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1. Introduction

The complexity of large distributed systems, such as telecommunication or electrical net-
works, and the huge amount of information carried by them have caused an increase in
demand for network management systems. In particular, the area of network fault manage-
ment requires a lot of expertise and is becoming critical : breakdowns of telecommunication
networks cause huge financial losses. Most of the current proposals are built on an ad hoc
basis, and are usually more involved in structuring the management system than in designing
dedicated algorithms. There is a real pressing need for establishing a theoretical foundation
of network fault management.

This paper proposes a contribution to this foundation in focusing on the treatment of
causal dependencies between alarms and faults. The main idea is to take into account the
essentially distributed nature of the problem. This is done by the use of Petri nets and their
causality semantics, that are well known as a powerful model for concurrent systems. We
base our approach on an explicit description of fault propagations, using capacity-one Petri
nets. This allows to deal with multiple faults and to model causal dependencies as well as
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fault interleaving. Faults play the part of hidden variables; they are not observed directly
but manifest their presence by the emission of alarms through the network. Alarms are
collected by a network supervisor, the task of which is to “correlate” observations, i.e., to
recover coherent fault propagations that explain the observed alarms. This is referred to as
the diagnosis operation in the sequel.

The problem is embedded in a stochastic framework that accounts for various random
events in the network : reliability of devices, relative frequencies of spontaneous faults,
losses of alarms, etc. The randomization also provides a convenient way of introducing
robustness against modeling errors on fault propagations. The stochastic model must be
designed with care in order to preserve the true concurrence semantics of Petri nets. Tra-
ditional stochastic Petri nets fail on this point because they build Markov dynamics on the
marking graph of the Petri net, which typically blows up with the amount of concurrency
in the system. To avoid an exploding number of possible trajectories of the net, we show
that true Markov dynamics must be abandoned. We propose instead “partially stochas-
tic” Petri nets (PSPNs) that provide some kind of equivalence between concurrency and
statistical independence. These PSPNs are partially stochastic in the sense they are based
both on random and non-random variables, related by constraints. A strange but crucial
consequence is that they result in dynamics where time is only partially ordered. . . The nat-
ural representation of trajectories for PSPNs relies on the unfolding of the Petri net rather
than its marking graph. This construction has a double advantage : it erases obstacles to
distributed diagnosis algorithms, and reduces the number of possible trajectories, that are
now regarded as causality graphs of faults rather than sequences.

The paper is organized as follows. Section 2 specifies the structure of observations
(alarms) and the Petri net model of fault propagations, together with its causality semantics.
It analyzes relations between faults and alarms and defines the diagnosis problem. Section 3
is devoted to a review of usual stochastic Petri nets and to the motivation of PSPNs, that
are studied in details. Their trajectories are shown to rely on the unfolding of the Petri net
rather than its marking graph. Section 4 provides tools for constructing these trajectories
recursively, like a puzzle, relying on a notion of tile. Finally section 5 addresses the
diagnosis problem in a progressive way : four levels of difficulty are defined, and solutions
are provided, based on the puzzle paradigm.

2. Models for alarms and faults

The notions of fault and alarm can take very different meanings in the field of network
monitoring. In this paper, we adopt the following definition : afaultrepresents a malfunction
event in a system (say the network). Faults are not observed directly, but rather induce the
production of alarms, that are collected in some way by a supervisor. This section is devoted
to the construction of models for faults and alarms, and to the statement of the diagnosis
problem.

2.1. Nature of observations

Due to the size of a network, alarms do not reach the supervisor directly, but are collected
through a hierarchy of sensors : local sensors gather alarms stemming from a given region,
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transmit them to an intermediate supervisor in charge of a bigger region, and so on up to the
global supervisor. Protocols defining the nature of alarms incorporate various mechanisms
that allow to keep track of causal or temporal dependencies between them!. We will
not enter into the details of each protocol in this paper (an example concerning the SDH
protocol can be found in (Boubour et al., 1997) and (Aghasaryan et al., 1997a)). However,
a reasonable and rather general model states that an alarm bears 1/ information on the fault
that generated it, and 2/ information of the kind “has been caused by previous alarms [/ist
of alarms]”, or 2’/ information like “appeared necessarily after alarms [list of alarms]”.
Of course, we assume relations induced by 2 or 2’ don’t violate transitivity, so that an
observation can be modelled as a directed acyclic graph (DAG) on the finite set of alarms
{a1,a2,...,an}, as illustrated by figure 1.

Assumptions 2 or 2’ give different meanings to the observed DAG of alarms : it must be
regarded respectively as a causality graph (CG) or as a partial order. The difference is that
transitive arcs (such as a; — ag on figure 1) are superfluous in partial orders, while they
are meaningful in causality graphs. For simplicity, we assume in this paper the causality
semantics®. Turning back to figure 1, we shall thus say that alarm b is a consequence of alarm
a iff the link @ — b exists. Equivalently, a will be said to be a cause of b. More generally,
b will be said to be causally related to a if there exists an oriented path from a to b. Finally,
if no causal relation exists between a and b, they will be said to be concurrent (denoted by
a||b), which means that they could have appeared in any order or even simultaneously.

The “perfect” observation described above is altered by various phenomena, in particular
due to the improper behavior of the faulty network :

- Part of the information regarding the links may be unavailable, or simply lost. For
example, causal dependencies are derived locally by the sensors, which means that links
between alarms collected on different sensors cannot be observed. In other words, the
default causality relation between two alarms is “uncertain,” which is represented by a
dashed arrow on figure 1, unless it is set to a solid arrow (causality) or an empty link by
the sensor that collected these two alarms. We thus observe an “incomplete” causality
graph.

- Some alarms may happen to be lost (or masked). This can be caused by buffer overflows,
losses of connections, etc. As a consequence, the causal relations regarding such alarms
are also lost. Therefore, while causal dependence is a solid information, concurrency
has a weaker status since it can result of maskings.

We make two other assumptions on the structure of observations.

(H1) Causal observation. Alarms reach the supervisor in a sequence (a1, ...,ay) such
that we never have a; causally related to a; and j < i.

(H2) Causal dependence relations observed on the alarms coincide with those of the faults
that produced these alarms.

Hypothesis (H2) defines an important part of the information used for the diagnosis, and
is detailed in the next two sections. The sequence assumed by (H1) will be useful for
describing the recursive nature of the diagnosis algorithm. We shall prove however that the
result is independent of which sequence is chosen, provided it satisfies the observed CG
(included dashed arrows). The proof will rely on an obvious result that we recall right now :
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LEMMA 1 Let o be a causality graphon {a; : 1 <i < N}, and let ¢ be a permutation of
the indexes 1 ... N. The sequence (ag(1), .. .,as(nN)) is said to satisfy or to be compatible
with o iff the total order defined by this sequence extends the partial order defined by o.
The set of compatible sequences is denoted by Lin(o).

If (ag(1), - - ap(ny) € Lin(o), all other compatible sequences are obtained by permu-
tations of successive elements ag (), (k1) that are not related by an arrow.

Despite this insensitivity to the choice of the sequence of alarms, (H1) remains technically
important as will be discussed in section 5.3. By the ways, it already brings an interesting
simplification: if the nature of the link between aj; and a; has been altered for some
reason, one would have to test three hypothetic relations. (H1) eliminates the possibility
ay, <+ a; when k < [, whence the presence of dashed arrows instead of dashed lines in the
observations. This is the case for the link between a3 and a4 on figure 1. So (H1) reduces
the combinatorial explosion on the number of possible (incomplete) CGs when some links
are unobserved?.

jf N ﬂ " Y / "
Phd |
a; a; as de a,-——=a, ‘ as

N, S N NS

Ayg ar g

Figure 1. (left) A causality graph. On this example, a2 is a consequence of a1, a5 is causally related to as (and
thus to a1), az and a4 are concurrent. (right) Structure of observations: a damaged or “incomplete” causality
graph. The loss of ag cancels some causal links. Other relations can’t be observed (dashed arrows) : these arrows
can either be present or absent.

