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Abstract—The paper presents a fast, accurate and simple 

systematic approach for online condition monitoring and severity 

identification of ball bearings. This approach utilizes compact 1D 

convolutional neural networks (CNNs) to identify, quantify, and 

localize bearing damage. The proposed approach is verified 

experimentally under several single and multiple damage 

scenarios. The experimental results demonstrated that the 

proposed approach can achieve a high level of accuracy for 

damage detection, localization and quantification. Besides its real-

time processing ability and superior robustness against the high-

level noise presence, the compact and minimally-trained 1D CNNs 

in the core of the proposed approach can handle new damage 

scenarios with utmost accuracy.  

 

Index Terms—Ball bearings, damage detection, convolutional 

neural networks (CNNs), real-time monitoring. 

I. INTRODUCTION 

PERATIONAL efficiency and reliability of rotating 

machinery remain vital in modern applications as the 

technology gets more advanced and sophisticated in 

numerous industrial sectors. Rolling element bearings are common 

machine elements widely used in all types of rotating machines, 

from small hand-held devices to heavy-duty industrial systems. 

Serving as active interface between rotating components and 

stationary internal supports, bearings play a key role in the smooth 

functioning of the machine. However, due to their relatively low 

price, wide availability and operational ease, careless users tend to 

forget the “best-practices” in terms of maintenance, repair and 

handling. That is why more bearings continue to fail, causing 

possibly a catastrophic collapse of the machine and reducing the 

reliability and even availability of the entire production line. 

 
 

Aging of bearings is inevitable since they are continuously 

exposed to short-term and long-term damage during operation. 

Early detection of embryonic bearing faults by real-time 

assessment of equipment condition using embedded sensors, 

allows replacement of the bearings, rather than larger parts of or 

the whole machine housing the bearing. Numerous studies have 

been published on condition monitoring, defect and fault detection; 

prognosis and diagnosis of bearings and their counterparts in 

rotating machinery. Different techniques, such as oil analysis, 

infrared thermography, acoustic emission, were used to track the 

degradation of bearings. These relatively easy techniques can 

pinpoint the existence of defects inside bearings but, unfortunately, 

they do not provide information about the location of the defect 

(e.g., the inner race, the outer race, the cage or the rolling element). 

Out of these approaches, vibration-based fault analysis appears to 

be the most efficient and advantageous in detecting, locating and 

quantifying bearing failure. Both time and frequency analysis have 

been used to investigate and track the effect of increasing defect 

sizes on the bearings’ vibration response. In general, fault detection 
and severity identification algorithms can be categorized into 

model-based approaches and data-driven approaches. The model-

based methods depend on a fundamental understanding of the 

physics of the process [1]. In data-driven methods, features can be 

extracted to characterize the historical process data as a priori 

knowledge to a diagnostic system. A large number of similar 

studies has utilized various tools and methods such as wavelet 

transforms [2], empirical mode decomposition method [3], fuzzy 

inference systems [4], Bayesian recursive framework [5], blind 

source separation [6], hidden Markov modeling [7], kernel-based 

neighborhood [8], probabilistic approaches [9], Welch method 

[10], regression-based methods [11], [12], and multivariate 

statistical analysis techniques such as kernel least squares based 

approach [13], and kernel direct decomposition-based 

method [14].  

In addition to the methods above, machine learning based 

methods for fault diagnosis of bearings have recently been 

introduced. Such methods require extracting damage-sensitive 

features from the measured vibration signals and then training a 

classifier with the ability to analyze the extracted feature to assess 

the condition of the monitored bearing. For example, in the study 

by Samanta et al. [15], hand-crafted features such as mean, root 

mean square (RMS), and Kurtosis were extracted from the 

vibration signals of a rotating machine with normal and damaged 

bearings. After that, three different artificial neural network (ANN) 

models were trained to classify these features into undamaged or 

damaged states. Similarly, Patel and Upadhyay [16] used Kurtosis, 

RMS, and Crest factor as the features and then compared ANNs 
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and. Support Vector Machines (SVMs) in terms of classification 

performance. Also, Prieto et a. [17] used statistical time-features 

extracted from the vibration signals along with a hierarchical 

neural network classifier for damage diagnosis of bearings.  

The main drawback of the aforementioned machine learning 

based methods is their strict dependence on the hand-crafted 

features used for classification of any vibration signal. Since the 

same features are to be used regardless of the vibration signal’s 
characteristics, there is no guarantee that they will capture the 

discriminative properties of any vibration pattern and hence, 

training a classifier based on such sub-optimal features may 

eventually result in a poor classification performance [18]. 

