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Abstract: This paper addresses Fault Detection and Isolation (FDI) for wind turbines based on a Proportional 

Multi-Integral Observer (PMIO). A wind turbine model is linearized using the Takagi-Sugeno (TS) approach based on 

Lyapunov stability theory and LMI condition, then the PMI observer is considered for use with the TS fuzzy model to 

estimate and isolate both actuator and sensor faults with the introduction of a centered noise. The kth derivatives of 

the actuators and sensor faults are not equal to zero but are rather bounded norms. However, based on Lyapunov 

stability theory and L2 performance analysis, design conditions are established through LMIs formulations. Simulation 

results show that our proposal outperforms some existing approaches. 
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Introduction 

     Wind turbines represent an increasingly important 

source of electrical power around the world, and many 

wind farms are being located offshore to access stronger 

and more stable wind sources [5]. Such offshore 

installations are more difficult and costly to service than 

onshore turbines [7]. Efficient fault monitoring and 

diagnostics can potentially predict equipment failures 

before they occur, thus allowing for timely intervention 

to prevent downtime or damage [8]. 

     To test different schemes for Fault Detection and 

Isolation (FDI) for an offshore wind turbine, we use a 

wind turbine reference model introduced in [9] using the 

desired detection time and false alarm rate. The 

benchmark model presented corresponds to a three-axis 

horizontal axis wind turbine with a nominal power of 4.8 

MW. Some work has been achieved for FDI in wind 

turbine system based driven data [10]. The authors in [11] 

proposed a data-driven fault detection scheme with 

robust residual generators directly constructed from 

available process data. In [12] a classifier combined Bayes 

Statistical Algorithm, Back-propagation Neural Networks, 

and Decision Trees, and in [13] a Fuzzy/Bayesian network 

classifier was made to classify data into two classes, to 

determine whether the system state is defective or not. 

In addition to the nonlinearity of its simulation model, 

the high power of the noise in all the sensor signals 

defined in [9] generates problems in the FDI design. 

These factors make the FDI problem very challenging 

[14].The authors in [15-16] used the Kalman Filter (KF) 

and generalized likelihood ratio test to generation and 

evaluation residues. In [17], the fault diagnosis approach 

was combined with analytical redundancy relations 

(ARRs) and interval observervations. In [18], the 

unknown input observer was proposed to detectsensor 

faults in the drive train and converter subsystems of the 

benchmark model. Further, in [8], the Sliding Mode 

Observer (SMO) based estimation scheme was presented 

to detect, isolate and estimate sensor and actuator 

status in benchmark model subsystems. In addition, to 

solve the nonlinearity disadvantages in the simulation 

model [19], the authors in [20] proposed a fault diagnosis 

scheme based fuzzy models. This fuzzy model, in the 

form of a Takagi-Sugeno (T-S) prototype, represented the 

residual generators used for fault detection and isolation 

(FDI). 
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     This paper focuses on a fault diagnosis method for 

the wind turbine system model developed by [19], which 

is linearized using the Takagi-Sugeno (T-S) approach 

based on Lyapunov’s stability theory and LMI condition 

for T-S systems stability presented in [21]. Furthermore, a 

Proportional Multi-Integral Observer (PMIO) is 

considered for the T-S fuzzy model to estimate both 

actuator and sensor faults by introducing a centered 

noise. However, the kth derivatives of the unknown 

inputs (actuators and sensor faults) are not equal to zero 

and are bounded norms. Based on Lyapunov’s stability 

theory and L2 performance analysis, the design 

conditions are established in LMIs formulations.  

     This remainder of this paper is organized as follows. 

In section 2, the model of the wind turbine is presented 

and linearized using the TS approach. In section 3, the 

design state feedback controller is proposed. In section 4, 

the structure and synthesis of PMIO are presented. 

Section 5 describes a simulation that compares 

estimation of actuator and sensor faults. Conclusion are 

presented in Section 6. 

