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In this paper, we present a novel fault detection and fault diagnosis technique for Field Programmable
Gate Arrays (FPGAs). The cell is configured to implement a bijective function to simplify the testing of
the whole cell array. The whole chip is partitioned into disjoint one-dimensional arrays of cells. For the
lookup table (LUT), a fault may occur at the memory matrix, decoder, input or output lines. The input
patterns can be easily generated with a k-bit binary counter, where k denotes the number of input lines
of a configurable logic block (CLB). Theoretical proofs show that the resulting fault coverage is 100%.
According to the characteristics of the bijective cell function, a novel built-in self-test structure is also
proposed. Our BIST approaches have the advantages of requiring less hardware resources for test
pattern generation and output response analysis. To locate a faulty CLB, two diagnosis sessions are
required. However, the maximum number of configurations is k þ 4 for diagnosing a faulty CLB. The
diagnosis complexity of our approach is also analyzed. Our results show that the time complexity is
independent of the array size of the FPGA. In other words, we can make the FPGA array
C-diagnosable.
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INTRODUCTION

Field Programmable Gate Arrays (FPGAs) are regularly

constructed with configurable logic blocks (CLBs) and

input/output blocks (IOBs) communicated with inter-

connects and switches. They are a popular type of

component for emulation and rapid prototyping of

complex digital systems. Their applications include

microprocessors and telecommunication chips [1]. An

FPGA can be configured to implement combinational or

sequential logic functions. Because of its low manufactu-

ring cost, short turnaround time and field programmability,

it has been widely used in many applications [1]. Several

FPGA architectures have been developed for different

applications. The most widely used type is the lookup

table (LUT) FPGA, in which the functional unit consists

of several LUTs. This type of FPGA can be reprogrammed

any number of times. In this paper, we will focus on the

testing of LUT-based FPGAs.

In recent years, VLSI technology keeps greatly

increasing the degree of circuit integration and the rapid

development in packaging technology greatly reduces the

controllability and observability of internal nodes. This

significantly complicates testing of the system. If chips are

not fully tested after being manufactured, they become

low-quality products. Therefore, manufacturers of FPGAs

also face the same problem: seek for an efficient test

methodology to ensure the quality of their products. The

testing of FPGAs falls into two categories: testing of

unprogrammed FPGAs (configuration-independent test-

ing) and testing of programmed FPGAs (configuration-

dependent testing). In configuration-independent testing,

no assumptions are made about the function that the FPGA

will be configured by the user. On the other hand,

configuration-dependent testing involves testing whether a

configured FPGA is fault free or not. Some techniques for

testing FPGAs can be found in Refs. [2,3]. Here, we focus

on the testing of unprogrammed FPGAs, for which many

research results have been proposed [4–18].

In Ref. [4], an array-based technique is proposed to test

LUT-based FPGAs. The number of chip configurations to

fully test all CLBs is the same as to test a single CLB with

perfect controllability and observability. Universal and

C-diagnosable techniques are introduced in Refs. [5,6].
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C-diagnosability denotes that the numbers of test patterns

(TPs) and test configurations (TCs) are both constant

regardless of the size of an FPGA. The proposed fault

diagnosis approaches are universal—regardless of the

logic functions to be realized and the time required to

diagnose whether an FPGA is independent of the array

size. The methodologies proposed in Refs. [7,8] connect

each row of an FPGA as a one-dimensional unilateral

array for single stuck-at faults. In Ref. [9], BIST structures

for FPGAs are proposed. The FPGA is repeatedly

configured as a group of C-testable iterative logic arrays

(ILAs). Test generation and response analysis are

performed using internal BIST circuits. In Refs. [11,12],

test approaches for interconnects of FPGAs are proposed.

Moreover, the testing of multiplexer-based FPGAs can be

found in Ref. [19].

An FPGA is structured as a N £ N array of CLBs, it can

be naturally viewed as a two-dimensional array or N one-

dimensional arrays as shown in Fig. 1. A general structure

as shown in Fig. 2 for the basic CLBs is assumed. This

structure can be found in various Xilinx FPGA families.

Unfortunately, a CLB does not have enough outputs to

drive the inputs of a neighboring CLB. This problem

makes it difficult to configure an FPGA as an ILA.