2.2. Model for fault propagations

We assume the existence of a model describing fault propagations in the network. It is
very convenient to express it in the framework of capacity-one Petri nets, a natural tool to
represent causality and concurrence relations.

2.2.1. Capacity-one Petri nets. Detailed definitions of Petri nets (PNs) can be found
in many books or papers (see (David and Alla, 1994) for example). Briefly, a net N' =
(P,T,L) is composed of finite sets representing places, transitions and oriented links
between them: L C (P x T') U (T x P). The preset of a transition ¢ € T', denoted by
¢ is the set of places that point towards ¢, while its postset ¢* is the set of those pointed
by t. Petri nets work through a token game : a state or marking is a function that assigns a
number of tokens to each place. This number is limited to 1 in capacity-one PNs, that we
consider here. A transition such that all places in its preset contain a token, and all places
in its postset are empty?, is said to be enabled. An enabled transition can fire, in which
case tokens are removed in all places of its preset, and one token is put in each place of its
postset : this determines a new marking (tokens in all other places don’t move). Notice that
enabling conditions concern both the preset and the postset : this preserves the firing from
violating the capacity-one property. Since tokens (in the preset) but also “holes” (in the
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postset) are required to enable ¢, tokens and holes will be considered as equivalent resources
for t. Observe that although a transition is enabled, it may not fire and its resources may be
consumed by another enabled transition instead. Such transitions are said to be in conflict.
Transitions can also fire simultaneously, provided they require different resources. We then
talk about concurrent transitions.

Hl ~ 4 Hl 0 4 Hl o 4 Hl o 4
0 3 A H 0 > A H 0 P A H 0 ) A H

H3 : HS H? : HS H? : HS HS : HS
Figure 2. Successive markings in a Petri net. Places are represented as circles, and transitions as flat rectangles,
while the arrows stand for the links. Tokens are represented as black patches in the places.

Figure 2 illustrates the behavior of a Petri net on a toy example. The initial marking
is represented on the left: transitions ¢1,?5 and {3 are enabled, but they can’t all fire
simultaneously. Nevertheless, t; and f3 don’t require the same resources. Firing them
gives the second marking. There, only the absorption ¢5 and the spontaneous transition ¢
are enabled. Assuming both fire, we get the third marking where only ¢5 and 3 are enabled.
Only one of them can fire since they are competing for a token. The last marking is obtained
by firing t5, which enables ¢y and ¢4, and so on.

Definition 1. The initial marking M, plus the sequence of fired transitions - here chosen
to be ({t1,t3}, {to, t5}, t2) - will be called a trajectory, or history, or path of the Petri net.
We shall denote trajectories by (Mg, $1,...,sn),or (Mg, s) for short, where each s,, is a
salvo, i.e., a (possibly empty) set of simultaneously fired transitions. /N will be called the
length of the trajectory.

We shall denote by M, the marking at time n, i.e., the state of the Petri net after applying
S1,--.,8n to My. Observe that the n-th salvo s,, produces M,,, and thus applies to M,,_;.

O——0 [0 O—

Simple seq fault Absorption

Exclusiveness Simultaneity Or And
Figure 3. Petri net representation of various dependence relations on faults.
2.2.2. Causality semantics. In this paper, a place represents a given fault. A fault

can either be present or absent, whence the restriction to capacity-one places : tokens mark
active fault states. Transitions will encode conditions for moving from a fault state to another



208 AGHASARYAN ET AL.

(figure 3). We consider PNs with their natural causality semantics on fired transitions : in a
sequence s of firings, every transition ¢; using a resource that was previously set by transition
t; appears as a direct consequence of ¢;. This defines a causality graph 0 = CG(s). On the
toy example above, this yields the CG of figure 4. Observe that, as a direct consequence of
the definition, every sequence s’ that would be compatible with this CG -i.e., s’ € Lin(o) -
would yield the same final marking, although intermediate ones would be different. A CG
derived from a possible sequence of firings is said to be executable. CGs of transitions will
always be executable in the sequel. Section 4 will define tools to handle these objects.

t
tg —= t2

t3

N

ts

Figure 4. Fired transitions of the toy Petri net of figure 2 arrange in a causality graph. Of course, repeated
occurrences of the same transition would be taken as distinct elements of the CG.

2.3. Nature of the problem

The link between alarms (observations) and faults (hidden variables) is established in the
following way : each time a transition fires, it emits an alarm towards the supervisor. This
alarm is chosen by each transition ¢ in its alphabet of alarms A;. The same alarm can be
present in several alphabets however. We also add the possibility for a transition to fire
silently, which is denoted by the emission of the invisible alarm \. This mechanism allows
to account for losses of alarms. Notice that some transitions may always be silent if their
alphabet is reduced to {A}.

The detailed mechanism that produces links between alarms is not considered by this
model, although it is a crucial part of the observation. This would require the specialization
to a particular protocol, and to study the inner structure of alarms. We rely on (H2) instead,
that allows to keep within a more general framework by stating

a; — aj exists < a; and a; were fired by some ¢; and ¢; 1)
such that ¢; — t; exists

In other words, the hidden propagation of faults must exactly match causality relations
observed on alarms. However, when a dashed arrow exists between a; and a;, both t; — ;
and ¢; t; (no arrow) are possible®. But of course t; — t; is forbidden. (Notice that, strictly
speaking, equivalence (1) is valid provided transitions that fire silently are erased from the
causality graph of transitions, as will be explained section 5.5.1.)

Now a first diagnosis problem can be stated as follows: given a sequence of alarms,
equipped with an “incomplete” set of causal dependence relations (figure 1), find all se-
quences of transitions that are compatible with this observation. The following section will
embed the problem in a stochastic framework and ask for the most likely sequence.



FAULT DETECTION AND DIAGNOSIS IN DISTRIBUTED SYSTEMS 209

3. Randomization of the model

Adding probabilities to the algebraic setting defined above has two main advantages. First
it allows to incorporate some statistical knowledge on the loss of alarms (maskings) or
on the production of faults: some of them may be more likely than others, as stated by
reliability tests on devices, or by previous experience on monitoring the network. Secondly,
it incorporates some smoothness in the fault net, and allows to account for incomplete
knowledge on the consequences of faults, or on the alarms they generate.

Randomness can be introduced at several levels. In the fault net, the spontaneous produc-
tion or absorption of faults can be assigned different likelihoods. Some faults may also have
exclusive possible causes or exclusive consequences : such situations are called backward
and forward conflicts respectively (see the or and exclusiveness on figure 3). Here again,
all possibilities may not be equally likely. For what concerns observations, a given change
in the fault net, i.e., the firing of a transition, can generate non equally likely signatures
(alarms), including the invisible alarm A. Thus the alarm sets A; should be randomized, at
least to account for a random masking of alarms. Losses of links will not be randomized
however, since we didn’t model their production.

While it is quite easy to randomize the emission/loss of alarms, through conditional
probabilities P(alt), t € T,a € A, the construction of a relevant stochastic fault net
requires some attention. We briefly review below existing formalisms in order to highlight
suitable properties that we wish to keep, as well as bad side effects that need to be cancelled.

3.1. Existing stochastic Petri nets

3.1.1. Traditional stochastic Petri nets (SPNs). The usual way transitions are made
stochastic is by considering timed Petri nets where waiting times are random (David and
Alla, 1994; Ajmone Marsan et al., 1995). Each enabled transition ¢ in marking M,, selects
at random a waiting time, according (usually) to an exponential distribution with parameter
a; = 1/(average waiting time). The transition having the shortest waiting time wins
the race and fires, which determines the new marking M,, 1. It is quite straightforward
to check that if ¢1,...,¢; are enabled by M, , with respective parameters aj,. .., ag,
t; fires with probability «;/ Zle «;. This protocol makes the sequence (M,,)n>0 of
successive markings a (discrete time) Markov chain, which is a convenient property in
view of a maximum likelihood diagnosis: it brings us into the Hidden Markov Model
framework (Rabiner, 1989).

