30/ s, ω0 = 00/ s, and ω2 = 30/ s, we can group this continuous varying variable

into three discrete models (modes) with AV1 , AV0 , and AV2 corresponding to the above

three mean values with equal probabilities of 1/3, 1/3, and 1/3. The model set design via

CDF and its reconstruction PDF are shown in Figure 2.2.

Hence, in this example, we have total 7 models (modes) grouped into three varying

model sets in Figure 2.3:

model set 1: M1 =
{
m1 =N(AN ,BN ,CN ),m2 = S0(AS,BN ,CN ),m3 =V0(AV0 ,BN ,CN )

}
,

model set 2: M2 =
{
m2 = S0(AS,BN ,CN ),m4 = S1(AS,BN ,CS1 ),m5 = S2(AS,BN ,CS2 )

}
,

model set 3: M3 =
{
m3 =V0(AV0 ,BN ,CN ),m6 =V1(AV1 ,BN ,CN ),m7 =V2(AV2 ,BN ,CN )

}
.

(2.13)

We assume that the following Markov transition probability matrix in (2.3) is used for all

simulations in the total model set M = {m1,m2,m3,m4,m5,m6,m7}:

Π=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.94 0.03 0.03 0 0 0 0

0.03 0.93 0 0.02 0.02 0 0

0.03 0 0.93 0 0 0.02 0.02

0 0.05 0 0.95 0 0 0

0 0.05 0 0 0.95 0 0

0 0 0.05 0 0 0.95 0

0 0 0.05 0 0 0 0.95

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.14)
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Figure 2.2. Model set design of varying variable ω.
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Figure 2.3. Total model set design.

The design of model set now is completed. In the next section, we will consider the selec-

tion of a reliable fault detection system applied to this model set.

3. Fault detection system

Fault detection for stochastic hybrid systems has received a great attention in recent years.

A variety of different fault detection methods has been developed. For hybrid systems

with fixed structure (FS) or variable structure (VS) modeled in mixed logic dynamical

(MLD) form or piecewise affine (PWA) systems, the state estimation can be solved by

moving horizon estimation (MHE) strategy. MHE has strong ability to incorporate con-

straints on states and disturbances. Moreover, on the computational side, because MHE

algorithms lead to optimization problem of fixed dimension, they are suitable for prac-

tical implementation. MHE is applied successfully to constrained linear systems where it

can guarantee stability of the estimate when other classical techniques, like Kalman fil-

tering, fail [32]. A number of MHE techniques for fault detection system can be found

in [32–35]. However for stochastic hybrid systems where their state can jump as well
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Figure 3.1. Structure of an MM estimator.

as vary continuously and randomly in a model set with the system mode sequence as-

sumed to be a first-order Markov chain in (2.3), a more effective and natural estimation

approach is the use of algorithms of multiple-model (MM) estimator. Major existing ap-

proaches for MM estimation are discussed and introduced in [18–26]. In this part, we

consider and select a reliable fault detection system among the noninteracting multi-

ple models (NIMM), the Gaussian pseudo-Bayesian (GPB1), the second-order Gaussian

pseudo-Bayesian (GPB2), and the interaction multiple models (IMM).

From the design of model set (in Section 2), a bank of filters runs in parallel at every

time, each based on a particular model, to obtain the model-conditional estimates. The

overall state estimate is a probabilistically weighted sum of these model-conditional es-

timates. The jumps in system modes can be modeled as switching among the assumed

models in the set.

Figure 3.1 shows the operation of a recursive multiple-model estimator, where x̂i(k | k)

is the estimate of the state x(k) obtained from the filter based on model mi at time k given

the measurement sequence through time k; x̂0
i (k− 1 | k− 1) is the equivalent reinitialized

estimate at time (k−1) as the input to the filter based on model mi at time k; x̂(k | k) is

the overall state estimate; Pi(k | k), P0
i (k− 1 | k− 1), and P(k | k) are the corresponding

covariances.