Therefore, if we treat an FPGA as an N £ N array of CLBs

directly, then we cannot exploit the testing advantages of

ILAs. Fortunately, this problem have been solved in

Ref. [9], which uses some CLBs as helpers—auxiliary

cells whose goals are to generate “locally” the missing

inputs and to provide separate propagation paths for the

output responses of blocks under test (BUTs). However,

although some portion of the helper CLB may also be

tested alongside the BUT, it must be fully tested in a

different test session. Therefore, more chip configurations

and TPs are required to complete the test process.

In order to deal with this problem, a novel cell structure

is proposed here. In this paper, a cell is a CLB with k input

lines and k output lines, respectively, where k denotes the

number of inputs of an LUT. Then, the whole chip is

partitioned into N disjoint one-dimensional arrays of cells.

We assume that in each linear cell array, there is at most

one faulty cell. In other words, multiple faulty cells can be

detected if they exist in different linear arrays. By using

this cell structure, the test pattern generator (TG) and the

output response analyzer are easy to implement. All the

cells in the FPGA can be tested simultaneously to speed up

the test process. Moreover, since each cell is locally

connected to its neighboring cells, there requires no

considerable demands on the global routing resources.

This increases the probability of successful routing [9].

During testing, the configurations of each cell will make

its function bijective, which is helpful for applying

pseudoexhaustive TPs to each cell and propagating errors

to observable outputs. In order to detect all the faults

modeled, k þ 2 configurations are required. For each

configuration, a minimal complete input sequence

(consisting of all input combinations for a cell) is applied

to the leftmost cells of each linear array from IOBs and the

outputs of the rightmost cells can be observed directly

from the remaining IOBs.

In order to simplify our discussion, some definitions are

given first.

Definition An unprogrammed cell is a CLB, which can

implement 2k functions. The output of the CLB is y ¼ xi
for test configuration TCi, 0 # i # k2 1:

Definition A programmed cell with function f is a

combinational machine (S,D,f ), where f : S! D is the

programmed cell function, and S ¼ D ¼ {0; 1}k; k

denotes the number of inputs of a CLB.

Definition A complete or exhaustive input sequence s

for a programmed cell with function f is an input sequence

consisting of all possible input combinations for the cell.

A complete output sequence is defined analogously.

Definition A minimal complete input sequence u for a

programmed cell is a shortest complete input sequence

(which has a length of 2k, i.e., u ¼ u1; u2; . . .; un).

FIGURE 1 FPGA architecture.

FIGURE 2 The structure of a CLB.
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Definition We say that the function f of a programmed

cell is bijective when ;u1 – u2; f ðu1Þ – f ðu2Þ; and the

length of the minimal complete input sequence and that of

the minimal complete output sequence are identical, i.e.,

jSj ¼ jDj:

According to the bijective characteristics of the cell

function, a novel built-in self-test structure is also

proposed in this paper. The input patterns can be easily

generated with a k-bit binary counter and the output

response are analyzed with a checksum analyzer or

comparator. Our BIST approaches have the advantage of

requiring fewer hardware resources for TP generation and

output response analysis. The number of configurations

for our BIST structures is 2k þ 4: To locate a faulty CLB,

two test sessions are required. However, the maximum

number of configurations for diagnosing a faulty CLB is

k þ 4: The complexity for fault diagnosis is also derived.

Our results show that the time complexity is independent

of the array size of the FPGA. In other words, we can

make the FPGA array C-diagnosable with our approach.

Our paper is organized as follows. Second section presents

the preliminaries for testing FPGAs. Third section depicts

the fault detection approach. Built-in self-test structures

are shown in the fourth section. Fault Diagnosis technique

is presented in the fifth section. Sixth section analyzes the

diagnosis complexity and comparisons with other

approaches are given. Finally, seventh section concludes

this paper.

PRELIMINARIES

The structure of a CLB is shown in Fig. 2, which consists

of one LUT, two multiplexers (MUX1 and MUX2), and

one D flip–flop (DFF). Let k denote the number of input

lines of an LUT, then an LUT can implement 2n logic

functions, n ¼ 2k: The configuration memory cells

(CMCs) are used to configure its logic functions. When

programming an FPGA, we load the bit patterns

corresponding to the function’s truth table into the

CMCs and the interconnection networks are also

configured. Such a programming process is called a

configuration. It is well known that an unprogrammed

FPGA can be configured to implement different logic

functions. Therefore, testing this category of FPGAs

implies testing of all possible functions, which can be

realized. The procedure for testing CLBs is by repeatedly

implementing a TC and alternately applying TPs to this

configuration. Since an LUT can realize 2n different

functions, it is impractical to test each function

exhaustively.