3.1.2. Discussion. Notice,however,a crucial drawback of Markov dynamics : the prob-
ability of firing ¢; depends on the whole current marking M, , that determines which tran-
sitions take part to the race. This feature is rather bothering for the kind of application we
have in mind. First of all, because of state explosion we cannot afford to work on the state
space of the model. It can be very large, especially because of concurrency (as expected
in a telecommunication network for example). Second, it asserts that transitions having
no common resource, and possibly living far-away one of the other, may however have a
statistical interaction. Consider the extreme case of two disconnected PNs (figure 5-a).
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The standard SPN model claims that formally gathering these two nets in a single one
automatically generates interaction, while one would rather expect some kind of statistical
independence. Finally, still on the example of figure 5-a, the probability of firing ¢; and
then to is a1 /(a1 + aa + a3 + ) - o / (g + og) . This differs from the probability of firing
the alternate sequence to then ¢1. In other words, the order in which concurrent transitions
fire is probabilized. In a fault net, knowing which system failed first is useless if they are
not in direct interaction; the relevant information is whether they failed, and what was the
most likely cause if they did. One cannot hope for a distributed diagnosis algorithm if the
complete order in which failures occur has to be determined, and thus Markov dynamics
on the marking graph have to be rejected.

T
eNoReNeNe

Figure 5. Extended conflict sets defined for probabilistic Petri nets are highlighted by dotted lines. This notion is
static : it doesn’t take the current marking into account.

3.1.3. Other models. Changing the protocol (pre-selection, priorities, other probability
distributions, etc.) do little against the above drawbacks since the probability of firing ¢
may not only depend on the current global marking M,,, but also on extra variables (and
possibly previous markings). The difficulty comes from the fact that the selection policy
solves conflicts between transitions that are not in direct conflict since they do not share
any resource.

Generalized stochastic Petri nets (GSPNs) (Ajmone Marsan et al., 1995) seem to provide
an interesting framework. If we drop their priority rules (useless for our purpose, as
mentioned above) and assume all transitions are immediate, we get a sub-family of GSPNS,
sometimes referred to as probabilistic Petri nets (PPNs), that explicitly rely on the notion
of conflict set. An extended conflict set (ECS) is a set of transitions where conflicts may
appear, for some marking. ECSs are defined as equivalence classes for the relation “can be
in conflict with,” when the latter is completed by reflexivity and transitivity (see figure 5).
Notice that ECSs are static: they are defined a priori and don’t depend on the current
marking. PPNs work according to the following protocol : they first choose an ECS among
those containing at least one enabled transition, then they select one transition in this ECS
by comparing relative weights, exactly as in standard SPNs. As a result, only one transition
is fired at a time, which brings us back to Markov dynamics and their bad consequences.
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3.14. Key features. An interesting feature appears however in some particular PPNs®
provided we “drop the order”, as suggested” in (Ajmone Marsan et al., 1987). Consider
the examples of figure 5, and compute the probability of firing ¢; and ¢5, regardless of the
order (i.e., sum the probabilities of the two sequences). One easily gets :

(€51 (&%)
ap+ a3 g+ oy

IP(t; and t5 have fired) = )
which amounts to independent selections in effective conflict sets. By “effective conflict
sets”, we mean conflict sets of transitions that are actually competing for a token or a hole
in the current marking : notice that (2) holds for both cases of figure 5.

We exactly aim at such properties in the sequel : concurrence and statistical independence
should coincide. Indeed, concurrence is the key to distributed algorithms, since it allows to
perform local computations and merge them for a global purpose. Its statistical counterpartis
independence, therefore one should aim at an exact matching of these notions. Specifically,
this induces the following requirements :

1. The probability of firing a given transition should depend only on its own resources,
rather than on the complete current marking,

2. the probability of a transition should not depend on what concurrent transitions do, and
the order in which concurrent transitions fire should not be randomized,

3. firings should not necessarily be reduced to one transition at a time,
4. no restriction should be put on the PN structure.

At least points 3 and 4 are not satisfied by PPNs, even if we “drop the order”. The next
section proposes a new randomization of Petri nets that achieves all the above objectives.

3.2. Ideas for new stochastic Petri nets

The discussion above suggests to use a random routing policy, that is to let resources
choose which transition they will fire. On figure 5-a for example, the token in « could
select ¢; or t3 with probabilities (al‘i_las, alofaa ). The token in 8 could proceed in the
same way, independently, which would yield (2). This formalism is quite appealing, but
fails with several respects. First, on the example, it imposes the simultaneous firing of two
transitions, while we could wish to fire only one, and wait on the other side. Second, it
leads to lockings, as depicted on figure 5-b: assuming « and (3 have selected ¢5, nothing
happens since a token is missing in . Thus, the null event has a non null probability®!

The problem actually comes from the fact that we impose resources to make a choice,
which amounts in case a to impose the number of transitions that fire. In order to relax this
constraint, we allow an extra possibility to resources : that of making no choice! But we
must not randomize this “wait” since this would immediately assign different probabilities
to sequences of concurrent transitions. We thus need an original “hybrid” framework
where random and non-random variables cooperate, and need also to extend the notion of
likelihood to partially random events.
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3.3. Partially stochastic Petri nets (PSPNs)

A general framework has been designed to handle systems involving both random and non-
random variables, related by constraints (Benveniste et al., 1995). The interested reader
will find there the definition of a generalized likelihood, the counterpart of the HMM (Hid-
den Markov Model) paradigm, and algorithms to solve MAP (Maximum a Posteriori) prob-
lems. PSPNs have been originally described with this formalism (Aghasaryan et al., 1997a;
Boubour et al., 1997; Aghasaryan et al., 1997b). For lack of space, we prefer to present only
its specialization to Petri nets and refer the reader to the above mentioned references for a
broader view on the subject.

3.3.1. Attributes of a place. As usual SPNs, a PSPN is obtained as a Petri net that
handles not only tokens but also extra variables. Namely, three variables are associated to
each placep € P:

e Let M, be the marking at time n, M, (p) taking values 0 or 1 represents the absence
or presence of a token in place p.

e p,(p) is a random variable that encodes the routing choice of the resource lying in
place p. p,(p) points either towards an input or an output transition, regardless of the
value of M,,(p), i.e., it may choose an output transition even if p is an empty place, or
symmetrically.

e L,(p) taking values 1 or O encodes whether the place wishes to change state or not
between times n and n + 1. This variable is not random, but just unknown.

3.3.2. Evolutionrule. A PSPN can be considered as a dynamic system with M,, as state
vector and driven by the partially random input (p,,, 14, ). Specifically, at each instant n, all
places select at random a routing. These selections are independent on both indexes n and
p,i.e.,in time and in space. Places also define their wishes 1i,,. The marking at time n + 1
is determined by the following rule

Vt €T, tfiresattimen <

tisenabled by M,, A [Vp € *tULt*, un(p) =1, pn(p) =t )

In other words, an enabled transition fires iff it is elected by all its resources, and the latter
wish to change state.

3.3.3. Trajectories.

LEMMA 2 A standard Petri net and its partially stochastic version describe the same set
of trajectories.

Proof: Rule (3) is coherent with a legal Petri net behavior: only enabled transitions can
fire, and two transitions fire simultaneously only if they are concurrent (would they have a
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common resource, they couldn’t both be chosen by this resource). So every trajectory of a
PSPN is legal for its underlying Petri net.

Conversely, every trajectory of a PN can be produced by its PSPN version. To prove it,
one has to find a setting of p and p variables that satisfy (3) for this trajectory. Several
solutions exist :

1. Ifaplace pisinvolved in the firing of ¢ at time n, (3) imposes p,,(p) = 1 and p,,(p) = t.
2. Otherwise p is involved in no firing at time n. Then,

(A) either p,,(p) = 0 and the routing choice p,, (p) can take any value,

(B) or p,(p) = 1 and p,,(p) points to a non fired transition; this corresponds to a
locking, since other resources of this transition didn’t agree with place p.