A simple and straightforward way of filter reinitialization is that each single model-

based recursive filter uses its own previous state estimation and state covariance as the

input at the current cycle:

x̂0
i (k− 1 | k− 1)= x̂i(k− 1 | k− 1),

P0
i (k− 1 | k− 1)= Pi(k− 1 | k− 1).

(3.1)

This leads to the so-called noninteracting multiple-model (NIMM) estimator because the

filters operate in parallel without interactions with one another, which is reasonable only

under the assumption that the system mode does not change.
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Another way of reinitialization is to use the previous overstate estimate and covariance

for each filter as the required input:

x̂0
i (k− 1 | k− 1)= x̂(k− 1 | k− 1),

P0
i (k− 1 | k− 1)= P(k− 1 | k− 1).

(3.2)

This leads to the first-order generalized pseudo-Bayensian (GPB1) estimator. It belongs to

the class of interacting multiple-model estimators since it uses the previous overall state

estimate, which carries information from all filters. Clearly, if the transition probability

matrix is an identity matrix, this method of reinitialization reduces to the first one.

The GPB1 and GPB2 algorithms were the result of early work by Ackerson and Fu

[21] and good overviews are provided in [22], where suboptimal hypothesis pruning

techniques are compared. The GPB2 differed from the GPB1 by including knowledge of

the previous time step’s possible mode transitions, as modeled by a Markov chain. Thus,

GPB2 produced slightly smaller tracking errors than GPB1 during nonmaneuvering mo-

tion. However in the size of this part, we do not include GPB2 into our simulation test

and comparison.

A significantly better way of reinitialization is to use IMM. The IMM was introduced

by Zhang and Li in [23]:

x̂0
j (k | k)= E

[
x(k) | zk,m j(k+ 1)

]
=

N∑

i=1

x̂i(k : k)P
{
mi(k) | zk,m j(k+ 1)

}
,

P0
j (k | k)= cov

[
x̂0
j (k : k)

]
=

N∑

i=1

P
{
mi(k) | zk,m j(k+ 1)

}

×
{
Pi(k | k) + x̃0

i j(k | k)x̃0
i j(k | k)′

}
,

(3.3)

where cov[·] stands for covariance and x̃0
i j(k | k)= x̂0

i (k | k)− x̂ j(k | k). In this paper, we

will use this approach for setting up a fault detection system.

For each model in Mk ∈M = {m1, . . . ,mN
}

, we can operate a Kalman filter. The prob-

ability of each model matching to the system mode provides the required information for

mode’s chosen decision. The mode decision can be achieved by comparing it with a fixed

threshold probability µT . If the mode probabilities maxi(µi(k)) ≥ µT , mode at µi(k) has

occurred and has taken place at the next cycle. Otherwise, there is no new mode detection.

The system maintains the current mode for the next cycle calculation.

Example 3.1 (test and selection of fault detection system). From the model-set design

in Example 2.1, model-set modes in (2.6) are discretized with 0.1 second, the thresh-

old value for mode probabilities is chosen as µT = 0.9. Now we begin to compare the

three estimators of NIMM, GPB1, and IMM to test their ability to detect faults. The

seven models are run for a time interval t = 20 seconds and for the following sequence:

{m1,m2,m4,m2,m5,m2,m1,m3,m6,m3,m7}. Results of simulation are shown in Figure

3.2.

In Figure 3.2, we can see that the GPB1 estimator performs as good as IMM estimator

while NIMM estimator fails to detect faults in the model set. Next we continue to test the
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Figure 3.2. Probabilities of estimators (a) NIMM, (b) GPB1, and (c) IMM.
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Figure 3.3. Probabilities of estimators (a) GPB1 and (b) IMM.

ability of GPB1 and IMM estimators by narrowing the distances between modes as close

as possible until one of methods cannot detect the failures. Now we assume to design new

two varying modes of {m∗
6 ,m∗

7 } corresponding to a new A∗V1
with ω∗1 = 0.30/ s and a new

A∗V2
with ω∗2 = −0.30/ s. With these new parameters, GPB1 fails to detect failures since

the distance between modes {m∗
6 ,m3,m∗

7 } is very close, while IMM still proves it is much

superior in Figure 3.3.