Convolutional Neural Networks (CNNs) are known for their 

ability to fuse both feature extraction and classification into a 

single learning body and thus eliminate the need for such fixed and 

hand-crafted features [19]. Conventional deep CNNs (i.e. 2D 

CNNs) have been originally introduced to perform object 

recognition tasks for 2D signals such as images or videos. They 

have recently become the de-facto standard for many Computer 

Vision and Pattern Recognition tasks within large data archives as 

they achieved the state-of-the-art performances [20]–[22]. 

Recently, several researchers have attempted to use deep 2D CNNs 

for fault diagnosis of bearings [23]–[30]. Since they operate only 

on 2D data, they have used different techniques to represent the 1D 

vibration signals in 2D. The most commonly used technique is to 

directly reshape the vibration signal into an n×m matrix called “the 
vibration image” [28]. Another technique was used in [24] where 

two vibration signals were measured using two accelerometers. 

After that, Discrete Fourier Transform (DFT) was applied, and then 

the two transformed signals were concatenated into a matrix and 

used as an input to the 2D CNN. However, it is known that 2D 

CNNs, especially the ones with deep architectures, first of all, 

exhibit a high computational complexity. Hence, 2D CNNs may 

not be suitable for online fault detection when dealing with 1D 

signals without a special hardware. Moreover, proper training of 

deep CNNs requires large training sets in order to achieve a 

reasonable generalization capability. This usually requires a large-

scale data augmentation of such limited vibration train data, which 

in turn further increases the computation complexity significantly.  

To address these drawbacks, compact 1D CNNs have been 

recently developed to operate directly and more efficiently on 1D 

signals. They have displayed a fast and accurate performance in 

several real-time monitoring applications such as classification of 

electrocardiogram (ECG) beats [19], structural health monitoring 

[18], [31]–[33], and motor fault detection [34]. Additionally, two 

recent studies have utilized 1D CNNs for damage detection in 

bearings [35], [36]. In the first study [35], a 1D CNN was trained 

to classify the measured vibration signals into two classes, healthy 

or damaged. While this 1D CNN displayed a reasonable damage 

detection performance, it was not able to identify the location and 

severity of the detected bearing damage. In the second study 

conducted by Zhang et al. [36], both single and ensemble of deep 

1D CNN(s) were created to detect, localize, and quantify bearing 

faults. The architecture of the deep 1D CNN used consisted of 6 

large convolutional layers followed by two fully connected layers. 

The (ensemble of) deep network(s) was trained for a total of 10 

specific damage cases representing the healthy state, three levels 

of ball damage, three levels of inner ring damages, and three levels 

of outer ring damages. Several “tricks” were used to improve the 

generalization performance of the deep CNN such as data 

augmentation, batch normalization, dropout, majority voting, and 

the use of ensemble of deep CNNs which achieved the best 

classification performance. The performance was tested for the 10 

scenarios and under several noise levels to verify its robustness. 

Severe noise levels (e.g. 0dB or less) have proven to deteriorate the 

performance significantly. Besides its significant computational 

complexity, this method used more than 96% of the total data for 

training. Hence the assumption that such a large set of training data 

will be available may hinder the usage of this method in practice. 

Furthermore, the approach presented in [36] was only tested for 

single damage scenarios where in each scenario, a single defect 

was introduced to a particular bearing component. This is a crucial 

limitation because in real cases, the degradation pattern may 

manifest in an obvious increase of damage area, as well as multiple 

numbers and locations of defective elements. In particular, when 

the number of spalls in defective bearings [37] or the number of 

cracks in defective teeth gears [38] increases, some features which 

are recognized as highly sensitive to single damage scenarios, may 

lose their ability to track the internal degradation when the number 

of simultaneous defects increases. 

In order to address the aforementioned drawbacks and 

limitations, in this study we propose a simpler, faster, and highly 

efficient and robust systematic approach for bearing damage 

monitoring (detection, localization and quantification). The 

significance and novel contributions of the proposed approach can 

be summarized as follows: 

1) Rather than the deep counterparts, compact 1D CNNs used in 

the core of the proposed approach can accurately detect, 

localize, and quantify bearing damages in real-time even in 

noisy environments. 

2) As a result of (1), the utilization of compact 1D CNNs will 

yield a high computational efficiency and achieve a high 

detection and localization performance with significantly 

limited training data. This will make the proposed solution 

more feasible in practical use, and more applicable for online 

fault detection without a special hardware setup that is 

required for deep CNNs (e.g., GPU farms or similar 

computing paradigms). 