Definition 2. Let (Mo, s) be a length IV Petri net trajectory. We call a realization of
this trajectory any triple (Mo, p, 1), where p and p are sequences (p,,), (4n),n = 1..N of
routing and move variables that generate (M, s) in the PSPN framework. We denote it by
(Mo, p, p) ~ (Mo, 5).

3.34. Unfolding of time. In order to represent length N trajectories of the PSPN and
compute their likelihood, it is very convenient to “unfold time”, as illustrated by figure 6.
Specifically, this means that we duplicate each place NV + 1 times to encode its consecutive

Q 1 2 time

Seow

Figure 6. Unfolding of time to represent trajectories of a simple PSPN.

states in My, . .., M. Transitions are also duplicated and establish links between places at
time n and places at time n+ 1 : each transition reads variables in places of its pre- and post-
sets on the left side, and fires or not according to rule (3), which determines the presence
or absence of tokens on the right side. A trajectory of the Petri net can be represented on
this unfolded system by keeping track of fired transitions only, as illustrated by figure 7.
In such a representation, PSPN realizations can be considered from a different stand-
point (Benveniste et al., 1995). We have a field of variables indexed by the pair (p,n) €
P x IN. Some of them, the p’s, are random and independent. And others are non random :
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Figure 7. A trajectory, characterized by fired transitions only. Resources not participating to a firing remain
unchanged (dotted lines).

the 1’s and the markings M’s. A length N trajectory amounts to placing N fired transitions
on this field (as on figure 7), which imposes constraints on variables, according to rule (3).
If no constraint is violated, we have a valid PN trajectory, and the M ’s are uniquely deter-
mined (assuming places not involved in a firing keep their marking, which is guaranteed by
an “extra” constraint represented by dotted lines). However, the (p, 1) part of the field can
still take several values, whence the existence of several realizations of the same trajectory.

34. Likelihood of a path

Introducing the p variables, we have only added some flexibility in the random routing
framework : simultaneous firings as on figure 5-a remain possible but are not obligatory.
However, locking situations have not been erased and are actually more numerous since
firing conditions are more restrictive. We show below that they are always less likely than
a no locking situation with the same effect.

34.1. Definition. One can easily compute the likelihood of a realization (M, p, 1) :
the random variables are the p’s, more precisely p,,(p),p € P,0 <n < N — 1. All these
routing variables are independent whence :

N—-1
LMo, p,i) = [T T Plon(p)]

n=0 peP

We are interested in the sequel by the most likely realization (M, p, 1) given a CG of alarms.
However, realizations are not directly observable : only the trajectories they generate can
be distinguished by observations. We thus project the notion of likelihood” on trajectories
by

'C(M(b 8) =

= max
(Mo, p,p)~(Mo,s)

‘C(M()vpv M) (4)

34.2. Properties. Let(My,p,u)bearealizationof (My, s),such thatplace pis involved
in a locking at time n, i.e., participates to no firing although z,,(p) = 1. Then (Mo, p, ")
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obtained by switching i, (p) to O is another realization of (My, s), and has the same
likelihood. In other words, one can restrict the max in (4) to realizations where p variables
vanish for all “static” places. Since . = 1 for other places - that participate to a firing -, p
is now uniquely determined and the max reduces to p variables. In summary, for a given
trajectory, a realization leading to lockings is always as likely as another realization without
lockings.

For this reduced set of realizations, if x,(p) = 1, place p participates to the firing of a
transition, say ¢, between times n and n + 1, so p,(p) = t. Conversely, if ., (p) = 0, the
place is steady whatever the value of p,,(p). Hence,

L(Mo, 5) H I Pe.) [ P (5)

n=0 p: pnp(p)=1 Pt pn(p)=0

where P*(p) & mtaXP [on(p) = 1]

Observe that the quantity /P*(p) doesn’t depend on n: the selection probability of places
is supposed to be constant in time.

The exact value of a trajectory likelihood is not important since we shall only consider
maximum likelihood problems in the sequel. Therefore, we can re-normalize (5) by the
constant [[ [ . p P* (p)]", which yields a notion of generalized likelihood (also denoted by
L)

N—
L(Mo, ) H H P[pn (p))/P*(p) 6)
=0 pspin(9)

(6) reveals that only places involved in firings contribute to the (generalized) likelihood of
a trajectory. Since places that wish to move are exactly places that participate to a firing,
ie,{p :un(p) =1} ={p : 3t € s,y1,p €* t Ut*}, by gathering places that trigger the
same transition one gets

-1

L(Mo,s1,-.s8) =[] TI | II Plontw) =tl/P*(0) (7)
n=0

tE€sn+1 peE*tUL®

L(t)

The bracketed term £(¢) depends only on transition ¢, but not on the time index n; we shall
call it a “transition likelihood.” Observe that £(¢) depends only on choices made by the
resources of ¢, and can be computed locally. Turning back to figure 7, expression (7) means
that the likelihood of a trajectory is obtained as the product of transition likelihoods, taken
over all fired transitions. All properties of PSPNs derive from these remarks, as we show
below.
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34.3. Interpretation.

LEMMA 3 All trajectories that are compatible with a given causality graph have the same
likelihood.

This is a direct consequence of the product form (7). Therefore one can talk of the
likelihood of a CG, which leads to several practical interpretations :

e The order in which two concurrent transitions fire is not randomized.

e  Waiting has no influence on the likelihood. In particular, empty salvos are erased by the
likelihood computation. Together with the previous point, this induces that all firing
sequences represented on figure 8 have the same likelihood.

e Since only causality graphs of firings are distinguished by the PSPN framework, time
behaves as if it was partially ordered, as opposed to standard SPNs that assign different
likelihoods to different sequences.

e Again, in contrast with standard SPNs, the “probability” that ¢ fires from M,, is not any
more a function of the whole marking, but a fixed quantity that only depends on the
resources of .

time
+—t+—t+—t—+=

t I@ID@DI@DDDDI
CR | N | il IN RIRIRN

Figure 8. Firing sequences of two concurrent transitions. Black rectangle = firing ; white rectangle = waiting. All
sequences have the same likelihood.

At this point, we have proved that only fired transitions should be kept both to describe
trajectories and to compute their likelihood. Lemma 3 also reveals that the PSPN framework
cannot distinguish sequences of transitions obeying the same causality graph. Therefore,
the right notion of trajectory is rather a CG than a sequence.

4. Trajectories as causality graphs

This section provides a framework for handling PSPN trajectories. We first define the
building element: files, associated to transitions. Then we show how to connect tiles in
a causality graph to form a PSPN trajectory, that we shall call a puzzle. The formalism
defined here is used in the next section to implement the diagnosis algorithms.

4.1. Tiles

4.1.1. Sub-markings. Let M be the set of markings, and ) C P a set of places. We
define the equivalence relation ~¢g on M by
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VM, M' € M, M ~q M < VpeQ,M(p)=M/(p)

Equivalence classes of ~¢ are composed of markings that coincide on the places of Q).
They will be denoted by m and represented by their values on @ :

m(p):{M(p)7peQ7 VMGm

€ otherwise
The symbol ¢ for places out of @) stands for “free”, since markings in m can either have
0 or 1 token in these places. For this reason, m will be called a sub-marking. The natural
inclusion relation on sub-markings takes the following meaning here : let m; and my be
two equivalence classes for ~¢, and ~¢,, then

my Cmy & Q1D Q2, and Vp € Q2, mi(p) = ma(p)

which means that m; specifies more places that mo. We shall also make use of a symmetric
difference operator A on sub-markings, that specifies places where sub-markings impose
different values :

miAmg = {p € Q1N Q2 : mi(p) #ma(p)}

Sub-markings m; and ms such that m;Amy = () will be said to be compatible, which
means that my Nmo # 0.