Wind Turbine System Modeling 

Wind Turbine Basics 

     A wind turbine captures kinematic energy from the 

wind and transforms it into mechanical energy (by 

rotating a shaft), then into electrical energy (through a 

generator). As shown in Figure 1, the visible components 

of horizontal axis wind turbines (HAWTs) are the tower, 

the nacelle, and the rotor. 

     The wind spins the rotor on this upwind 

horizontal-axis turbine. The low-speed shaft transfers 

energy to the gearbox which drives the high speed shaft, 

which then drives the generator, producing electricity. In 

Figure 1, the yaw-actuation mechanism rotates the 

nacelle so that the rotor faces into the wind [22]. The 

modeling of the wind turbine mainly represents its  

 
Figure 1. Wind turbine components. 

 

aerodynamic, mechanical and electrotechnical 

characteristics. 

Wind Turbine Modelling: 

     This article uses a three-bladed pitch-controlled 

variable speed wind turbine model with a nominal power 

of 4.8 MW as described in paper [23]. 

Aerodynamic model: 

     The aerodynamics of the wind turbine are 

modeled as a torque acting on the blades, according to: 
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where νω,i(t) is the wind speed, ρ[kg/m3] is the air density, 

R[m] is the rotor radius, βi(t) is pitch position of the 

blades, ωr is the rotor speed, and λi(t) is the tip speed 

ratio, defined as:   
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Pitch system model: 

     For each blade, the hydraulic pitch system is 

modeled as a closed-loop second order transfer function 

between the pitch angle βi and its reference βi;ref, 

according to: 
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which can be written as a differential equation: 
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where ζ is the damping factor, and ωn [rad/s] is the 

natural frequency, and i = 1, 2, 3 for three blades. 
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Drive train model: 

     The drive train by a two-mass model is modeled as 

follow: 
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where ωr(t) is the rotor speed, ωg(t) is the generator 

speed, τr(t) is the rotor torque, τg(t) is the generator 

torque, Jr[kg.m2] is the moment of inertia of the 

low-speed shaft, Kdt[Nm/rad] is the torsion stiffness of 

the drive train, Bdt[Nms/rad] is the torsion damping 

coefficient of the drive train, Br[Nms/rad] and 

Bg[Nms/rad] are respectively the viscous friction of the 

high-speed shaft of rotor and generator, Ng is the gear 

ratio, Jg[kg.m2] is the moment of the inertia of the 

high-speed shaft, ηdt is the efficiency of the drive train, 

and θ∆(t) is the torsion angle of the drive train. 

Generator and Converter model: 

     The generator and converter dynamics can be 

modeled by the following first order transfer function: 
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     This dynamics can be approximated by a first order 

model with time constant tg [19]: 
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     The power produced by the generator is given by: 
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where αgc[rad/s] is the generator and converter model 

parameter, ηg is the efficiency of the generator. The 

generator torque τg is controlled by the generator torque 

reference τg,ref. 

Wind turbine control: 

     The mean wind speed determines the area of 

operation of the controller and therefore of the wind 

turbine. As shown in Fig. 2, turbine operations fall into 

four distinct categories determined by wind speed: (1) 

cut in speed, below which wind is insufficient to drive the 

turbine; (2) interim area in which wind speeds are 

sufficient to drive the turbine but are still below nominal 

wind speed; (3) maximum power capture region, which 

begins at the minimum nominal wind speed; and (4) 

cutting speed, at which wind speeds are too high for safe 

operation. The main objective of wind turbine system 

operation controls is to optimize the conversion of wind 

energy into mechanical energy to generate electricity. 

These systems are characterized by nonlinear 

aerodynamic behaviors and depend on the 

uncontrollable stochastic force of the wind, using defects 

as a driving signal. The design of such a system, from 

analysis and control designs to real-world applications, 

requires an accurate global mathematical model of 

turbine dynamics. Normally, such a model is obtained by 

combining the models of constituent subsystems with 

overall wind turbines dynamics. This section describes 

the combination of a low speed flexible shaft model with 

a conceptual two-mass wind turbine model.   