3) The proposed approach does not require any “tricks” to 

improve the classification performance, which makes the 

training simple and feasible using an ordinary computer. 

4) Almost in all previous ML-based studies in the literature, such 

as [24], [36], the classifiers were trained and tested over the 

same, predefined set of damage scenarios and/or levels. 

Therefore, the proposed methods are only guaranteed to 

perform accurately when the condition of the monitored 

bearing matches one of the predefined states. The proposed 

approach does not make such a constraint on the working 

conditions. 

5) In addition to the single bearing damage cases, the proposed 

fault diagnosis approach will be tested under multiple bearing 

damage scenarios in which several defects are introduced at 

the same time to the monitored bearing. 

The rest of the paper is organized as follows. Section II presents 

an overview of the 1D CNNs and the main steps of the Back-

Propagation training method. Section III presents the proposed 

systematic approach for bearing fault detection and localization. 

Section IV explains the experimental setup used in this work. The 

efficiency of proposed method is demonstrated with an extensive 

set of experiments in Section V. Finally, Section VI concludes the 
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paper and suggests topics for future work. 

II. 1D CNN OVERVIEW 

The conventional 2D CNNs are a type of deep, biologically 

inspired feed-forward ANNs which are based on a core model for 

mammalian visual cortex. The proposed 1D CNNs [39] are their 

counterparts that work on 1D signals. Similar to 2D CNNs, two 

types of layers exist in the 1D CNNs: 1) the so-called “CNN-

layers” where both 1D convolutions and sub-sampling occur, and 

2) Fully-connected layers that are identical to the layers of a typical 

Multi-layer Perceptron (MLP) and hence called “MLP-layers”.  

CNNs perform (stacked) series of multi-scale sub-band 

decompositions in each hidden convolution-pooling layer.  This 

ability gives CNN the opportunity to isolate the target pattern (may 

it be an object of any size, or an anomaly pattern in 1D signal) no 

matter the size and the time-frequency range it occupies [40]–[42]. 

A raw vibration signal can even defy a human expert inspector 

since it looks more like a white Gaussian noise rather than a well-

structured signal with a proper pattern. When the signal is 

decomposed into many sub-bands in many scales, the CNN can 

then learn to “isolate” the signature of the anomaly (e.g. the bearing 
fault) from the common signature of the normal signal. The CNN-

layers are basically the “fused” version of the convolutional and 
sub-sampling layers of the conventional 2D CNNs. 

The structure of a 1D-CNN is determined by the following 

hyperparameters, which are usually determined by trial-and-error: 

1) Number of hidden CNN-layers. 

2) Number of hidden fully-connected layers. 

3) Number of neurons in each CNN and fully-connected layer. 

4) Filter kernels size. 

5) Subsampling factor. 

Three consecutive CNN layers of a 1D CNNs are shown in Fig. 

1. In this sample illustration, the 1D filter kernels have size 3 and 

the sub-sampling factor is 2 where the kth neuron in the hidden 

CNN layer, l, first performs a sequence of convolutions, the sum 

of which is passed through the activation function, 𝑓, followed by 

the sub-sampling operation. This is basically the predominant 

difference between 1D and 2D CNNs, where 1D arrays replace 2D 

matrices for both kernels and feature maps. At the end, the CNN 

layers process the raw 1D data and “learn to extract” such features 
that can be used in the classification task performed by the MLP-

layers. Therefore, both feature extraction and classification 

operations are fused into one process that can be optimized to 

maximize the classification performance. This is the main 

advantage of the 1D CNNs that can also provide a low 

computational complexity since the only costly operation is a 

sequence of 1D convolutions that are nothing but linear weighted 

sums of two 1D arrays. Such a linear operation during both forward 

and back-propagation can be executed efficiently in parallel.  

Since the learning stage is tuned for bearing damage detection 

in this study, a 1D CNN structure can now blend the extraction of 

features and “damage learning” stages of the raw accelerometer 

data from wireless sensors. As such, the CNN topology will permit 

the variations in the input layer dimension since the sub-sampling 

factor of the output CNN layer is set adaptively [39]. Details 

regarding forward and back-propagation in CNN layers are 

covered in Appendix A. 

 
Fig. 1.  Three consecutive hidden CNN layers of a 1D CNN. 