Fortunately, with our approach, the number of TPs

required for each TC is the same—a minimal complete

input sequence (defined later) of a cell. The cell array is

pseudoexhaustively tested by applying exhaustive tests to

each cell. Our TPs are independent of the size of the

FPGA, i.e., they scale well with increasing FPGA size.

Therefore, the remaining problem is to determine how to

configure the cells in order to detect all the faults modeled

using the defined fault models. It is evident that TC is very

time-consuming. In general, the time for TC is much

greater than applying of TPs. Therefore, to test an FPGA,

we must seek out an efficient approach, which requires

less number of TCs and covers all the programmable

resources of FPGAs. Taken literally, the proposed

approach must speedup the test process and guarantee

the quality of the products under test. It should also be

noted that the proposed approach must not place

considerable demands on global routing resources within

the FPGA and increase the probability of successful

routing.

The fault model used in this paper is described in the

following, and has been shown to be suitable for FPGAs

[2,5,6].

1. For an LUT, a fault may occur at the memory matrix,

decoder, inputs and outputs of a CLB. A faulty

memory matrix has some memory cells that are

incapable of storing the correct logic values (stuck-at 1

or stuck-at 0 may occur at a memory cell). If a fault

occurs at the decoder, then incorrect access, non-

access and multiple access faults may occur. For the

input and output lines, stuck-at faults are considered.

2. A multiplexer is a group of switches controlled by the

configuration memory bits. Only one switch is allowed

to be on. Either none or more than one on-switches is

invalid. If all the switches are off, we assume the

output is either stuck-at-1 or stuck-at-0. Alternatively,

if two switches are on simultaneously, then the output

is the logic wired-OR of the selected inputs. In other

words, switch stuck-on and switch stuck-off fault

models [19] are adopted. For a DFF, we adopt the

functional fault model. A fault may cause the flip–flop

to be unable to receive data, to be triggered by the

correct clock edge, or to be incapable of being set or

reset [8].

We assume that at most one faulty cell exists in each

linear cell array. Otherwise, fault masking might occur.

However, multiple faulty cells existing in different linear

arrays can also be tested since all linear arrays are tested

independently.

In general, the number of inputs, k, of a CLB is larger

than its output counts. As described in previous sections, it

is not beneficial to view an FPGA as an N £ N array of

CLBs. This is since a CLB does not have enough outputs

to drive the inputs of a neighboring CLB and it is

impossible to construct an iterative logic array directly. If

we treat an FPGA as an N £ N array of CLBs, we cannot

exploit the testing advantages of ILAs. Therefore, many

test approaches for ILAs cannot be applied for FPGA

testing. To solve this problem, we define a cell as a CLB

with k input lines and k output lines as shown in Fig. 3. In

this figure, k2 1 input lines of a CLB are forwarded to the

outputs of the cell directly. The output of the CLB is

y ¼ xi for test configuration i, 1 # i # k: Therefore,
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we can regroup an FPGA consisting of an N £ N array of

CLBs into an N £ N array of cells. An FPGA consists of

a CLB array as shown in Fig. 4, where CLBij denotes the

CLB in row i and column j, 0 % i; j % N 2 1: The

corresponding cell array of Fig. 4 is shown in Fig. 5.

Thereafter, the outputs of one cell can be used to drive its

neighboring cells. Therefore, N disjoint linear arrays of

cells are obtained and their inter-cell communications are

local (between adjacent cells). This will not violate the

routing limitations of FPGAs and increase the probability

of successful routing. One of the main advantages of our

approach is that all cells are tested simultaneously in the

same test session. However, the helpers used in Ref. [9]

must be tested in a different session. Therefore, our

approach will result in less test configurations and increase

the test speed significantly.

FAULT DETECTION FOR FPGAS

In this section, new conditions for C-testability of

programmable/configurable arrays are proposed. Since

our test approach uses a cell as the basic test element

instead of using a CLB, all the cells in an FPGA can be

tested concurrently as described in the following section.

Testing of LUTs

We assume initially that a CLB consists of a single LUT.