EXAMPLE: With P = {p1,...,ps} let my = [¢,1,0,1,¢&] and my = [1,1,1,0,¢], as-
suming a vector notation. Then mqAms = {ps,ps}. O

4.1.2. Elementary tiles. Firing transition ¢ only requires a partial knowledge of the
current marking, and the effect of this firing is also limited. We thus define sub-markings
m; and m;" as the minimal “past” and “future” of transition ¢ :

lifpe *t (full preset)
m, (p) =4 0 if p €t*\*t (empty postset) 8)
€ otherwise

0 if p€ *t\t* (empty preset)
m;,i_ (p)=( lif pet* (full postset) 9)
€ otherwise

Definition 3. For any t € T', let m; and mf be defined by (8) and (9), the triple
(m; ,t,m]") is the elementary tile associated to t. It satisfies
M em; < MJt) and M emf < [t)M'

where M [t) means that ¢ is enabled by M, and [t) M’ that M’ is a possible consequence of
t.

In the sequel, a tile will be equivalently described by its applicability condition m, and its
action m; Amj,i.e., the set of places modified by ¢. Figure 9 lists the tiles corresponding
to the Petri net of figure 6.
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Figure 9. Tiles of the Petri net used on figures 6 and 7. Places marked by € are not represented for simplicity (they
are on the next figure).

b©

4.2. Puzzle

Our objective is now to view histories of the Petri net as causality graphs of transitions
rather than sequences. This section provides a tool for constructing CGs by connection of
tiles.

4.2.1. Connection of tiles. We consider a sequence of transitions s = (1, ...,t,) and
wish to extend the notion of tile to s. This object, denoted by (my ,¢1ts...t,, mT) or
(my,s,m7) for short, is obtained recursively by connecting the tiles t1, ... ,t,, in this

order. Thus (m; , s, mI) will be called a puzzle.

In the tile ¢, m; and m;" are equivalence classes of ~¢, where Q; = *t U t* is the set
of places possibly altered by ¢. By extension, we also define ), = U}, Qy,, the set of
places involved in the sequence s. Som; and m are equivalence classes of ~¢)_, as stated
below :

Definition 4. (recursive definition) Let s be a sequence of transitions, the puzzle
(m7,s,m7) is the connection of its tiles. The tile (m; ,t,m;") is connectable to the
puzzle (m,s,m}) iff m; is compatible with m}. The connection yields the puzzle
(my;, st,m};) defined by

my (p) if p € Qs
mg(p) = my (p) if p€Qup ¢ Qs (10)
& otherwise

m; (p) if p € Qs
md(p) =< mi(p) if pe Qup & Qs (11)
& otherwise

Obviously, ¢ is connectable? to s if there exist markings that allow to fire first s and then .
Such markings all belong to the same equivalence class, as proved by the following lemma.

LEMMA 4 Let s be a sequence of transitions, VM, M’ € M we have
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Figure 10. Connection of an extra tile to a puzzle. The name of the transition that produced each resource (the
“father” transition) is stored to recover the causality graph associated to the sequence. On the example, ¢,, becomes
a direct consequence of ¢3.

Proof: By recursion. 1/ The result is true for a single tile. 2/ Assume the result is true
for sequence s. Let M[s)M'[t)M". Then M € m_ and M’ € m, . Places outside Qs
are not modified by s since M [s)M' = MAM' C Qs,so M'(p) = M(p) for any place
p € Qi,p € Qs. This proves M[st) = M € m_,. The sufficient condition, and the
symmetric statement for m, follow in the same way. [ ]

Remark (i). The compatibility condition and (10), (11) hold for the connection of a tile
to a sub-marking m instead of a puzzle : one just has to take . = m. This allows to use
the notation m/[t)m’ for sub-markings (with m’ = mJ,).

Remark (ii). One easily checks, by recursion, that the compatibility condition and the
connection formulae given in definition 4 extend to the connection of a sequence s’ to s.

4.2.2. Causality graphs. The causality semantics of Petri nets appears clearly in the
connection procedure :

e ¢y and ty are concurrent transitions iff Q;, N Qy, = 0, which means they use different
resources. This has several consequences. First ¢, is connectable to 7, and conversely.
Secondly, my,;, = m,,,, and mttt , = mttt , - whatever the order in which they fire,
one gets the same result. Notice however that this commutativity property alone is not
sufficient to prove concurrency since it doesn’t imply Q¢, N Qy, = 0.

o If Qi NQy, # 0 and t is compatible with ¢, t5 becomes a direct consequence of t;
in the sequence t;t, since it consumes resources set by ¢; (see section 2.2.2), whence
the arrow t; — to.

To compute the causality graph associated to a given sequence s = (1, . .., t, ), one must
keep track of which transition produced each resource mJ (p), for p € Q5. This can be
done by the “father” function, illustrated on figure 10: fs(p) € {t1,...,¢,} forp € Qs,
and fs(p) = 0 otherwise. When t,,,1 is connected to s, it appears as a direct consequence
of each transition fs(p) for p € @y, ,. t,4+1 changes tokens in Q, ., ,, so the “father”
function must be updated according to :
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_Jtapr ifpeQy,.,
fStn+1(p) = { fs(p) otherwise (4

Remark (iii). Once again, the update formula (12) obviously holds for the connection of
a sequence s’ to s.

LEMMA 5 Lets = (t1,...,t,) be a sequence of transitions and o its associated causality
graphon {t1,...,t,}. Let 8’ be another sequence in Lin(c). Thenmy =m_,m: =mJ,
and fs = fy.

Proof: By making use of lemma 1, we only have to show thatm , m} and f; are preserved
by permutation of consecutive concurrent transitions, say ¢; and ¢;,. Using remarks (ii)
and (iii) above, we know that the puzzle s and its father function f; can be obtained by

the connection of three puzzles corresponding subsequences (t1, . ..,tx—1), (tg, tx+1) and
(tg+2y---,tn). Butm™,;my and f are identical for both puzzles (tx, tx+1) and (tg41, tx),
whence the result. |

Lemma 5 extends the use of m™, m™ and f to causality graphs o, and allow to view them
as puzzles. So it becomes legal to check whether two CGs o and ¢’ are compatible. Using
fo, it is very easy to connect directly a transition ¢ to the CG o and get the resulting CG
o’ = ot. This capability will be central in the next section. The connection of two general
CGs o and ¢’ raises a difficulty however, since we need to define the causality graph oo”’.
This can be done in the following way: Let s € Lin(o) and s’ € Lin(o’), the CG o”
associated to the sequence s s’ doesn’t depend on the choices of s and s’. So we define
o” = oc’. The direct construction of ¢” from o and ¢’ would require some extra material
that we don’t develop here.

THEOREM 1 Gathering all results above, a PSPN trajectory can now be defined as a pair
composed of an initial marking My and a causality graph of transitions o, compatible with
My, i.e., such that MoAm, = (. The likelihood of this trajectory L(c) is the product
11 L(¢) over tiles used to build o.

5. Diagnosis algorithm : the Viterbi puzzle
5.1. Four stages

The diagnosis problem consists in providing the most likely Petri net trajectory given an
observed set of alarms. In order to stress the difference between SPNs based on Markov
dynamics and PSPNs, we assume that the initial marking M is unknown. In particular,
no probability law is given on M, which preserves the likelihood expression of a PSPN
trajectory. This trajectory must be understood as a causality graph o of transitions, enabled
by some initial marking. However, the causal observation assumption (H1) provides alarms
as a sequence (ai,...,an), so we shall actually construct trajectories as sequences, and
then view them as causality graphs. To simplify the presentation of the diagnosis algorithm,
we define four subproblems :
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1. Causal dependence relations on alarms are not observed. This is equivalent to assuming
thateach alarm a,, is related to every ay, k < n,by adashed arrow : a causal dependence
may exist or not. So we don’t have to check whether a candidate sequence of transitions
does match causality relations on alarms. This first stage also assumes that no alarm is
lost, i.e., all fired transitions are related to an observed alarm.