 

 
Figure 2. Wind turbine reference power curve for different wind speed 

zones. 

Takagi-Sugeno Model of the Wind Turbine System : 

State space representation of the wind turbine: 

     To use the Takagi-Sugeno Approach, the model is 

first transformed into a state space representation. We 

define the state and input vectors following [19]: 
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     Equations (5), (6), (7), (9) and (4)  provide the 

rankings for each blade. The model of the wind turbine 

can be written into a state space embedding the 

nonlinearities in the parameters: 

 

   ( ) ( ) ( )x t A x t B u t                (13) 

 

 ( ) ( )y t C x t                    (14) 

 

Remark 1. The nonlinear system structure presented 
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in (13) and (14) was studied in [19]. The nonlinearity of 

this structure is presented in the terms 'zi' ((15), (16) and 

(17)) from the coefficient of power Cq(λi,βi) and the wind 

speed νw,i(t) for each blade. For this reason we used 

Takagi-Sugeno to solve the nonlinearity problem as 

shown in the following section. 

Where 
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Wind turbine fuzzy model: 

     The Takagi-Sugeno (T-S) model is applied using the 

method presented in [24]. The fuzzy model proposed by 

Takagi and Sugeno [25] is described by fuzzy IF-THEN 

rules which represent local linear input-output relations 

of a nonlinear system. The main feature of a 

Takagi-Sugeno fuzzy model is to express the local 

dynamics of each fuzzy implication (rule) by a linear 

system model. The ith rules of the T-S fuzzy models are in 

the following form: 

Model Rule i: 

 

 IF:  z1(t) is Mi,1, z2(t) is Mi,2 and z3(t) is Mi,3 

THEN: 
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Where i = 1, 2, ..., r . 

     Here, Mi,j is the fuzzy set and r = 23 is the number 

of model rules, Ai ϵ Rn×n, z1(t), z2(t), z3(t) are known 

premise variables that can be functions of the state 

variables, external disturbances, and/or time. Given a 

pair of x(t); u(t), the final outputs of the fuzzy systems 

are inferred as follows:       
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which can be rewritten as : 
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     For all t, the term Mi,j(zj(t)) is the grade of 

membership of zj(t) in Mi,j. Since: 
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     From Eqs. (20) to (23), z1(t) ϵ [z1,min;z1,max],   z2(t) ϵ 

[z2,min; z2,max], z3(t) ϵ [z3,min; z3,max]  is bounded. From the 

maximum and minimum values z1(t), z2(t) and z3(t) can 

be represented by: 
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     Therefore the membership functions can be 

calculated as: 
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     The membership functions are specified as shown 

in Table 1 based zi,max and zi,min : 
 

Table 1. Fuzzy Model. 

Sets z1(t) z2(t) z3(t) A matrix 

Rule 1 z1,min(t) z2,min(t) z3,min(t) A1 

Rule 2 z1,max(t) z2,min(t) z3,min(t) A2 

Rule 3 z1,min(t) z2,max(t) z3,min(t) A3 

Rule 4 z1,max(t) z2,max(t) z3,min(t) A4 

Rule 5 z1,min(t) z2,min(t) z3,max(t) A5 

Rule 6 z1,max(t) z2,min(t) z3,max(t) A6 

Rule 7 z1,min(t) z2,max(t) z3,max(t) A7 

Rule 8 z1,max(t) z2,max(t) z3,max(t) A8 
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Fuzzy Controller Design: 

     A state feedback controller is designed based on 

the wind turbine TS model cited in the previous section 

using  a design procedure called "parallel distributed 

compensation" (PDC) [27]. This model-based design 

procedure was proposed in [26]. 

