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Fault detection and isolation using sliding mode observer for uncertain

Takagi-Sugeno fuzzy model

Abdelkader Akhenak, Mohammed Chadli, José Ragot and Didier Maquin

Abstract— This paper addresses fault detection and isolation
(FDI) problem using a sliding mode fuzzy observer on the
basis of a uncertain Takagi-Sugeno (T-S) fuzzy model. First,
a robust fuzzy observer with respect to the uncertainties is
designed. The convergence of the fuzzy observer is performed
by the search of suitable Lyapunov matrices. It is shown how
to synthesis observers using a set of linear matrix inequalities
(LMI) conditions. Once the fuzzy observer is designed, FDI
problem for nonlinear systems described by T-S fuzzy systems
using the fuzzy observer is presented. A bank of fuzzy observer
is then designed in order to investigate fault diagnosis problems.
The validity of the proposed methodology is illustrated on a
dynamic vehicle model.

I. INTRODUCTION

The objective of fault diagnosis is not only to decide if a

fault is present in a system (fault detection), but also to the

determination of the kind and the location (fault isolation)

or the characterization of the fault by some attributes (fault

identification). In general, the task of fault detection and

diagnosis is solved in two main steps: symptom generation

step and diagnostic step. In the first step, certain quantities

called symptoms are generated to indicate the state of the

process, and then in the second step, the relation between

symptoms and faults is established. Typically, this requires

the selection of the most relevant symptoms, which are robust

against noise, disturbances and standard changes of the sys-

tem. Modern approaches are based on a process model and

exploit the mathematical relations between different process

signals. They enable a fine diagnosis but require deeper

insight and understanding of the process and need much

effort to develop, particularly for nonlinear and complex

processes.

In the conventional model-based FDI schemes, which include

parameter estimation, observers and parity space methods

are based on the deviation between measured and estimated

process states or outputs and nominal ones, leading to

analytical symptoms [1][2][3][4]. Obviously, they require

accurate mathematical models of the system. However, the

task of establishing a mathematical description for complex

nonlinear processes is often difficult and time consuming.
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In general, the nonlinear systems are firstly linearized at an

operating point, and then robust techniques are applied to

generate residuals, which are robust against limited parame-

ter variations.

However, this assumption of linearity is checked only in a

limited vicinity of a particular operating point. The Takagi-

Sugeno (T-S) fuzzy model approach can apprehend the

nonlinear behavior of a system, while keeping the simplicity

of the linear models [5]. Indeed, the real physical systems are

often nonlinear. As it is delicate to synthesize an observer for

an unspecified nonlinear system, it is preferable to represent

this system with a fuzzy model. The idea of the fuzzy model

approach is to apprehend the global behavior of a system

by a set of local models (linear or affine), each local model

characterizing the behavior of the system in a particular zone

of operation. The local models are then aggregated by means

of an interpolation mechanism.

Recently, several research have exploited the fuzzy modelling

approach for fault detection and isolation [4][6][7]. Park et

al. [8] have presented the design of a robust adaptive fuzzy

observer for uncertain nonlinear dynamic systems. In [9]

authors have considered the design of sliding mode fuzzy

observer for FDI.

In this paper, we propose a methodology for the diagnosis of

dynamic nonlinear processes described by T-S models using

fuzzy observers. Typically, the design of a T-S fuzzy observer

requires a precise mathematical description of the plant

under interest in the form of a T-S dynamic model, which

includes both local linear models and activation functions.

The local linear models are state space affine models that

can be derived directly from first principle or from empirical

models.

This paper is organized as follows: section 2 gives the general

structure of the considered uncertain T-S fuzzy model. In

section 3, the design of sliding mode fuzzy observers is

treated. Section 4 gives a sensor and actuator FDI for

dynamic vehicle model, which is represented by a T-S fuzzy

model. Finally, a conclusion is given in section 5.

Notation: Throughout the paper, the following useful nota-

tion is used: X > 0 means that X is a symmetric positive

definite matrix, IM = {1, 2, ...,M} and ‖.‖ represents

the Euclidean norm for vectors and the spectral norm for

matrices.



II. TAKAGI-SUGENO FUZZY MODEL REPRESENTATION

The major motivation for the fuzzy modelling methodology

is that local modelling is simpler than global modelling

because locally there are less relevant phenomena, and

interactions are simpler. Typically, this is done by dividing

the full range of all possible operating conditions into several

regimes where in each regime the system is represented by

local linear models [5][10]. The different operating regimes

can have either different local model structures (hetero-

geneous) or same local model structures (homogeneous).