As a result, we select the IMM for our fault detection system. Now we move to the

main part of this paper to set up a controller reconfiguration for the fault detection and

control system.
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4. Controller reconfiguration

In this section, we develop a new CR which can determine online the optimal control

actions and reconfigure the controller accordingly. The problem of determining the op-

timal control laws for hybrid systems has been widely studied in recent years and many

methods have been developed in [24–28]. Optimal quadratic control of piecewise linear

and hybrid systems is found in [25, 26]. For complex constrained multivariable con-

trol problems, model predictive control (MPC) has become the accepted standard in the

process industries [36, 37]. MPC can be applied to multiple models using linear matrix

inequalities (LMIs) in [38]. The general MPC algorithms follow deterministic perspec-

tive approaches, hence, for stochastic hybrid systems described in (2.1), (2.2), (2.3), and

(2.4), there are few MPC ideas applied to control stochastic hybrid systems. Thus, we pro-

pose a new controller reconfiguration (CR) using generalized predictive control (GPC)

algorithm. We will show how an IMM-based GMC controller can be used as a good fault

detection and control system.

Generalized predictive control (GPC) is one of model predictive control (MPC) tech-

niques developed by Clarke et al. [29, 30]. GPC was intended to offer a new adaptive

control alternative. GPC uses the ideas with controlled autoregressive integrated mov-

ing average (CARIMA) plant in adaptive context and self-tuning by recursive estimation.

Kinnaert [31] developed GPC from CARIMA model into a more general form when the

models are described in space.

The optimal control problem for the general cost function for GPC controller in (2.1)

is

min
U

∆={u1,u2,...,ut+Nu−1}

{
J
(
U ,x(t)

)
= x′t+Ny|tPxt+Ny|t +

Ny−1∑

k=0

[
x′t+k|tQxt+k|t +u′t+k|tRut+k|t

]}
,

subject to xt+k+1|t = Axt+k|t +But+k +Tξt+k|t,

ut+k =−Kxt+k|t, k ≥Nu,

xt+k ∈ X, ut+k ∈ U,

(4.1)

where Q = Q′ > 0, R = R′ ≥ 0 are the weighting matrices for predicted state and input,

respectively. Linear feedback gain K and the Lyapunov matrix P > 0 are the solution of

Riccati equation. For simplicity, we assume that the predictive horizon is set equal to the

control horizon, that is, Nu =Ny =NP .

By substituting xt+Np|t = ANpx(t) +
∑NP−1

j=0 A jBut+Np−1− j + ANP−1Tξ(t), (4.1) can be

rewritten as

min
U

{
1

2
U ′HU + x′(t)FU + ξ′(t)YU

}
, subject to GU ≤W +Ex(t), (4.2)

where the column vector U
∆= [u′t , . . . ,u

′
t+Np−1]′ ∈ RU is the predictive optimization vec-

tor, H = H′ > 0, and H , F, Y , G, W , E are obtained from (4.1) as only the optimizer
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Figure 4.1. Two diagrams of IMM-based GPC controllers.

U is needed. Then, the optimization problem (4.2) is a quadratic program and depends

on the current state x(t) and noise ξ(t). The implementation of GPC requires the online

solution of a quadratic program at each time step.

For the controller reconfiguration (CR), we can use the output of IMM, the overall

state estimate x(k) ≈ x̂(k) =
∑N

i=1µix̂i(k) in (3.3), where N is the number of models in

the current model set, as the input for (a) a GPC controller or for (b) a bank of GPC

controllers shown in Figure 4.1.

In Figure 4.1(a), IMM provides the overall state estimate x̂(t) and indicates one “most

reliable” mode mi in the mode set. Thus, we can build up a GPC controller corresponding

to this “most reliable” mode. The stability of the system is assured if we can find a positive

Lyapunov matrix in (4.1).