     In the PDC design, each control rule is designed 

from the corresponding rule of a T-S fuzzy model. For the 

fuzzy model (18), the following fuzzy controller is built via 

the PDC: 

 

Control Rule i: 

 IF:  z1(t) is Mi,1, z2(t) is Mi,2 and z3(t) is Mi,3 

 THEN:  ( ) ( )iu t T x t ; i=1, 2, ..., 8            

 

where Ti is the feedback control gain, and can be 

described a fuzzy control rule. The overall fuzzy 

controller is represented by: 
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1

1

1

( ( )) ( )

( ) ( ( )) ( )

( ( ))

r

i i r
i

i ir
i

i

i

z t T x t

u t h z t T x t

z t

 (32) 

 

     Theorem 1. The design is based on the Lyapunov 

stability theory and LMI condition for stability of T-S 

systems in [21]. The LMI region stabilization problem in 

the case of S(α,r,θ) has a solution if and only if there 
exists a symmetric positive definite matrix Xi and a matrix 

Yi satisfying: 

 

           2 0
T T T

i i i i i i iA X BY X A Y B X     (33)  

      
   

    
0

i i i i i

T T T
i i i i i

rX qX A X BY

qX X A Y B rX
 (34)   

 

 
 

      
       

( )sin( ) ( ( ))cos( )
0

( ( ))cos( ) ( )sin( )

T T T T T T
i i i i i i i i i i i i

T T T T T T
i i i i i i i i i i i i

A X BY X A Y B A X BY X A Y B

A X BY X A Y B A X BY X A Y B
(35)   

  

The solution to our problem is given by :            

         

              
 1

i i iT Y X                 (36) 

 

where α is the minimum response speed, r is the 

maximum response speed, and θ is the overshoot. The 
LMI region S is shown in the following Figure 3: 

 

 
Figure 3. Poles in the LMI region S(α, r, θ). 
 

     Remark 2. All the poles are indeed located in the 

LMI region S(α,r,θ) as show in Figure 3, which assures 

system stability (20). 

PMI Observer Design: 

     From Eqs. (14) and (20), the wind turbine T-S fuzzy 

model can be rewritten with the noise and the 

unmeasurable premise variables subject to faults and 

effect both actuator and sensor as follows: 

 







       


      


8

1

( ) ( ( ))( ( ) ( ) ( ) ( ))

( ) ( ) ( ) ( )

i i i a

i

s

x t h z t A x t B u t F f t R t

y t C x t F f t H t

    (37) 

 

where x(t) ϵ Rn represents the state vector, u(t) ϵ Rnu is 

the input vector, fa(t) ϵ Rnfa and fs(t) ϵ Rnfs are respectively 

the actuators and sensors faults vectors,    w(t) ϵ Rnw is 

measurement noise vector, and y(t) ϵ Rny and represents 

the output vector. Ai ϵ Rn×n are the state matrices, B ϵ 

Rn×nu is the input matrices, C ϵ Rny×n is the output matrix, 

Fi ϵ Rn×nfa and F ϵ Rny×nfs are the faults matrices, and R ϵ 

Rn×nw and H ϵ Rny×nw are the disturbance matrix. 

The hi(z(t)) represents the membership functions 

which depend on the unmeasurable premise, state x(t) of 

the system. These functions satisfy the convex sum 

property: 

 

         


  


  


8

1

( ( )) 1 ,      t 0

0 ( ( )) 1 ,      for i=1, 2, ..., 8

i

i

i

h z t

h z t

        (38) 

 

 

     Hypothesis 1. The faults are assumed to be 

time-varying signals whose kth time derivatives are 

bounded by f0. The following notations are used: 

 

          



 




 
 

1

1 1

1

( ) ( )

( ) ( )

( ) ( )

( ) 0

k k

k

f t f t

f t f t

f t f t

f t

                   (39) 

 

     Remark 3. This assumption allows for the 

consideration of a wide range of actuator and sensor 

faults [28]. 

 

     To simultaneously estimate the actuator and 

sensor faults, the system (37) is transformed to an 

augmented state using a new state f(t) thatassumes the 

fault actuator and sensor of the system is defined by:  

 

 
  
 

( )
( )

( )

a

s

f t
f t

f t
; Where f(t) ϵ Rnf. 