Obviously, it is assumed that the whole operating range of

the system is completely covered by these regimes. Here, we

consider using the following fuzzy uncertain dynamic model

to represent a complex nonlinear system with unknown

inputs, which includes both local analytic linear models and

fuzzy membership functions:






















ẋ =

M
∑

i=1

µi (ξ)
(

(Ai + ∆Ai)x + Biw + Riw̄ + Di

)

y =
M
∑

i=1

µi (ξ) Cix

(1)

with:
M
∑

i=1

µi(ξ) = 1 and 0 ≤ µi(ξ) ≤ 1 ∀i ∈ IM

where x ∈ R
n is the state vector, w ∈ R

m the input vector,

w̄ ∈ R
q, q < n, contains the unknown inputs and y ∈ R

p

the measured outputs. Matrices Ai ∈ R
n×n and Bi ∈ R

n×m

denote the state matrix and the input matrix associated with

the ith local model. Matrices Ri ∈ R
n×q are the distribution

matrices of unknown inputs. Di ∈ R
n is introduced to take

into account the operating point of the system. At last, ξ is

the so-called decision vector which may depend on some

subset of the known inputs and/or measured variables to

define the operating regimes.

The matrices ∆Ai are unknown time-varying matrices with

appropriate dimensions, which represent parametric uncer-

tainties in the model. This kind of uncertainties is known as

unmatched uncertainties. We also consider that the unknown

input w̄ are bounded.

‖∆Ai‖ ≤ δi and ‖w̄‖ ≤ ρ (2)

The activation functions µi(ξ) are not Boolean ones, then

several local models are active at each time and the coeffi-

cients µi(ξ) i ∈ {1, ...,M} quantify the relative contribution

of each local model to the global model. The choice of the

number M of local models for that multiple model may

be intuitively done by taking into account a certain number

of operating regimes. Matrices Ai, Bi, Di, Ri and Ci can

be obtained by using the direct linearization of an a priori

nonlinear model around operating points, or alternatively by

using an identification procedure [11], [12], [13]. From a

practical point of view, matrices Ai, Bi, Di, Ri and Ci

describe the system’s local behaviour around the ith regime.

III. SLIDING MODE FUZZY OBSERVER

This section proposes sliding mode unknown input fuzzy

observer (SMUIFO) based on a nonlinear combination of

local unknown input observers. The proposed structure in-

volves sliding terms allowing to compensate the uncertainties

and the unknown inputs. The proposed sliding mode fuzzy

observer of the T-S model (1) has the following form:






















˙̂x =

M
∑

i=1

µi (ξ)
(

Aix̂ + Biw + Di + Gi (y − ŷ) + νi + αi

)

ŷ =
M
∑

i=1

µi (ξ) Cix̂

(3)

Let us note that νi and αi can be considered as variables

which compensate respectively the errors due to the unknown

inputs and the model uncertainties. Their specific structures

will be described further. Our objective is to design gain

matrices Gi and variables νi ∈ R
n and αi ∈ R

n, that

guarantee the asymptotic convergence of x̂ towards x.

To establish the conditions for the asymptotic convergence

of the fuzzy observer (3), let us define the state and output

estimation errors:

e = x − x̂ (4a)

ry = y − ŷ =

M
∑

i=1

µi (ξ) Cie (4b)

Using the equations (1) and (3), the dynamic of the state
estimation error is:

ė =

M
∑

i=1

M
∑

j=1

µi (ξ) µj (ξ)
(

Āije + ∆Aix + Riw̄ − νi − αi

)

(5)

with: Āij = Ai − GiCj (6)

Theorem 1: The error of state estimation (10) converges

globally asymptotically to zero if there exists a symmetric

positive definite matrix P ∈ R
n×n, matrices Wi ∈ R

n×p

and positive scalars β1, β2 and β3 satisfying the following

conditions for all i, j ∈ IM :





AT
i P + PAi − CT

i W T
j − WjCi +

(

β2δ2

i + β3

)

I P

P −β1I



 < 0

(7)

The gains Gi and the terms νi and αi of the fuzzy observer
(3) are given by the following equations:










































If ry 6= 0



























νi = ρ2β−1

3

‖PRi‖
2

2 rT
y ry

P−1

M
∑

j=1

µj(ξ)C
T
j ry

αi = β1 (1 + β2) δ2

i

x̂T x̂

2 rT
y ry

P−1

M
∑

j=1

µj(ξ)C
T
j ry

If ry = 0

{

νi = 0
αi = 0

(8)
Gi = P−1Wi. (9)

The proof of the asymptotic convergence of the T-S observer

and also relaxed conditions can be found in [14].