2. Causal dependence relations on alarms are observed, which restricts the set of possible
trajectories. Now the CG associated to a candidate sequence of transitions must match
the observed CG of alarms (up to dashed arrows). But alarms can’t be lost : there is no
silent transition.

3. Weturnback to the first framework, where causality relations on alarms are not observed,
but now allow alarm losses, i.e., assume that some transitions may fire silently.

4. General case, with causal relations on alarms and possible silent transitions.

5.2. Problem 1

5.2.1. The basic Viterbi puzzle. This problem is solved by a standard dynamic program-
ming procedure. The recursion index n is the number of alarms that have been taken into
account in the sequence (aq, ..., ay), and the right notion of system state is a sub-marking
m,, of the Petri net. Let M, denote the set of sub-markings at time n that can be reached
through the observation of (a1, ...,a,):

mn, E M,, & 3(151,...,7571):mfl“,75 =My, ar € A, 1<k<n

n

where A;, represents the set of alarms that can be emitted by transition ;. In terms of
global markings, m;,,tn = m,,, means that for every M,, € m,,, there exists an initial
marking M such that My[ty - - - t,,) M,,.

The objective is to compute the best sequence (1, ...,%,) leading to every reachable
M., in the sense that it maximizes the joint likelihood of (¢1,a1,...,t,,a,). This best
likelihood is defined as

n
L¥(my) = max T cttn)Paxite)
S=(t1,.ytn): mT=m, hel

where we assume P(ag|t;) = 0 whenever ay, & Ay, . The solution to problem 1 is thus the
best sequence leading to the best final sub-marking in M . We obviously have

L (Mpg1) = max L (mp)L(E)P(an41]t) (13)
mn € Mn, teT :
mn[t>mn+1

The transition reaching the max is stored as ¢, | | (172,,+1), and the best previous sub-marking
as m) (my+1). The best final sub-marking

my = arg . max L*(my)
N n

yields the most likely sequence (¢7,...,t% ) thanks to a backtrack procedure :

t:,-‘,—l = t:1+1(m:1+1) m:z = m;kz(m;kz—i-l)
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5.2.2. Comments.

e The algorithm above builds trajectories by connecting tiles that are compatible with the
observed alarms. We can extend the definition of a tile to a pair transition + alarm:
(my ,t,a,m;),t € T,a € Ay, with likelihood L(t,a) = L(t)PP(a|t). At time n, the
game becomes the connection of an a,,-tile to sub-markings in M, _1, and the selection
of the best last connection among those that produce the same m,, .

e The dynamic programming procedure may yield several optimal sequences of transi-
tions, because a max can have several arguments. In this case, ¢}, , | (m,+1) corresponds
to a set of optimal predecessors, and each of them starts a new optimal trajectory in the

backtrack procedure.

e The PSPN framework only distinguishes causality graphs, so optimal sequences have
to be expressed under this form. One can use the procedure described section 4.2.2 for
this purpose, with a father function pointing to a tile (¢, a) rather than a tile ¢.

e One could be interested in sub-products of these optimal causality graphs. For example,
only trajectories in terms of transitions may be of interest. The latter can be obtained by
erasing alarms in the previous CGs, or by direct construction. Several optimal sequences
can thus yield the same CG of transitions. Consider for example the observation
a --» (3, and assume transitions ¢ and ¢’ are concurrent and can both produce « or 3,
with equal likelihoods. Then trajectories ((¢,«), (¢, 3)) and ((¥, @), (¢, 3)) are both
possible and equally likely. But they correspond to the same CG ¢||¢’ of transitions.
Conversely, one could be interested in the resulting causality graph of alarms, since
these relations are not observed. Once again, the example gives a unique solution «|| 5.

5.3. Problem 2

We now add an extra constraint on possible solutions: they have to satisfy an observed
causality graph on alarms. It is quite easy to check a posteriori whether a given sequence
(t1,a1,...,tn,a,) of tiles (¢, a) is valid or not: one only has to check if the resulting CG
on alarms matches the observed one. But this can’t be done on the solutions to problem 1,
since none of them may be compatible. So we have to construct compatible sequences only.

The trick is to mix two recursions : (13), the dynamic programming procedure, and (12),
that provides the CG on alarms. The right notion of system state is now a pair (m.,, fy,)
where f,, is a father function that stores which alarm among {ay, ..., a,} was consumed
to produce each resource in m,,. Since m,, is a sub-marking, we have f,,(p) = () for places
p such that m,,(p) = €. The connection of a tile (¢, an11) to (M, fr) is legal iff

1. tis compatible with m,,, and

2. the set of alarms {f,,(p),p € Q:} that produced the resources of ¢ coincide with the
observed causes of @, 1.

The connection yields new pairs (my+1, fnt1), and the best last tile and best predecessor
(my, fn) are kept among connections that reach the same state. The rest of the algorithm
remains unchanged.
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Figure 11. A toy Petri net. Greek letters represent possible alarms for a transition.
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ExaMPLE: (Probabilities are not made explicit for simplicity.) We consider the network of
figure 11, and assume that the causality graph of alarms a --» 3 — -y has been observed.
The three steps of the algorithm are illustrated by figure 12, where the complete trajectories
are depicted, for clarity, although the algorithm only handles their extremity.

Step 1 (left). The first alarm « can only be produced by ¢;, whence a unique possibility
for my. fi reflects that places a and b have been changed by the acceptance of «.

Step 2 (center). From my, 3 can be produced by either t3 or t5. The first one makes /3
concurrent with o, while the second assumes [ is a consequence of . Since (3 is related to
« by a dashed arrow, both possibilities are accepted, whence pairs (ma, f2) and (mb, f3).

Step 3 (right). ~ can’t be produced from m}, so this trajectory is discarded. From msg,
one can obtain + either by ¢, or t4. In the first case, v would become a direct consequence
of o, which contradicts the observation: the arrow o« — -y is not present. The second
case is correct: -y becomes a direct consequence of 3, which is observed. So only this
possibility is accepted, which finally reveals that the uncertain relation between « and (3 is
actually a concurrence.

a
b©
€€

CiE:

Figure 12. The three steps of the diagnosis algorithm.
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LEMMA 6 Theresult of the diagnosis algorithm, in terms of causality graph, is independent
of which ordering is chosen on alarms, provided it satisfies the observed causality graph
(including dashed arrows).

Proof: We rely on lemma 1. Assume aj and ajq are not related by an arrow, neither
solid nor dashed, in the sequence a of alarms. Therefore a; and ag4; are necessarily
concurrent (a1 can’t be causally related to ax). We build the sequence a’ by inverting

these two alarms and keeping all dependence relations. Every trajectory s = (t1, ...

,tn)

compatible with sequence a of alarms (and its dependence relations) satisfies t||tg+1. So
s’ obtained by inverting ¢;, and ¢, is executable, and compatible with the sequence a’
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(and its dependence relations). Since the permutation doesn’t change the likelihood, an
optimal sequence for a transforms into an optimal one for a’. Moving to causality graphs,
we obtain identical trajectories. [ ]

ExXAMPLE: (continued) We extend the PN of figure 11 into that of figure 13, and take as
observation the sequence depicted on the right of the figure. By lemma 6, we get the same
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Figure 13. Extension of the PN of figure 11. The observed CG of alarms is depicted on the right.

diagnosis with the permuted sequence o --» § — v § — ¢. The same transitions are
concerned by alarms «, 3 and . Since tile likelihoods are computed locally, they are not
influenced by the status of extra places, thus the result of the diagnosis performed above can
be taken as a starting point here'!. The same reasoning holds for the sub-sequence § — ¢
and transitions 1, t5, tg, t7. This part of the diagnosis could also be done independently on
areduced net, which yields two possibilities 7o and m/ (figure 14).

my f m> f3
f@ 5 © 8 fe € €
g @ ¢ g & & L€
he OMEINOL) he ORyg 0L
ae € € a@ td © (©d
b€ € € b o) ¢

Figure 14. Partial diagnosis for the subsequence § — ¢.