 

     The augmented system in the fault term can be 

represented as follows: 

 







       


      


8

1

( ) ( ( ))( ( ) ( ) ( ) ( ))

( ) ( ) ( ) ( )

i i i

i

x t h z t A x t B u t F f t R t

y t C x t F f t H t

     (40) 
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with nf = nfa + nfs and 
   

    
   

0
; .

0

i

i

F
F F

F
 

 

The system given by (40) can then be augmented as 

follows: 
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where 
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and    0 0C C F  . 

     The considered PMI observer simultaneously 

provides the states and actuator and sensor faults in the 

presence of unmeasurable premise variables presented 

in system (40) [29], and are described as follows:  

 




        


    


8

1

ˆ? ?( ) ( ( ))( ( ) ( ) ( ) ( ( ) ( )))

ˆ?( ) ( ) ( )

ii i i P

i

x t h z t A x t B u t F f t L y t y t

y t C x t F f t

 (42) 

 

where ˆ( )f t is obtained by the PMI observer as 

follows: 
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1

8

1

1
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f t h z t f t L y t y t

  (43) 

 

 

     To the augmented system presented in (41), the 

observer (42) becomes: 

 




      


  


8

1

? ?( ) ( ( ))( ( ) ( ) ( ( ) ( )))

?( ) ( )

a i i a a i

i

a

x t h z t A x t B u t L y t y t

y t C x t

   (44) 

where 
    

1 2 1

i i i i i

T
T T T k T k T

i P I I I IL L L L L L . 

     The estimation error of the state and unknown 

inputs and their derivatives is denoted as

  ˆ( ) ( ) ( )a a ae t x t x t . Using the system (41) and the 

observer (44), the estimation error dynamics obeys the 

following differential equation: 

 




     
8

1

( ) ( ( ))(( ) ( ) ( ) ( ))a i i i a i a

i

e t h z t A L C e t R L H t    (45) 

 

     The aim is to synthesize the gains iL  of the 

observer to ensure the stability of the system (45) 

generating the estimation error and to guarantee an 

attenuation rate γ of the disturbances transfer ωa(t) to 

error ea(t). This result is translated by the following 

constraints: 

 

        


 e ( ) 0  ;  (t)=0  ;  t 0lim a a

t

t          (46) 

 


  2

2

( )
  ;  (t) 0  ;  t 0

( )

a

a

a

e t

t
         (47) 

 

     Theorem 2. The system (45) is asymptotically 

stable and the L2 performance is guaranteed with an 

attenuation level γ > 0, if there exists a matrix P = PT > 0, 

with P ϵ R(n+knf)×(n+knf), and the matrix iK ϵ R(n+knf)×nf such 

that for all i = 1, ..., 8 the following minimization problem 

holds: 

 




     
   

2

min ( )

0

T T
i i i i i i

T T T
i i

A P PA K C CK I PR K H

R P H K I

      (48) 

 

Then, the gains of the PMI observer are computed by: 

 

              
 1

i iL P K                   (49) 

 

     Proof 1. Consider the quadratic Lyapunov’s 
function follows: 

 

     ( ( ) ) ( ) ( )   ,    P =
T T

a a aV e t e t P e t           (50) 

 

     The time-derivative of the quadratic Lyapunov 

function (45) leads to: 

 

     ( ( )) ( ) ( ) ( ) ( ) 
T T

a a a a aV e t e t P e t e t P e t         (51) 

 

By substituting ( )ae t  (45) in (51), the time-derivative of 

the quadratic Lyapunov function becomes: 
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                     (t)(R P-H K )e (t)+e (t)(PR -K H) (t)) 
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 (52) 

 

     The objective is to attenuate the effect of the 

disturbance ωa(t) on ea(t): 

 

  


2

2

2

  ;  0  ;  0
a

a

a

e
          (53) 

 

while ensuring the stability of the augmented system 

(45). As already mentioned, the following condition must 

be met: 

 

  ( ( )) ( ) ( ) ( ) ( ) 0
T T

a a a a aV e t e t e t t t       (54) 

 

By substituting (52), we obtain: 
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(55) 

 

which can be put in the form: 
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     The sufficient condition for (48) to be verified is: 

    

   


     
    

2
0  ,  i 1,...,8

T T
i i i i i i

T T T
i i

A P PA K C CK I PR K H

R P H K I
(57) 

 

Simulations Results: 

     The proposed wind turbine controller is 

implemented with a sampling frequency of 100 Hz. The 

controller starts in mode 1. Figure 4 shows the evolution 

over time of the wind speed sequence νω(t) in the 

proposed model (the input). Figure 5 shows the 

evolution over time of the proposed centered noise ω(t). 