Then all the input lines of the leftmost cells and the output

lines of the rightmost cells for each linear array are

connected to IOBs, so that they can receive their TPs and

observe the corresponding outputs, respectively. The

number of IOBs required for inputting TPs and observing

the results is at most 2kN. However, if all linear arrays

use the same IOBs to input TPs and the BIST structure is

used, the number of IOBs used will be reduced

significantly. This number will not tend to exhaust the

limited I/O resources available at the peripheral of the

chip. During testing, the k output lines of cellpq are

appropriately connected to the k input lines of cellpðqþ1Þ %

p % N 2 1 and 0 % q % N 2 1: This connection structure

is shown in Fig. 6, where each array receives its TPs from

TG through the same IOBs. The outputs are then sent to

the output response analyzer so that the responses can be

analyzed in order to produce a pass/fail indication.

After the interconnection network has been configured,

there are still three questions to be answered before the

LUTs can be tested. (1) Which test set should we apply to

test all the linear arrays and ensure acceptable fault

coverage? (2) Verifying a cell function involves genera-

ting inputs for each cell (i.e., controlling the cell), and

propagating faults from the cell (i.e., observing the cell).

How can we solve the controllability and observability

problems for FPGAs? (3) Unlike general iterative logic

array structures, each cell in an FPGA can be configured to

have up to 2n functions. What functions should we choose

to ensure their fault detection capability and minimize the

number of configurations? The first question can be

answered by sending pseudoexhaustive TPs to each cell.

The answers to the last two questions can be found in the

following paragraphs.

FIGURE 5 The corresponding cell array of Fig. 4.

FIGURE 4 A N £ N array of CLBs.

FIGURE 3 Architecture of a cell.
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Since each cell has k input lines and output lines,

respectively, the function of a cell can be described with a

truth table. We also assume that the truth tables are fully

expanded, i.e., there are no don’t-care terms. In reality,

this is always true. The LUT input is assumed to be

represented by the k-bit word, xk21; xk22; . . .; x0; while the

cell output is represented by the word, yk21; yk; . . .; y0: Let

a ; ak21;ak22; . . .;a0 denote the output assignments of

the corresponding output variables, where ai denotes the

assignment of variable yi. Now we make the test

configuration TC0 for each cell such that the cell function,

f 0, has the assignment a 0. Since for test configuration

TC0, the output of the CLB equal to x0, then yi ¼ xi;

0 % i % k2 1: In other words, the outputs of the cell are

equal to the inputs. Therefore, the outputs of the cell

contain all possible binary k-bit values. In other words, the

cell function is configured to be bijective. The assignment

a
k for configuration TCk is the complement of assignment

a
0. An example of a test configuration TC0 and TCk with

k ¼ 3 is shown in Fig. 7.

Observation If TC0 is a bijective configuration, then

TCk is also a bijective configuration.

Proof This follows directly from the definition of a

bijective cell function. A

Without the loss of generality, we can reconfigure the

LUT such that y ¼ xi for TCi and all the other input

variables are directed as the output variables. Therefore,

the output variable assignments a i can obtain the required

TPs to completely test a cell.

Observation For a fault-free cell, if a minimal

complete input sequence d is applied to the inputs of a

cell with configuration TCi, 0 % i % k; then the output

sequence will also be a complete sequence if it is fault-

free.

Proof Since the cell function is also bijective with

configuration TCi, 0 % i % k; then if the cell is fault free,

the outputs will also be a complete sequence since the

outputs are the permutation of the inputs. A

Theorem 1 If a minimal complete input sequence d is

applied to the inputs of a cell with test configuration TCk

and TC0, respectively, then all stuck-at faults in the LUT

memory cells can be detected with 100% fault coverage.

Proof Assume that a stuck-at-0 (1) fault occurs at the ith

memory cell in LUT of a cell, then the ith entry of y will

have the same value for configurations TC0 and TCk.

However, since TCk and TC0 make the cell function

bijective, their corresponding assignments are comple-

mented. This fault will make either a 0 or a k to be not

bijective. It is evident that this fault can be detected by

examining whether the output is a complete output

sequence. Therefore, we conclude that all stuck-at faults in

the LUT can be detected with 100% fault coverage. A

Theorem 2 If a minimal complete input sequence d is

applied to the inputs of a cell with configurations

FIGURE 6 The connection structure during testing.

FIGURE 7 Test configuration TC0 and TCk.
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TCk21;TCk22; . . .; and TC0, respectively. Then any fault

within the decoder can be detected.