In Figure 4.1(b), assuming the model probabilities µi(t) are constant during the pre-

dictive control horizon, we can derive a new GPC control law that the “true” model m is

the union of all model modes mi in the current model set Mk in (2.5) or m=
∑N

i=1µimi.

Thus, we can achieve a new control law by using a bank of GPC controllers for each model

in the model set and have the overall control input u(t)≈
∑N

i=1µiûi(t). The stability of the

system is guaranteed if we can find out a common Lyapunov matrix P for all models in

the model set.

Lemma 4.1. The optimal control problem for the general cost function for GPC controller

in (4.1) applied to control stochastic hybrid system in (2.1) can guarantee the global and

asymptotical stability if there exist positive definite matrices P and θi such that AiP +PA′i =
−θi, for all i.

Proof. For simplicity, we assume that the control input u(t +NP) = 0 after k ≥ NP pre-

dictive control horizon so that a common Lyapunov matrix for each model in (4.1) is the

solution of Riccati equations AiP + PA′i = −θi since the state update equation then be-

comes ẋ(t)=
∑N

i=1µiAix(t). For a positive Lyapunov function V(x)= x′(t)Px(t), we have
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always a negative definite time derivative V̇(x) < 0, and the system is stable:

V̇(x)=
( N∑

i=1

µiAix

)′
Px+ x′P

( N∑

i=1

µiAix

)
=

N∑

i=1

µix
′(AiP +PA′i

)
x =

N∑

i=1

µix
′(− θi

)
x < 0.

(4.3)

Otherwise, the closed-loop feedback in (4.1) ut+k = −Kxt+k|t for k ≥ NP , and we have

ẋ(t) = Ax(t) + Bu(t) or ẋ(t) = (
∑N

i=1µi(t)(A− BKi))x(t) = (
∑N

i=1µi(t)ALi)x(t) can also

satisfy Lemma 4.1 in (4.3). A similar result was found in [38] when we can apply a com-

mon Lyapunov matrix to find a robust stabilizing state feedback for uncertain hybrid

systems using LMIs.

For the controller reconfiguration (CR), we can apply hard switching or soft switching.

For hard switching, we use only one controller implemented at any time—similar scheme

in Figure 4.1(a). As indicated in [6], even if each controller globally stabilizes, there can

exist a switching sequence that destabilizes the closed-loop dynamics. Now we consider

some possible soft switching signals where the outputs of each controller are weighted by

a continuous, time-varying, probability vector νi(t) which can guarantee the closed-loop

stability, u(t)=
∑N

i=1 νiûi(t), in which
∑N

i=1 νi(t)= 1, νi(t)∈ [0,1] for all i, t.
It is difficult to find out a common Lyapunov matrix for all models in the model

set (4.3). Recently, a new type of parameter-dependent Lyapunov function has been in-

troduced in the form that PL =
∑N

i=1 νiPi is a parameter-dependent Lyapunov function

for any AL =
∑N

i=1 νiALi. That is true since we always have a negative derivative V̇(x) <

0 in (4.3) as V̇(x) =
∑N

i=1 νix′(AiPi +PiA
′
i )x =

∑N
i=1 νix′(−θ)x < 0. However, parameter-

dependent Lyapunov matrices do not insure the stability in switching sequence as indi-

cated in [6].

The existence of a direct common Lyapunov matrix AiP +PA′i =−θi can be searched

using software for solving LMIs. However we propose another method which can find a

common Lyapunov matrix with LMIs from their discrete equations. �

Lemma 4.2. The optimal control problem for the general cost function for GPC controller

in (4.1) applied to control stochastic hybrid system in (2.2) can guarantee the global and

asymptotical stability if there exist positive definite matrices P and scalar γ such that

⎡
⎢⎣

P PA′i γ
AiP P 0

γ 0 γI

⎤
⎥⎦ > 0, ∀i. (4.4)