All simulations are taken for 4400s. The simulation 

results show that our proposed controller outperforms 

some existing approaches. The following subsection 

presents simulation results for the estimation of states, 

actuator and sensor faults as follows: 

 
Figure 4. Wind speed sequence υω(t) used in the proposed wind turbine 

system benchmark model. 

 

 
Figure 5. Proposed centered noise ω(t) in terms of time to the 

proposed wind turbine system benchmark model. 

State estimation: 

     The wind turbine system used in this run is 

composed of a three pitch actuator system, the 

generator system and the Drive Train system. Solving the 

LMIs constraints (48) of theorem 2 thus leads to PMI 

observer gain. 
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     Using the proposed PMIO above, each state will be 

estimated by itself, the actuator and sensor faults as 

follows: 
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Pitch actuators system 1 angle β1 

     Figure 6 and 7 respectively show the pitch 

actuators system 1 angle estimation 1̂  and the error 

estimation 1̂
e with the proposed PMI observer, where 

 1 1
ˆ

est
 and    

1 1 1̂e . The simulation results 

show that our proposed approach outperforms some 

existing approaches [8]: 

 

 
Figure 6. Pitch actuators system 1 angle β1 and her estimated β1est in 

terms of time. 

 

 
Figure 7. Error of estimation of pitch angle actuators system 1 eβ1 in 

terms of time.  

 

     Moreover, following Figure 6, the following figures 

show the pitch actuators system 1 angle estimation β1est, 

indicating the effectiveness of our proposed estimation 

strategy: 

 

 
 

 
 

 
 

 
 

 
 

Pitch actuators system 2 angle β2 

     Figures 8 and 9 respectively show the pitch 

actuators system 2 angle estimation 2̂  and the error 

estimation 2̂
e with the proposed PMI observer, where 

 2 2
ˆ

est
 and    

2 2 2̂est
e . The simulation shows 

that our proposed approach outperforms some existing 

approaches [8]:     
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Figure 8. Pitch actuator system 2 angle β2 and estimated β2est in terms 

of time. 

 

 

 

Figure 9. Estimation error of pitch angle actuators system 2 eβ2est in 

terms of time. 

 

     Moreover, following Figure 8, the following figures 

show the pitch actuator system 2 angle estimation β2est, 

indicating the effectiveness of our proposed estimation 

strategy: 

 

 

 

 

 

 

 

 

 

 

Pitch actuator system 3 angle β3 

     Figures 10 and 11 respectively show the pitch 

actuator system 2 angle estimation 3
ˆ  and the error 

estimation 3̂
e with the proposed PMI observer, where 

 3 3
ˆ

est
 and    

3 3 3̂est
e . The simulation shows 

that our proposed approach outperforms some existing 

approaches [8]: 

 

 

Figure 10. The pitch actuators system 3 angle β3 and her estimated β3est 

in terms of time. 
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Figure 11. Error of estimation of pitch angle actuators system 3 eβ3est in 

terms of time. 

 

     Moreover, following Figure 10, the following figures 

show the pitch actuator system 3 angle estimation β3est, 

indicating the effectiveness of our proposed estimation 

strategy: 

 

  

 
 

 
 

 
 

 

 

Generator torque τg 

     Figure 12 and 13 respectively show the generator 

torque estimation̂ g and the error estimation ̂g
e with the 

proposed PMI observer, where  ˆ
estg g and 

    ˆ
gest g ge . The simulation shows that our proposed 

approach outperforms some existing approaches [8]:  

 

 

Figure 12. Generator torque τg and her estimated τg,est in terms of time. 