In the case of common output matrix (Ci = C), we have

ė =

M
∑

i=1

µi (ξ)
(

Āiie + ∆Aix + Riū − νi − αi

)

(10)

and it suffices to replace j indices by i in conditions (7).

IV. APPLICATION TO AUTOMATIC STEERING OF VEHICLE

A. Vehicle Takagi-Sugeno model representation

Different models related to automatic steering of vehicle have

been studied in the literature [15][16][17] [18]. Here, we

have chosen to consider the coupling model of longitudinal

and lateral motions of a vehicle. This model, already used

in [15], is strongly nonlinear and is given by the following

equations:

u̇ = vr − fg +
(fk1 − k2)

M
u2 + cf

v + ar

Mu
δ +

T

M
(11a)

v̇ = −ur −
(cf + cr)

Mu
v +

(bcr − acf )

Mu
r +

cfδ + Tδ

M
(11b)

ṙ =
(bcr − acf )

Izu
v −

(

b2cr + a2cf

)

Izu
r +

aTδ + acfδ

Iz

(11c)

where, u, v and r are the longitudinal velocity, the lateral

velocity and the yaw rate, respectively, δ is the steering

angle, T is the traction and/or braking force. Table 1 lists

the parameters of the above vehicle model.

Parameters of the vehicle system
M Mass of the full vehicle 1480 kg
Iz Moment of inertia 2350 kg.m2

g Acceleration of gravity force 9.81 m/s2

f Rotating friction coefficient 0.02
a Distance from front axle to CG1 1.05 m
b Distance from rear axle to CG 1.63 m
cf Cornering stiffness of front tyres 135000 N/rad
cr Cornering stiffness of rear tyres 95000 N/rad
k1 Lift parameter from aerodynamics 0.005 Ns2/m2

k2 Drag parameter from aerodynamics 0.41 Ns2/m2

The nonlinear vehicle dynamics can be written as follows:

ẋ(t) = F (x(t), w(t)) (12a)

y(t) = Cx(t) (12b)

with

C =

[

1 0 0

0 0 1

]

(13)

where F is a nonlinear function of the state vector x =
[u v r], w gathers the two inputs δ and T and y(t) gathers

the two inputs y1 = u and y2 = r. As it is delicate to

synthesize an observer for a nonlinear system, we preferred

to represent this system with a T-S fuzzy model. Then, we

propose to linearize the nonlinear model (12) around some

operating points [x(i) w(i)]. Next, we integrate the set of the

linear models in a T-S fuzzy model [5]. The proposed T-S

model is described as follows [19]:

ẋ =

N
∑

i=1

µi (y1) (Aix + Biw + Di) (14a)

Ai =
∂F

∂x

∣

∣

∣

∣x=x(i)

w=w(i)

Bi =
∂F

∂w

∣

∣

∣

∣x=x(i)

w=w(i)

(14b)

Di = F (x(i), w(i)) − Aix
(i) − Biw

(i) (14c)

The previous model (14) has been established on the basis of

the nonlinear model (11) considering that the different model

parameters are perfectly known. In fact, some parameters are

uncertain. It is particularly true for the cornering stiffness

coefficients cf and cr. These uncertainties can be modelled

as bounded additive perturbations:

cf = cf0 + ∆cf and cr = cr0 + ∆cr (15)

with |∆cf | < df and |∆cr| < dr. Therefore, these uncer-

tainties are taken into account in the considered model which

is now written as:










ẋ =
3

∑

i=1

µi (y1)
(

(Ai + ∆Ai) x + Biw + Di

)

y = C x

(16)

Three local models were chosen for this application. This

number gives a good compromise between the quality of

the obtained model and its complexity. The membership

functions which are triangular as shown figure 1 only depend

on the longitudinal velocity u.

14 15 16 17 18 19
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
µ

1
(u(t)) µ

2
(u(t)) µ

3
(u(t)) 

Fig. 1. Membership functions

The model uncertainties are such that:

∆Ai,(j,k) = θAi,(j,k)η j, k ∈ {1, 3} and i ∈ {1, 3}

where Ai,(j,k) denotes the (j, k)th element of Ai and θ =
0.1. The function η(t) is a piece-wise constant function

which magnitude is uniformly distributed on the interval

[0 1]. Its time evolution is depicted on figure 2.