III. THE PROPOSED SYSTEM 

The proposed approach requires training two individual 1D 

CNNs. The first CNN, CNN𝑖 is responsible of evaluating the 

condition of the inner ring, while the second one, CNN𝑜 monitors 

the condition of the outer ring. The input to both CNNs is the 

vibration signal measured by the accelerometers. The output of CNN𝑖 is used to extract an index 𝑝𝑖  that represents the likelihood of 

damage at the inner ring, while the output of CNN𝑜 is used to 

compute 𝑝𝑜 which represent the likelihood of damage at the outer 

ring. Both CNNs are completely independent, which means that 

they can operate in a decentralized manner to produce 𝑝𝑖  and 𝑝𝑜.   

A. Training phase 

This is an offline operation (performed once) that trains two 

independent 1D CNNs. The first step is to produce three sets of 

data required to train each 1D CNN, as follows: 

1) The first dataset 𝐂1 consists of vibration signals corresponding 

to the undamaged case. 

2) The second dataset 𝐂2 consists of vibration signals 

corresponding to a severe inner ring defect. 

3) The third dataset 𝐂3 consists of vibration signals 

corresponding to a severe outer ring defect. 

It is important to note that unlike the previous CNN-based 

bearing fault detection methods in [35], [36] which require the 

corresponding set of data for each damage level  to train the 

classifier(s), the proposed method requires signals only from the 

severe inner- and outer-ring damage scenarios. The choice of the 

defect size in the severe inner and outer ring damage scenarios is 

up to the designer. This decision will determine the sensitivity of 

the proposed fault detection method to inner and outer ring defects. 

The next step is to divide these signals into a number of non-

overlapping frames, each with a fixed length of 𝑛𝑠 samples: 𝐂1 = [𝐂1,1 𝐂1,2 ⋯ 𝐂1,𝑁1]                                                           (1) 𝐂2 = [𝐂2,1 𝐂2,2 ⋯ 𝐂2,𝑁2]                                                           (2) 𝐂3 = [𝐂3,1 𝐂3,2 ⋯ 𝐂3,𝑁3]                                                           (3) 

where 𝑁1, 𝑁2, and 𝑁3 denote the number of frames in 𝐂1, 𝐂2, and 𝐂3, respectively. Frames in, 𝐂1, 𝐂2, and 𝐂3 are then grouped as 

follows: 𝐔𝑖 = [𝐂1,1 𝐂1,2 ⋯ 𝐂1,𝑁1 𝐂3,1 𝐂3,2 ⋯ 𝐂3,𝑁3]             (4) 𝐃𝑖 = [𝐂2,1 𝐂2,2 ⋯ 𝐂2,𝑁2]                                                           (5) 𝐔𝑜 = [𝐂1,1 𝐂1,2 ⋯ 𝐂1,𝑁1 𝐂2,1 𝐂2,2 ⋯ 𝐂2,𝑁2]            (6) 𝐃𝑜 = [𝐂3,1 𝐂3,2 ⋯ 𝐂3,𝑁3]                                                          (7) 

where 𝐔𝑖 contains the frames measured while the inner ring is 

undamaged and 𝐃𝑖 denotes the frames measured while the inner 

ring is damaged. Similarly, 𝐔𝑜 represents the frames measured 
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while the outer ring is undamaged and 𝐃𝑜 denotes the frames 

measured while the outer ring is damaged.  Next, the frames in each 

of the sets 𝐔𝑖, 𝐃𝑖, 𝐔𝑜, and 𝐃𝑜 are normalized between -1 and 1 and 

then randomly shuffled for training efficiency. The resulting 

normalized and shuffled vectors can be represented as: 𝐔𝐍𝑖 = [𝐔𝐍𝑖,1 𝐔𝐍𝑖,2 ⋯ 𝐔𝐍𝑖,𝑁1+𝑁3]                                  (8) 𝐃𝐍𝑖 = [𝐃𝐍𝑖,1 𝐃𝐍𝑖,2 ⋯ 𝐃𝐍𝑖,𝑁2]                                        (9) 𝐔𝐍𝑜 = [𝐔𝐍𝑖,1 𝐔𝐍𝑖,2 ⋯ 𝐔𝐍𝑖,𝑁1+𝑁2]                               (10) 𝐃𝐍𝑜 = [𝐃𝐍𝑖,1 𝐃𝐍𝑖,2 ⋯ 𝐃𝐍𝑖,𝑁3]                                     (11) 

The normalized and shuffled frames in 𝐔𝐍𝑖 and 𝐃𝐍𝑖 are then 

used to train the first classifier, CNN𝑖 which is responsible for the 

damage monitoring (detection and quantification) in the inner ring. 