Proof If a fault occurs within the decoder, then incorrect

access, non-access or multiple access faults may occur. All

these faults must be detected by d. The proofs for each

type of faults are as follows. A

Incorrect access faults If the decoder cannot generate

the correct memory address, then a faulty memory address

is accessed. That is, if we try to access the ith memory cell

of an LUT, then the jth memory cell will be accessed if

there exists a incorrect access fault, i – j; 0 # j # 2k 2 1:

A large number of such faults may exist in a cell. To test

this type of faults, we must first activate this fault. In other

words, we must seek for a configuration such that the

stored values in the ith and jth memory cells are different,

i.e. MCðiÞ – MCðjÞ: Fortunately, with the configurations

TCk21;TCk22; . . .;TC0; there exists at least one such

configuration that the accessed values of the correct and

faulty memory addresses will have different stored values.

If the fault is activated by a specific configuration, then its

corresponding outputs will not again be a complete output

sequence. This is helpful to detect this fault. Therefore, we

conclude that all the incorrect access faults can be detected

with 100% fault coverage.

Non-access faults If a non-access fault exist, then the

output of the LUT will stick at 0 (1). Then we can treat it

as a stuck-at 0(1) fault. This type of faults can be detected

with configurations TCk and TC0 as described in previous

paragraph. Therefore, we conclude that non-access faults

can be detected with 100% fault coverage.

Multiple access faults. If a multiple access fault occurs

within a CLB, then the output value of this CLB is equal to

the wired-AND (wired-OR) of the stored values of all the

accessed addresses. That is, the output value y ¼

MCðiÞ þMCðjÞ (wired-AND) or y ¼ MCðiÞ·MCðjÞ;

where MC(i ) and MC( j ) denote the values of the correct

and extra accessed memory cells, i – j and 0 # j #

2k 2 1: To activate this type of faults, there must exist a

configuration such thatMCðiÞ ¼ 0 and MCðjÞ ¼ 1 (wired-

OR ) orMCðiÞ ¼ 1 andMCðjÞ ¼ 0 (wired-AND ). Then the

wired-AND (wired-OR) output of this CLB will has logic

value 0/1 (wired-AND/wired-OR) and the faulty effect is

activated. Fortunately, the configurations TCk21;

TCk22; . . .; and TC0 can be used to activate this type of

faults. The outputs of the faulty cell will no longer be a

complete sequence and can be observed from the cell’s

outputs. We conclude that all the multiple access faults

can be detected with 100% fault coverage. A

Testing of D Flip–Flops

D flip–flops are tested using functional model. That is,

DFFs are treated as pipelined latches. A fault may cause

the flip–flop to be unable to receive data or be triggered by

the correct clock edge, or to be incapable of being set or

reset. With our configurations TC0 through TCk, there

exists at least one configuration, which contains the

sequences 010 and 101. It should be noted that the

configuration memory must be configured in order to

direct the outputs from the LUT through the highlighted

path to the CLB’s output. Fortunately, this will not

increase extra configurations and can be done during the

testing of LUTs. Therefore, DFFs can be used as pipelined

latches and could be fully tested using the same

configurations and TPs as for an LUT.

Testing of Multiplexers

As the fault model defined above, stuck-on and stuck-off

faults are assumed. For stuck-off faults, we have assumed

that the output is either stuck-at 1 or stuck-at 0 and can be

collapsed as stuck-at faults at the output line of an LUT.

This type of faults can be simultaneously tested as the

testing of an LUT according to Theorem 1. For stuck-on

faults, wired-operations are performed and the faults

can be detected in the same manner as described in

Theorem 2.

Now that we have proven the testability conditions for a

single cell, we now turn to the problem of testing a whole

array. The first problem is how to send the TPs to each cell

in an FPGA (controllability) and propagate the fault

effects to the primary outputs (observability). The

controllability and observability problems can be solved

using the following theorem.

Theorem 3 For an FPGA cell array, all the faults defined

can be tested with a minimal complete input sequence and

configurations TCk;TCk21; . . .;TC0 for each cell.