This suggests another way of performing the global diagnosis: by merging two sub-
trajectories corresponding to the concurrent sub-sequences. The observed concurrence
means that we have to connect puzzles involving different sets of places. The only possibility
is the pair mg and /My which gives the trajectory (¢1]ts — t4)|[(t5 — tg). This reveals
part of the ideas that allow the distribution of the algorithm. O

We can now realize the importance of the causal observation hypothesis (H1). Lemma 6
shows that any sequence is valid provided the arrows are all oriented from left to right. If
it is not the case, i.e., if (H1) is violated, one could start building a trajectory and suddenly
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have to connect an extra tile “somewhere in the past”, instead of at the extremity. This is not
permitted by the present formalism. However, it seems such a capability could be expected
from a distributed diagnosis algorithm.

54. Problem 3

Forgetting causality relations for a while, we turn back to problem 1 and introduce another
kind of difficulty: we assume that some alarms can get lost in the faulty network, or
equivalently that transitions can fire silently.

54.1. A recursion based on macro-tiles. The recursion index remains n, the number
of alarms taken into account in the sequence. But now an unknown number & of hidden

transitions hq, . . ., b may be fired before a ¢ corresponding to a,, 1 be hit. Therefore (13)
becomes
k
L*(Mpy1) = max L£*(my,) max L(t,ani) [ £(hi, N (14)
M st yhi, oo hy i=1

mulhi ... hgt)mp+1

where one obviously has to select the most likely hidden path between m,, and m,,4;. The
new recursion (14) does the same job as (13) but relies on “macro-tiles” hy ... hit where
only one transition is visible (not silent).

Definition 5. A t-macro-tile is the puzzle of a causality graph m, such that 7; is made
of silent transitions plus the (visible) tile ¢, m; satisfies m;, = m~,m} = m™, and it
achieves the best likelihood given the pair (m ™, m™).

Naturally, denoting by (hy,...,hg,t) an element of Lin(m), we have L(m) =
L(t) Hle L(h;, ). As before, we can also consider macro-tiles (¢, a), with £(7¢,a) =
L(m)P(alt). Macro-tiles take the place of the second max in (14), which now behaves
exactly as (13):

L (Mpt1) = max L (my) L7ty apgr) (15)

My Ty 2 M [T )M g1

So we are back to the framework of problem 1. The possibility that several macro-tiles
7, have the same extremities (m~,m™) and (by definition) the same likelihood is not
excluded; they are said to be equivalent. All must be kept since they define different
optimal trajectories in the backtrack procedure. However, they can be handled as the same
formal object by the diagnosis algorithm.

54.2. Selection of useful macro-tiles. The definition of macro-tiles is not constructive,
and doesn’t specify which pairs (m~,m™) should be considered. The following two
lemmas clarify this point and eliminate useless macro-tiles.
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LEMMA 7 (structural reduction of the set of macro-tiles)
The macro-tile 7y is useless to the diagnosis algorithm if it doesn’t satisfy the following
properties :

1. there is no silent maximum in my, or equivalently the (visible) tile t is the unique
maximum of Ty,

2. t appears only once in Ty,

3. 7 has no loop, i.e., thereisno s = (hq, ..., hy,t) € Lin(m) such that a subsequence
s" = (hi, ..., h;) has an empty action, 1 <i < j <k.

Proof:

3 e Assume 7; has a loop, and take s and s’ as above. Since the action of s’ is empty,
the subsequence (hjy1,...,hk,t) is compatible with (hq,...,h;—1). Their connection
s" = (h1,...,hi—1,hj11,..., hy,t) has the same action as 7; and satisfies m,, C m_,.
But the puzzle s” contains less tiles than 7, so it has a greater likelihood since a tile
likelihood is less or equal to one. So, finally, 7, can always be replaced, in any trajectory,
by a better macro-tile corresponding to (m_,, m?,), and thus 7, is useless.

It could happen however that every h; of s is a “free” tile, i.e., satisfies L(h;, \) = 1.

Free loops like s’ must be erased anyway since they are unobservable and could be repeated
infinitely many times.
1 e This involves the recursive structure of the diagnosis algorithm. Let (u,\) be a
silent maximal tile in ;. There exists s € Lin(m;) finishing with u, for example s =
(h1y.. s hg—1,t,u). Let us consider two consecutive steps in the recursion:
My [8)Mp11[8" )My q2. We also have my, [hy ... hp_1t)m], i [us)my, 4o.

- The trajectory ss’ reaching m,, .o from m,, can be obtained through the intermediate
sub-marking m/, 41 instead of m,1; in other words, the silent maximum u can be
transferred to the next macro-tile. So considering macro-tiles with ¢ as unique maximal
tile doesn’t reduce the set of trajectories explored by the algorithm.

- Ifn+1 = N, the last index, then m,, 1 is less likely than m/, 11, whence the same
conclusion : 7y is useless.

2 o Assume t appears twice in m;, once as the unique (visible) maximum, and once
as a silent transition that we denote #. Inverting the roles of ¢ and ¢, we get another
equivalent macro-tile 7;. 7 can always be replaced by 7, and still describe the same
trajectory, up to the position of the silent ¢, which is unobservable anyway. The previous
point reveals that 7, is useless to the diagnosis algorithm, so m; can also be discarded.
|

Definition 6. Let 7; and 7} be two macro-tiles with ¢ as unique visible transition,

7, and 7, have the same action
T =T S M Cmyg,
L(m) > L(m})

m¢ 77y stands for > with equality on likelihoods.
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LEMMA 8 (likelihood reduction of the set of macro-tiles)
Macro-tiles that are not maximal for the relation > are useless to the diagnosis algorithm.

Proof: This lemma extends the optimality required by the definition of macro-tiles : when

m¢ > 7}, both macro-tiles change the same tokens (thus allow the same future), and 7 is

connectable whenever ; is. Since the likelihood is in favor of ¢, 7r; will always be rejected.
|

54.3. Construction of (useful) macro-tiles.  Let 7; be a useful {-macro-tile correspond-
ing to the sequence (hq, ..., hi,t). One easily checks that (ho, ..., hy,t) induces another
useful t-macro-tile. This suggests that {-macro-tiles can be obtained recursively, by left
connection of silent transitions, checking at each step that lemmas 7 and 8 are satisfied. Let
I1;(k) represent the set of candidate ¢-macro-tiles with & silent transitions. Construction
rules are given below :

1. TI,(0) is reduced to the visible tile (m; , ¢, m;").

2. Possible elements of IT; (k) are built by connecting a silent transition A # ¢ to an element
Ti—1 in I (k—1) : 7, = h7y_1 (this assumes compatibility and £(h, A) # 0). h must
be the cause of one transition in 7_1 in order to satisfy 1 of lemma 7; this is guaranteed

by Qn N Qr,_, # 0.

3. Each 7 has to be compared to every 7;,0 < ¢ < k, for relations < and >. If such a
relation is detected, the lower element must be rejected, according to lemma 8.

4. TIf (h, \) is a free tile, 7, must also be compared to every 7;,0 < i < k — 1 for relation
= If 7, = 7; is detected, h may have closed a free loop in 7;, which has to be checked.
A 7; containing a free loop must be rejected.

5. Stop if all elements of IT;(k) have been rejected by rules 2 and 3, in which case the
useful ¢-macro-tiles are the elements of UF~'TI, (7). Otherwise proceed to IT;(k + 1).