 

 

Figure 13. Error of estimation of generator torque eτg,est in terms of 

time. 

 

http://www.ausmt.org/


Yassine FADILI , Kaoutar LAHMADI & Ismail BOUMHIDI 

www.ausmt.org  133          auSMT Vol.9 No.3 (2019) 

     Moreover, following Figure 13, the following figures 

show the generator torque estimation τg,est, indicating 

the effectiveness of our proposed estimation strategy: 

 
 

 
 

 
 

 
 

 

Generator speed ωg 
     Figure 14 and 15 respectively show the generator 

speed estimation ̂g and the error estimation ̂g
e with 

the proposed PMI observer, where  ˆ
estg g  and 

    ˆ
gest g ge . The simulation shows that our proposal 

outperform estimate robust than some existing approach 

in the literature [8]: 

 

 

Figure 14. Generator speed ωg and her estimated ωg,est in terms of time. 

 

 

Figure 15. Error of estimation of generator speed eωg,est in terms of 

time. 

 

     Following figure 14, the following figures show the 

generator speed estimation ωg,est, indicating the 

effectiveness of our proposed estimation strategy: 
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Rotor speed ωr 
     Figure 16 and 17 respectively show the rotor speed 

estimation ̂r and the error estimation ̂r
e with the 

proposed PMI observer, where  ˆ
estr r  and 

    ˆ
rest r re . The simulation shows that our proposed 

approach outperforms some existing approaches [8]: 

 

 

Figure 16. Rotor speed ωr and her estimated ωr,est in terms of time. 

 

 

Figure 17. Error of estimation of rotor speed eωr,est in terms of time. 

 

     Following figure 16, the following figures show the 

rotor speed estimation ωr,est, indicating the effectiveness 

of our proposed estimation strategy: 
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Sensor fault fs 

     Figure 18 shows the sensor fault estimation ŝf  

with the proposed PMI observer, where ˆ
ests sf f . The 

simulation shows that our proposed approach 

outperforms some existing approaches [8]: 

 

 

Figure 18. Sensor fault fs and her estimated fs,est in terms of time. 

 

     Following Figure 18, the following figures show the 

sensors fault estimation fs,est, indicating the effectiveness 

of our proposed estimation strategy: 

 

 
 

 
 

 

Actuators fault fa 

     Figure 19 shows the actuator fault estimation âf  

with the proposed PMI observer, where ˆ
esta af f . The 

simulation shows that our proposed approach 

outperforms some existing approaches [8]: 

 

 

Figure 19. Actuator fault fa and her estimated fa,est in terms of time. 
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     Following figure 19, the following figures show the 

actuator fault estimation fa,est, indicating the 

effectiveness of our proposed estimation strategy: 
 

 
 

 
 

 
 

     Finally, this proposed FDI approach can effectively 

estimate all states of the wind turbine system (13) while 

isolating actuator and sensorfaults. However, the sliding 

mode observer proposed in [8] is very sensitive to 

changes due to random noise and unusual defects, and 

the simulations are conducted to test the efficiency SMO 

using typical (i.e., triangular and rectangular) defects 

without noise. Consequently, the proposed PMI observer 

is more efficient and robust than the SM observer in 

estimating and detecting wind turbine system faults. 

Conclusion  

     Fault detection and isolation in wind turbines is 

addressed through the use of the Proportional 

Multi-Integral Observer. First, the wind turbine system 

model was linearized using the Takagi-Sugeno (TS) 

approach based on the Lyapunov stability theory and LMI 

condition. We then consider a PMI observer for the T-S 

fuzzy model to estimate both actuator and sensor faults. 

The kth derivatives of the actuators and sensor faults are 

not equal to zero and are bounded norms. However, 

based on the Lyapunov stability theory and L2 

performance analysis, design conditions are established 

in LMIs formulations. Finally, simulation results show our 

proposed approach outperforms some existing 

approaches. 
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