Proof As shown in Theorem 1 and Theorem 2, a

complete input sequence and test configurations TCi, 0 %

i % k can be used to test all the faults within a cell. For an

entire cell array, we must solve the controllability and

observability problems. First, all the cells must have the

same configurations during each test phase, i.e. they are

configured to the same bijective cell function. Since all the

linear arrays are identical, we connect all the inputs of the

left-most cells to IOBs and an external TG is used to

generate TPs for all the arrays as shown in Fig. 8. In this

figure, since k2 1 inputs of each cell just pass through the

cell, therefore, these k2 1 inputs are extracted as external

signal buses. Since all the input IOBs also receive minimal

complete input sequence, the faults that occur in an IOB

can also be detected. The output IOBs can also be tested in

the same manner. The input to each linear array is a

minimal complete sequence, the simplest approach to

implement the TG is by using a k-bit binary counter,

which counts from 0 to 2k 2 1:

As we know, a minimal complete input sequence is

sufficient to completely test a cell. Let u be a minimal

complete input sequence. We apply u to the input of the

leftmost cell of each linear array. Since each cell is

configured as a bijective cell function, then if cell00 is

fault-free, the output sequence u, is also a minimal

complete sequence. This sequence can then be used as

S-K. LU et al.402



the input sequence for cell01, obtaining complete sequence

u2. We then apply u2 to cell02, obtaining complete

sequence u. Reiterating this process, we construct a

complete input sequence for each cell in the linear array.

The same mechanism can be applied to the other linear

arrays. This solves the controllability problem.

Now we turn our attention to the observabiltiy problem.

If cell00 is faulty, a faulty effect must occur at the outputs

of this cell. Then, since the cell function is bijective, the

faulty effect will be propagated through cell01 and appears

at its outputs. This is because any input change is

propagated to an output change. Bijectivity ensures that

the change continues to ripple to the outputs of the

rightmost cell, which in turn, connected to IOBs and

output response analyzer for observation. The output

sequences of all linear arrays are identical if no faults exist

in the FPGA chip. The output response analyzer is simply

a comparator and can be used to compare these outputs

and produce a pass/fail indication. Other types of

analyzers can also be used. For example, a checksum

checker can be used to check the sum of the output

sequence. Since we assume that there exists at most one

faulty cell in a linear array, the propagating path cannot

mask each fault. We conclude that the cell faults in each

linear array can be detected by the complete input

sequence.

An additional configuration must be added to test the

c input of MUX1. With this configuration, the output of

the LUT is forwarded to the input of MUX1. The c input is

propagated through the highlighted path as shown in Fig. 2

to the output y and used as input for the neighboring cell.

Therefore, the number of configurations is k þ 2 to

completely test the whole FPGA array. A

BUILT-IN SELF-TEST

The BIST structure is presented in this section. A group of

CLBs is configured as test patterns generators (TPGs) and

some as output response analyzers (ORAs), all other cells

are cells under test (CUT). Our BIST structure contains

two test sessions (horizontal and vertical sessions) as

shown in Figs. 9 and 10. The TPG works as a binary

counter to provide minimal complete input sequence for

the leftmost cells. Since a CLB has only one output line,

therefore, k CLBs are necessary to build a k-bit binary

counter. The output analyzer can be implemented with a

checksum analyzer or comparator. Details of our BIST

structures can be found in our previous paper [18].

FIGURE 8 Application of test patterns.

FIGURE 9 BIST structure for a BIST session.
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FAULT DIAGNOSIS

In this section, we introduce the ILA-based approach for

diagnosing an FPGA that fail the test provided by the two

BIST sessions depicted above. In the same way, fault

diagnosis approaches also falls into two ways; one is fault

diagnosis for unprogrmmed FPGAs, and the other is that

for programmed FPGAs. We focus on fault diagnosis for

unprogrammed FPGAs. If a faulty part in an FPGA can be

identified prior to programming it, by isolating the faulty

part, we can implement a required logic on the FPGA

using only the fault-free part. Our fault diagnosis process

contains two sessions: (1) horizontal diagnosis, and (2)

vertical diagnosis. These two steps are described as

follows.

Session 1 (Horizontal Diagnosis): Horizontal diagnosis

is illustrated in Fig. 11. The outputs of the rightmost cells

are compared with correct results for identifying faulty

rows.

Session 2 (Vertical Diagnosis): The interconnection

structures for vertical diagnosis is shown in Fig. 12. The

outputs of the bottommost cells are compared with correct

results for identifying faulty columns. By intersecting

faulty columns with faulty rows, the faulty cells can be

identified. The diagnosis resolution of our approach is a

single CLB due to the structure of a basic cell. However,

with the approach proposed in Ref. [18], three diagnosis

sessions are required for diagnosing a faulty CLB.

Therefore, the proposed approach can reduce the number

of test configurations and the diagnosis speed can be

improved significantly.

DIAGNOSIS COMPLEXITYANALYSIS

Definition The diagnosis complexity is defined as the

time complexity required to perform fault diagnosis for an

FPGA.