5.5. Problem4

Gathering problems 2 and 3, we now have to track causality relations despite the presence of
silent transitions. As for problem 2, the right notion of system state is a pair (., f,, ) rather
than m,, alone. This requires to understand the effect of connecting a silent transition, and
consequently to adapt the definition of macro-tiles in order to take their action on f,, into
account.

5.5.1. Effect of a silent tile. Let (t1,a1,...,t,,a,) be a sequence of transitions and
their associated alarms, some of which are a A\. The resulting causality graph of alarms
is obtained in the following way. One first computes the CG of tiles (¢, ax), which is
identical to the CG of the ay’s alone. Then the latter is reduced by “erasing” every aj, such
that ap, = ), since we have assumed in section 2.1 that causality relations involving masked
alarms are also lost. It is important to notice that one would have obtained the same result
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by directly erasing a (¢, \) tile in the recursive construction of the causality graph. To
erase means here to replace pointers to A-tiles by () in the father function f, as illustrated
by figure 15.

O o o

= AN

3 p—12 p

Q

2 O B S

3
open Y————=§ Y———=§
place Oy O d true causality graph observed CG

Figure 15. Construction of the CG of alarms (Greek letters). When connecting the silent transition h, pointers to
previous alarms are erased for places of Q3. This “closes some legs” for transition ¢, i.e., blocks the observation
of causality relations.

Figure 15 reveals the method for updating the father function f,, when the tile ¢, matching
alarm a,, 41, is connected by means of the hidden path s = (hy,..., hg,t):

any1 ifp e Qy
fn+1(p) = 0 ifpe Qs \ Qt (16)
fn(p) otherwise

Now, using f,, to decide whether the sequence s is compatible with causality relations
observed on alarm a,; is a bit more delicate. We observe on figure 15 that ¢ induces
a visible causal dependence only through places that have not been “captured” by hidden
transitions. We thus define the set of open places of s as O, = Q; \ (U¥_,Q},,). Therefore,
s is connectable to (m,, f,) iff

1. sis compatible with m,,, and

2. the set of alarms in the open places of s, f,,(O;), coincides with the observed causes
of Ap4-1-

To extend the connection procedure to a causality graph 7, with ¢ as single visible
transition, we only need to define the set of open places of m;. Let the sequence s =
(hi,...,hj—1,t,hjt1,. .., hy) be alinear extension of my,ie., s € Lin(m), weset O, =
Q:\ (U?;ll Qr,)- The result is independent of the sequence s (use lemma 1).

5.5.2. New definition of macro-tiles. Macro-tiles were defined as the best CGs for a
given applicability condition and a given effect on the state vector m. Applied to a pair
(m, f) as notion of state, this yields

Definition 7. A t-macro-tile is the puzzle of a causality graph 7, such that 7; is made
of silent transitions plus the (visible) tile ¢, 7, satisfies m, = m~,mf =m™*, O, =0,
and it achieves the best likelihood given (m ™, m™) and the set of open places O.

As for problem 2, not all macro-tiles are useful. However, the selection is less drastic.
First there is no counterpart of lemma 8: m; would always replace 7 if it produced the
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same change on the state vector. This requires having the same set of open places in order
to capture the same causality dependences. This requires also Qr, = Q. otherwise f
wouldn’t be updated on identical sets. Together with m;; C m,, one gets m;é =Mmg,.
Finally, having the same action imposes also equality of the m™ part, so 7; and 7] are
equivalent macro-tiles, that can be considered as a single one by the algorithm.

Nevertheless, the structural reduction of lemma 7 remains valid. But for the same reasons
as above, we need to adapt it.

LEMMA 9 The macro-tile Ty is useless to the diagnosis algorithm if it doesn’t satisfy the
following properties :

1. there is no silent maximum in mg, or equivalently the (visible) tile t is the unique
maximum of T,

2. (no counterpart : m; can contain silent t’s.)

3. m has no loop, ie., there is no s = (hy,...,hg,t) € Lin(m) such that a subse-
quence s' = (h;,...,h;) has an empty action, and the shortened sequence s =
(h1s..yhic1, hjyt, - -5 ha, t) has the same Q and O sets as ;.

Proof:

3 e Same proof as lemma 7, but the definition of a loop is more restrictive, since the
shortened sequence s” must have the same effect as s. In particular, this limitation cancels
the possibility m,, & m_,,. Free loops satisfying this new definition must still be erased.
1 o Same proof as lemma 7.

2 e This point of lemma 7 has no extension here. The proof relied on the possibility to
exchange the final visible ¢ with a silent ¢, denoted by ¢, hidden in the body of the file.
Doing so here would disable the possibility to observe a causality relation ¢ — ¢’ with a
next transition ¢’, so the permutation does have an effect on the algorithm. ]

The construction of useful t-macro-tiles follows follows the lines of section 5.4.3. Rule 3
becomes useless, rule 2 has to allow the connection of a silent ¢, and rule 4 must look for
free loops in equivalent tiles only.

6. Conclusion

The partially stochastic Petri nets developed in this paper provide independent behaviors
to regions of the net that are not directly interacting. They thus reach some kind of equiv-
alence between concurrency of events and independence, and so are well adapted to large
distributed systems. Their trajectories are causality graphs of transitions, or equivalently
parts of the Petri net unfolding, that can be obtained recursively like a puzzle, by connection
of tiles.

The diagnosis problem addressed in this paper assumes a sequence of alarms. It builds
optimal trajectories in the spirit of the Viterbi algorithm, by connecting tiles that match
the observed sequence of alarms and their causal dependence relations. Whence the name
“Viterbi puzzle.” We have proved that the resulting optimal trajectory, as a causality graph,
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didn’t depend on which sequence of alarms was observed, provided the same causality graph
was satisfied. This suggests to directly consider observations as an incomplete causality
graph of alarms.

Efforts are now oriented towards the distribution of the diagnosis algorithm, based on
the puzzle paradigm. The observed CG of alarms can be split into pieces for which local
diagnoses can be computed, as illustrated by our example. The latter can then be considered
as new “tiles” for a global diagnosis. This suggests very interesting potential capabilities of
PSPNs. One can imagine for example distributing the diagnosis algorithm on a hierarchy
of sensors, each one computing locally the possible components of a trajectory, and relying
on the upper level for the connection. This would require a weaker version of (H1), since
the causal observation property would only be needed locally. Another target application of
distribution properties is the design of a supervising structure that would mirror the physical
structure of the network. This is a natural way of keeping monitoring algorithms up to date,
which remains a key difficulty for many other models.
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Notes

1. We refer for example to previous alarm stamping or local time stamping techniques for the alarms that are
stored in the Management Information Bases of sensors.

2. Partial order semantics can also be captured by the framework presented here, which however requires some
technical extensions that we wish to avoid for clarity. This point is postponed to forthcoming publications.

3. In the sequel, a CG of alarms will always refer to an “incomplete” CG, made of dashed and solid arrows, or
equivalently to a family of possible “complete” CGs, made of solid arrows only.

4. To be precise, places of the postset that are not also in the preset must be empty, i.e., places in ¢t® \ *t

5. Observe that the absence of an arrow between ¢; and ¢; doesn’t imply concurrence, i.e., ;¢ , since an indirect
causal relation is not excluded.

6. Namely, in confusion free PPNs, which means that firing a transition in an ECS cannot disable a transition in
another ECS.

7. The phenomenon we describe here is developed on the “PPN part” of GSPNs in (Ajmone Marsan et al., 1987),
i.e., on the set of immediate transitions.

8. This drawback remains even if tokens are asked to choose among enabled transitions.

9. One could wish to take a sum in (4), instead of a max. But this would raise a conceptual difficulty, because
the space of the (p, pt)’s is not a random field since y is non-random. Some authors have defined this object,
however, and named it a “belief” instead of a “likelihood.”

10. With a slight abuse of terms, ¢ will both refer to a transition or to its tile, and s to a sequence or its puzzle.

11. Sub-markings and father functions have to be extended formally, with € and () for new places.
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