Proof. Suppose there exists a Lyapunov function in (4.1) and the system will be stable

if the Lyapunov function is decreasing, that is, J(x(t +NP + 1)) < J(x(t +NP)), or x(t +

NP + 1)′Px(t +NP + 1)− x(t +NP)′Px(t +NP) < 0, or P−A′iPAi > 0, for all i. By adding

a scalar γ > 0, we have P−A′iPAi − γI > 0, or P− (A′iP)P−1(PAi)− (γ)Iγ−1(γ) > 0. And

using Schur complement, this equation is equivalent to the LMI in Lemma 4.2.
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Hence, the indirect common Lyapunov matrix in Lemma 4.2 is the solution to the

following LMI:

min
P>0,γ>0

γ, subject to

⎡
⎢⎣

P PA′i γ
AiP P 0

γ 0 γI

⎤
⎥⎦ > 0, ∀i. (4.5)

The above is CR design proposal for nonoutput tracking GPC controllers. However in

reality, the primary control objective is to force the plant outputs to track their set points.

What is about the CR design for tracking GPC controllers? In tracking GPC, the state

space of the stochastic model in (2.2) now can be changed into a new innovation form

[31]:

x̂(t+ 1 | t)= Ãx̂(t | t− 1) + B̃∆u(t) + T̃ξ(t),

z(t)= C̃x̂(t | t− 1) + ξ(t),
(4.6)

where Ã, B̃, C̃, and T̃ are fixed matrices from A, B, C, and T in (2.2), η = ξ, z(t) ∈ Rp,

∆u(t) = u(t)− u(t− 1) ∈ Rm, and x̂(t | t− 1) is an estimate of state x(t) ∈ Rn obtained

from a Kalman filter. For a moving horizon control, the prediction of x(t + j | t) in (4.6)

given the information {z(t),z(t− 1), . . . ,u(t− 1),u(t− 2), . . .} is

x̂(t+ j | t)=A j x̂(t | t− 1) +

j−1∑

i=0

A j−1−iB∆u(t+ i) +A j−1Tξ(t), (4.7)

and the prediction of the filtered output is

ẑ(t+ j | t)= CA j x̂(t | t− 1) +

j−1∑

i=0

CA j−1−iB∆u(t+ i) +CA j−1Tξ(t). (4.8)

If we form ũ(t) = [∆u′(t), . . . ,∆u′(t +NP − 1)] and z̃(t) = [ẑ′(t | t, . . . , ẑ′(t +NP − 1 | t)],

we can write the global prediction model for the filtered-out from 1 to NP prediction

horizon as

ẑ(t)=

⎡
⎢⎢⎢⎢⎢⎢⎣

CB ··· 0

CAB ··· 0
...

...
...

CANP−1B CANP−2B
... CB

⎤
⎥⎥⎥⎥⎥⎥⎦
ũ(t) +

⎡
⎢⎢⎢⎢⎢⎣

CA
CA2

...

CANP

⎤
⎥⎥⎥⎥⎥⎦
x̂(t | t− 1) +

⎡
⎢⎢⎢⎢⎢⎣

C
CA

...

CANP−1

⎤
⎥⎥⎥⎥⎥⎦
Tξ(t).

(4.9)

For simplicity, we can rewrite (4.9) as

ẑ(t)=Uũ(t) +Vx̂(t | t− 1) +WTξ(t). (4.10)
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Consider the new tracking cost function of GPC [29]:

min
ũ(t)=[∆u′(t),...,∆u′(t+NP−1)]

{
J
(
ũ(t),x(t)

)
=

NP∑

j=1

[∥∥z(t+ j)−w(t+ j)
∥∥+

∥∥∆u(t+ j− 1)
∥∥
Γ

]}
,

subject to xt+k ∈ X, zt+k ∈ Z, ut+k ∈ U, ∆ut+k ∈ ∆U

(4.11)

where NP is the prediction horizon, w(t + j) is the output reference, and Γ is the control

weighting matrix, the control law that minimizes this tracking cost function is

ũ(k)=−(U ′U +Γ)−1
(
Vx̂(t | t− 1) +WTξ(t)−w(t)