The numerical values of the different matrices Ai, Bi, Di
and C are:

A1 =







−0.052 0.403 0.239

−0.366 −10.82 −13.743

0.728 0.388 −11.890






B1 =







10.99 7 × 10−4

91.216 −10−4

60.319 0









0
0 5 10 20

0.1

0.6

0.7

0.8

0.9

0.5

1

0.2

0.3

0.4

15

Fig. 2. Piece-wise constant function η

A2 =







−0.085 2.895 1.925

−0.989 −9.282 −16.213

0.507 0.333 −10.198






B2 =







3.359 7 × 10−4

91.216 3 × 10−4

60.319 2 × 10−4







A3 =







−0.031 2.065 0.693

−1.141 −8.468 −17.870

0.441 0.303 −9.303






B3 =







1.548 7 × 10−4

91.216 2 × 10−4

60.319 1 × 10−4







D1 =







−0.832

5.259

−10.46






D2 =







0.087

16.562

−8.496






D3 =







0.392

20.951

−8.092






C =

[

1 0 0

0 0 1

]

V. FAULT DETECTION AND ISOLATION FOR VEHICLE

MODEL

The objective of this part is to generate residuals that reflect

the faults acting on the system (16). An ideal residual

signal should remain zero in the fault-free case and non-

zero when fault occurs. Once a fault has been detected,

it must be estimated. The fault estimation will specify the

type of fault, its duration, its amplitude and eventually

its probable evolution. In the literature, there are several

fault detection techniques. They are generally based on the

change detection of the average and the variance. In this

FDI study, we will not deal with the detection thresholds of

residuals. We will confine ourselves only to the detection and

localization of sensor and actuator faults taking into account

the uncertainties modelling.

A. Sensor fault detection and isolation

In order to identify the sensor fault, we consider that the

actuators are faultless (w̄ = 0) while the output vector y

is corrupted by the sensor fault ∆y. Then the system (16)

becomes:










ẋ =
M
∑

i=1

µi (y1)
(

(Ai + ∆Ai)x + Biw + Di

)

y = Cx + ∆y
(17)

Three fuzzy observers are designed, one based on the lon-

gitudinal velocity observer y1 = u, the second based on the

yaw rate y2 = r and the last is based on the two outputs u

and r.

Using the numerical values of state matrices Ai and output

matrix C, we can easily checked that the following observ-

ability conditions are satisfied.

∀ i ∈ {1, 2, 3} and j ∈ {1, 2}, rank(Ai, C(j, :)) = 3

which implies that it is possible to estimate the state through

either the first output u (y1) or the second one r (y2).

longitudinal velocity
observer1

global observer3

yaw rate observer2

[

δ
T

]

û1

r̂1

û3

r̂3

û2

r̂2

u

r

Fig. 3. Block diagram of the banc observer-based FDI

The sensor fault detection and localization is based on the

analysis of the residuals ryik
= yi − ŷi,k, with k ∈ {1, 2, 3},

generated by three observers and i ∈ {1, 2} The three

observers, diagrammed in figure 3, depend on two inputs δ

and T applied to the system (11). The longitudinal velocity

observer1 and the yaw rate observer2 use respectively only

one output u and r. The global observer3 uses two outputs

u and r.

It is important to note that the implementation of this sliding

mode fuzzy observer induces a practical problem: when the

estimation error ry tends towards zero, the magnitude of αi

may increase without bound. This problem is overcome as

follows:











If ‖ry‖ ≥ ε ⇒ αi = β1 (1 + β2) δ2
i

x̂T x̂

2 rT
y ry

P−1CT ry

If ‖ry‖ < ε ⇒ αi = 0

The terms αi are fixed to zero when the output estimation

error is such that ‖ry‖ ≤ ε, where ε is a threshold chosen by

the user. In this case, the estimation error cannot converge

to zero asymptotically but to a small neighborhood of zero

depending on the choice of ε. For this example, we fixed ε

at 10−3.

Figures 4 and 5 show the additive signals that represent

sensor failures, the first one has been added to sensor 1 output

y1 between 5 and 10s, and the second one has been added

to sensor 2 output y2 between 13s and 18s.

00 2 4 6 8 10 12 14 20

0.04

0.08

0.12

0.16

16 18

Fig. 4. Sensor failure ∆y1

1) FDI using global observer3: the simulation results of

the fault detection and isolation based on the global observer3
are illustrated on the figures 6 and 7. The residuals (u− û3)
and (r − r̂3) (see figures 6 and 7) show only the moment

of the appearance and disappearance of sensor faults without

being able to locate the fault. So, there is an instantaneous

fault detection at time of appearance 5s and disappearance



0

0 2 4 6 8 10 12 14 20

-0.04

-0.08

-0.12 16 18

Fig. 5. Sensor failure ∆y2

10s of fault. Between this two times ]5s 10s[ there is a non

detection of fault. We can conclude that this are derivator

residues because they was not well conceived.