Definition An FPGA is C-diagnosbale if there exists a

fault diagnosis approach, whose complexity is indepen-

dent of the FPGA’s array size.

In order to ease the analysis of complexity for fault

diagnosis, some terminology and notations used in Ref. [6]

are still used here. The fault diagnosis procedure (FDP)

for an FPGA can be expressed as

PDP ¼ ½ðTC0; S0Þ; ðTC1; S1Þ; . . .; ðTCnc; SncÞ�;

where Si, 0 # i # nc; denotes the minimal complete input

sequence applied for test configuration TCi. According to

previous discussions, we can see that

jS0j ¼ jS1j ¼ · · ·jSncj ¼ 2k:

Moreover, the number of configurations nc ¼ 2ðk þ

2Þ ¼ Oðlog nÞ for fault diagnosis. Let tc denote the time

required to load one bit of a program into a CMC. The

time required to implement all test configurations then can

be expressed as

T CðFDPÞ ¼
Xnc21

i¼0

tccðiÞ;

where c(i ) denotes the number of CMCs to implement

configuration TCi. Since each CLB implements the same

logic function for each configuration, we can treat it as an

iterative array system. Therefore, the block-sliced loading

approach [10] can be used. Therefore, the time required

FIGURE 11 Horizontal diagnosis. FIGURE 12 Vertical diagnosis.

FIGURE 10 Second BIST session.
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to implement configurations is

T CðFDPÞ ¼
Xnc21

i¼0

tccðiÞ ¼ Oðn log nÞ:

Furthermore, the time required to apply all the input

sequences in FDP is

T SðFDPÞ ¼
Xnc

i¼1

tssðiÞ ¼ 2k
Xnc

i¼1

ts;¼ OðnÞ

where ts denotes the clock cycle time. The diagnosis

complexity of our approach then can be expressed as

TðFDPÞ ¼ T CðFDPÞ þ T SðFDPÞ ¼ Oðn log nÞ:

Note that the diagnosis complexity is independent of the

array size. Therefore, we can obtain C-diagnosable

FPGAs. We compare our approach with Refs. [6,9],

since the same CLB structure is used. The result is shown

in Table I. In this table, we list the goals of these papers,

and compare the number of TPs for each configuration

(NTP), the number of configurations for fault detec-

tion (NC), the number of configurations for fault diagnosis

(NCD), and the number of test sessions for BIST

(TSBIST). The number of test configurations for fault

detection (NTC) is only half of that in Ref. [6]. Moreover,

the number of BIST sessions is also less that that in

Ref. [9].

The complexity for fault diagnosis of our approach is

shown in Table II and compared with that in Refs. [5,6,10].

From this table, we can see that our approach is better than

Refs. [10] and [5]. Although the diagnosis complexity of

our approach is the same as that in Ref. [6], however, if the

constant items are considered as shown in previous

discussions, our approach is also better than Ref. [6].

CONCLUSIONS

A novel approach for testing FPGAs based on LUTs is

proposed in this paper. Each CLB in an FPGA is

configured as a cell with k inputs and outputs.We use a cell

as the basic test element instead of using a CLB. The

whole chip is partitioned into disjoint one-dimensional

arrays of cells. We assume that in each linear array, there

is at most one faulty cell, and multiple faulty cells existing

in different arrays can also be detected.

For a faulty LUT, a fault may occur at the memory

matrix, decoder, input and output lines. Stuck-on and

stuck-off fault models are adopted for multiplexers.

Moreover, we assume that the interconnection network

has been tested. Our idea is to configure each cell function

bijective. This bijective cell function is helpful for

applying pseudo-exhaustive TPs to each cell under test

and propagating errors through the cell arrays. We require

k þ 2 configurations to test all the faults defined. The

number of configurations is less than previous works and

the test time can be significantly reduced. Experimental

results show that 2k TPs are sufficient for pseudo-

exhaustively testing the chip and the resulting fault

coverage is 100%.

This BIST structure (test pattern generator and output

response analyzer) is easy to implement. The routing

complexity and the required number of IOBs are reduced

significantly. To diagnose a faulty CLB, two diagnosis

sessions are required. Diagnosis complexity is also

analyzed and compared with previous works. The result

shows that C-diagnosable FPGAs can be obtained.

Although the diagnosis complexity of our approach is

the same as that in Ref. [6], however, if the constant items

are considered, our approach is better than that in Ref. [6].
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