)
(4.12)

then the first input ∆u(t) in ũ(t) will be implemented into the system. �

Lemma 4.3. Let (xc,uc) be an equilibrium pair and the corresponding equilibrium variable

z(t)= zc at w(t)= wc assuming that the initial state x(0) is such that a feasible solution of

(4.11) exists at time t = 0. Then the GPC law (4.12) stabilizes the system in limt→∞ x(t)= xc,
limt→∞ z(t)=wc, and limt→∞∆u(t)= 0 while fulfilling constraints in (4.11).

Proof. This stability problem follows easily from standard Lyapunov theory. Let ũ(0) de-

note the optimal control sequence ũ(0)=[∆u′(0), . . . ,∆u′(NP − 1)], let V(t)
∆= J(ũ(0),x(t))

denote the corresponding value attained by the cost function, and let ũ(1) be the sequence

ũ(1)= [∆u′(1), . . . ,∆u′(NP − 2)]. Then, ũ(1) is feasible at time t + 1, along with the vec-

tors ∆u(k | t + 1) = ∆u(k + 1 | t), z(k | t + 1) = z(k + 1 | t), k = 0, . . . ,NP − 2, u(NP − 1 |
t+ 1)= uc, z(NP − 1 | t+ 1)= zc, because x(NP − 1 | t+ 1)= x(NP | t)= xc. Hence,

V(t+ 1)≤ J
(
ũ(1),x(t)

)
=V(t)−

∥∥z(0)−wc

∥∥−
∥∥∆u(0)

∥∥
Γ

(4.13)

and V(t) is reducing. Since V(t) is lower bounded by 0, there exists V∞ = limt→∞V(t),

which implies that V(t+ 1)−V(t)→ 0. Therefore, each term of the sum

∥∥z(t)−wc

∥∥+
∥∥∆u(t)

∥∥
Γ
≤V(t)−V(t+ 1) (4.14)

converges to zero as well, and the system is stable.

The tracking cost function of GPC in (4.11) and (4.12) does not require to find out

a Lyapunov matrix as in general cost function (4.1) and (4.2) so that the tracking GPC

controller can guarantee the system stability for systems which do not have solution for

the direct Lyapunov method, and can handle input and output constraints in the optimal

control problem.

For tracking GPC controllers, we also propose two CR schemes for hard switcher and

soft switcher as in Figure 4.1. For hard switcher, we run a tracking GPC controller corre-

sponding to the “most reliable” mode detected by IMM as in Figure 4.1(a). However for

a continuous varying variable system, a better control law is to mix all mode probabilities

into a “true” model. We then build a bank of tracking GPC controllers for each model in

the model set as in Figure 4.1(b). Assuming the mode probabilities are constant during

the control horizon, we can easily derive a new GPC control law in (4.10) by forming
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Figure 4.2. Normal GPC controller with sensor errors: (a) output and (b) input.

U = (
∑N

i=1µiUi), V = (
∑N

i=1µiVi), and W = (
∑N

i=1µiWi) matrices that correspond to the

“true” model m = (
∑N

i=1µimi), and find out the optimal control action in (4.12). Then

the first input ∆u(t) in ũ(t) will be implemented into the system. Next, we will run some

simulations to test the above proposed fault detection and control system. �

Example 4.4 (controller reconfiguration). The existence of a common Lyapunov matrix

in (4.3) can be found by using LMI of Lemma 4.2. For simplicity, we assume that the

control input u(t +NP) = 0 after k ≥ NP predictive control horizon so that the solution

to the LMI

min
P>0,γ>0

γ, subject to

⎡
⎢⎣

P PA′i γ
AiP P 0

γ 0 γI

⎤
⎥⎦ > 0, ∀i, (4.15)

can be applied directly to matrices Ai = {AN ,AV0 ,AV1 ,AV2}. We found that a common