0

0 2 4 6 8 10 12 14 20

0.05

0.1

0.15

-0.05

-0.1

16 18

Fig. 6. u − û3 using global observer3

0

0 2 4 6 8 10 12 14 20

0.04

0.08

-0.04

-0.08

16 18

Fig. 7. r − r̂3 using global observer3

2) FDI using longitudinal velocity observer1: the simula-

tion results of the fault detection and isolation based on the

longitudinal velocity observer1 are illustrated on the figures

8, 9, 10 and 11. The residuals (u − û1) and (r − r̂1) (see

figures 9-11) generated by the observer1 allow to detect and

locate the fault sensor on the yaw rate output r. The fault

detection and localization is possible by this longitudinal

velocity observer1, because this observer does not depend

on the faulty output .

0 2 4 6 8 10 12 14 20

15

16

16

17

18

18

19

u û1

Fig. 8. u and û1 using longitudinal velocity observer1

0

0 2 4 6 8 10 12 14 20

0.01

0.02

-0.01

-0.02 16 18

Fig. 9. u − û1 using longitudinal velocity observer1

B. Actuator fault detection and isolation

In this section, an unknown input sliding mode fuzzy ob-

server (3) is proposed as a method for actuator fault detection

0

0

2

2 4 6 8 10 12 14 20-0.5

0.5

1.5

1

16 18

r r̂1

Fig. 10. r and r̂1 using longitudinal velocity observer1

0

0 2 4 6 8 10 12 14 20

0.02

-0.04

-0.08

-0.12 16 18

Fig. 11. r − r̂1 using longitudinal velocity observer1

and isolation (localization). We consider that the sensors are

faultless (∆y = 0). The figure 12 shows the additive signal

that represent the actuator failure ∆δ in the steering angle δ

between 7 and 15s. The T-S fuzzy model (11) described the

00 2 4 6 8 10 12 14 20

0.04

0.08

0.12

0.16

16 18

Fig. 12. Actuator fault ∆δ

vehicle model (14) becomes as follows:

ẋ =

N
∑

i=1

µi (y1)

(

(Ai + ∆Ai)x + Bi

[

δ + ∆δ
T

]

+ Di

)

(18)

In order to develop an actuator fault detection and localiza-

tion method, a sliding mode unknown input fuzzy observers

can be used. The first idea most obvious is to develop an

sliding mode observer without inputs δ and T . The structure

of the observer is given by the following equations:










˙̂x =

M
∑

i=1

µi (y1)
(

Aix̂ + Di + Gi (y − Cx̂) + νi + αi

)

ŷ = Cx̂
(19)

where νi, αi and Gi are given by (8) and (9).
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Fig. 13. δ̂ + ∆δ̂ using unknown input fuzzy observer (19)

It is easy to notice on the figures 13-15 that the actuator of

the steering angle is faulty. Indeed, the difference between
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Fig. 14. T̂ using unknown input fuzzy observer (19)

the two plots in Figure 13 shows the effect of actuator fault

∆δ.

The actuator residual generation is obtained if the matrix
∑M

i=1 µi(y1)Bi is of full column rank and if the input

number is less than the output number of the system (q ≤ p).

As the output estimation is based on the compensation of the

two inputs δ +∆δ and T (considered unknowns) and model

uncertainties ∆Ai by the sliding mode terms αi and νi, the

unknown input estimation is given by considering the T-S

model (18) and the sliding mode observer (19) as follows

[

δ̂ + ∆δ̂

T̂

]

≈ (KT K)−1KT

M
∑

i=1

µi (u) (Gi (y − ŷ) + νi + αi) (20)

with: K =

(

M
∑

i=1

µi (y1) Bi

)

.
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Fig. 15. ∆δ and its estimate ∆δ̂

Figure 16 shows the actuator fault estimation error ∆δ−∆δ̂.

This error is mainly due to the coupling between the terms νi

(compensation of model uncertainties) and αi (compensation

of the unknown input) through the estimation error ry .
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Fig. 16. Actuator fault estimation error: ∆δ − ∆δ̂

VI. CONCLUSION

In this work, we are concerned with the fault detection

and isolation problem of an uncertain nonlinear system

represented by a Takagi-Sugeno fuzzy model. The strategy

used is based on the sliding mode unknown input fuzzy

observer designed by the resolution of a set LMI conditions.

Then detection and isolation of sensor and actuator faults are

considered based on the synthesized sliding mode unknown

input fuzzy observers.

The validity of the proposed FDI approach has been carried

out on a vehicle dynamic model represented by a Takagi-

Sugeno fuzzy model taking account parametric uncertainties.
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