Lyapunov matrix for all Ai is

P =

⎡
⎢⎢⎢⎣

6.43 1.69 −1.62 0.24

1.69 4.34 0.15 −0.30

−1.62 0.15 4.14 −0.10

0.24 −0.30 −0.10 3.25

⎤
⎥⎥⎥⎦ . (4.16)

For tracking GPC controller, firstly we run a normal GPC controller with the predictive

horizon Ny = Nu = NP = 4, the weighting matrix Γ= 0.1, and with a reference set point

w = 1. We assume that the current mode is mode S0 from time k = 1− 50, mode S1 with

sensor 1 failure −50% from time k = 51− 100, and mode S2 with sensor 1 failure +50%

from time k = 101− 150. Of course, the normal GPC controller provides wrong outputs

(Figure 4.2).
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Figure 4.3. IMM-based GPC controllers: (a) output, (b) input, and (c) probabilities (IMM).

Next we run GPC controller simulations using CR system with hard switcher and soft

switcher (Figure 4.3). Our new FDMP system still keeps the output at the desired set

point since the IMM estimator easily finds out accurate fault modes and activates the CR

system online. The soft switcher provides a smoother and smaller offset error in tracking

process due to the interaction of mode probabilities that are always mixed into the “true”

mode.

We then test the ability of the system to detect and control continuous varying variable

in model set M3 = {m3,m6,m7}. Similar results are shown in Figures 3.3 and 4.3 that the

IMM-based GPC controller can detect faults online and control well the varying variables

with even small mode distances.

Finally, when we continue to narrow the distance between modes as we run the sim-

ulation with modes {m∗
6 ,m3,m∗

7 } corresponding to A∗V1
with ω∗1 = 0.10/ s and A∗V2

with

ω∗2 =−0.10/ s, the IMM estimator fails to detect faults since the distance between modes

becomes too close as shown in Figure 3.3(a), GPB1.

Low magnitude of input signals can also lead to failure of IMM-based GPC controller.

If we reduce the reference set point to a very low value at w = 0.01, the system becomes

uncontrollable (Figure 4.4): when the magnitude of the input signals is very small, the

residuals of Kalman filters will be very small, and therefore, the likelihood functions for

the modes will approximately be equal. This will lead to unchanging (or very slow chang-

ing) mode probabilities which in turn make the IMM estimator incapable to detect fail-

ures.

5. Conclusions

Systems subject to dynamic failures can be modeled as a set of variable structures using

a variable set of models. The new structure can handle with faults varying continuously
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Figure 4.4. IMM-based GPC controller with low magnitude of input signals.

as random variables. In that case, faults can be modeled as discrete modes based on their

cumulative distribution function.

One of the best methods for a fault detection of stochastic hybrid systems is using IMM

algorithm. In our simulations, IMM system proves its higher ability to detect multiple

failures of a dynamic process compared with that of GPB1 since the GPB1 estimator runs

each elemental filter only once in each cycle while the input to each elemental filter in

IMM is a weighted sum of the most recent estimates from all elemental filters.

Our proposed IMM-based GPC controller can provide real-time optimal control per-

formance subject to input and output constrains and detection of failures. Simulations in

this study show that the system can maintain the output set points amid failures. One of

the main advantages of the GPC algorithm is that the controller can provide soft switch-

ing signals based on weighted probabilities of the outputs of different models. The track-

ing GPC controller does not require finding a common Lyapunov matrix as in the general

cost function so that the tracking GPC controller can guarantee the stability of systems

which are unstable for the direct Lyapunov method.

The main difficulty of this approach is the choice of modes on the model set as well

as the transition probability matrix that assigns probabilities jumping from one mode

to another since IMM algorithms are sensitive to the transition probability matrix and

distance between modes. Another limitation related to IMM-based GPC controller is the

magnitude of the noises and the input. When we change the output set points to small

values, the input signals might become very small and this leads to unchanging mode

probabilities, or IMM-based GPC controller cannot detect failures. Lastly, this approach

does not consider issues of uncertainty in the control system.
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