This classifier should be able to process any input frame and 

determine whether it is corresponding to an undamaged or a 

severely damaged inner ring. Likewise, normalized and shuffled 

frames in 𝐔𝐍𝑜 and 𝐃𝐍𝑜 are used to train the second classifier, CNN𝑜 which is responsible for the damage monitoring in the outer 

ring. It is worth noting here that with a proper training, CNN𝑖 will 

eventually learn to ignore defects in the outer ring since the frames 

corresponding to severe outer ring damage are placed in 𝐔𝐍𝑖. 
Similarly,  CNN𝑜 will ignore the defects caused by severe inner 

ring damages since 𝐔𝐍𝑜 contains samples from a vibration signal 

generated under a severe inner ring defect. The training of CNN𝑖 
and CNN𝑜 is conducted according to the back-propagation 

methodology explained in Section II. Fig. 2 illustrates the proposed 

CNN training process. 

 
Fig. 2.  Training of the two 1D CNNs, CNN𝑖 and CNN𝑜. 

B. Damage monitoring 

Once the training phase is completed, CNN𝑖 will be able to 

classify any input frame to one of the following classes: 

• Class 1: Undamaged inner ring. 

• Class 2: Severe defect in the inner ring. 

Similarly, CNN𝑜 will classify the input frame to one of the 

following classes: 

• Class 3: Undamaged outer ring. 

• Class 4: Severe defect in the outer ring. 

As illustrated in Fig. 3, the two classifiers can be used to assess 

the condition of the bearing according to the following procedure: 

1) Measure the vibration response of the bearing. The measured 

signal is denoted as 𝐌. 

2) Divide the measured signal 𝐌 into 𝑁𝑇 non-overlapping 

frames, each with a fixed length 𝑛𝑠 samples: 𝐌 = [𝐌1 𝐌2 ⋯ 𝐌𝑁𝑇]                                              (12) 

3) Normalize the amplitude of each frame between -1 and 1: 𝐌𝐍 = [𝐌𝐍1 𝐌𝐍2 ⋯ 𝐌𝐍𝑁𝑇]                                 (13) 

4) Feed the normalized frames in 𝐌𝐍 to both CNN𝑖 and CNN𝑜 classifiers. 

5) Classifier CNN𝑖 will assign each of the 𝑁𝑇 measured frames 

either to Class 1 (undamaged inner ring) or to Class 2 (severe 

damage in the inner ring). Similarly, classifier CNN𝑜 will 

assign each of the 𝑁𝑇 measured frames either to Class 3 

(undamaged outer ring) or to Class 3 (severe damage in the 

outer ring). 

6) Assuming that 𝑁𝑖  is the number of frames assigned by CNN𝑖 
to Class 2 and 𝑁𝑜 is the number of frames classified by CNN𝑜 

to Class 4, it is possible to express the following probabilities: 𝑃𝑖 =  𝑁𝑖𝑁𝑇 ;          𝑃𝑜 =  𝑁𝑜𝑁𝑇                                                     (14) 

where 𝑃𝑖  is the probability that a severe defect exists in the 

inner ring, and 𝑃𝑜 is the probability that a severe defect exists 

in the outer ring. 

It is expected that an undamaged bearing will result in very low 

values of 𝑃𝑖  and 𝑃𝑜 (close to zero). Also, it is anticipated that 𝑃𝑖  will 

increase gradually as the size/severity of the defect in the inner ring 

increases, while 𝑃𝑜 will not be affected. Similarly, 𝑃𝑜 is likely to 

increase as the size of the defect in the outer ring increases, while 𝑃𝑖  remains unchanged. Therefore, both 𝑃𝑖  and 𝑃𝑜 can be used to 

detect, localize and quantify any bearing damage. 

 
Fig. 3. Quantification and localization of bearing damage using CNN𝑖 
and CNN𝑜. 

IV. EXPERIMENTAL SETUP 

To measure the vibration generated by a damaged bearing, under 

several running conditions of load and speed, a test rig was 

carefully designed and accurately manufactured. This test rig will 

be used to support the bearing, to rotate it at a required speed and 

to subject it to the preset load. Since this testing machine will be 

used in many experiments, the test rig system is designed to take 

into consideration the ease of replacing the bearing for each test 

run. This device is a “Machinery Fault Simulator” (a modified 

version of the original simulator built by Spectra Quest Inc.) (Fig. 

4). Several parts of the original machine were removed and 

replaced with new ones. Because mounting and dismounting 

bearings are delicate operations, time-consuming and may 

permanently damage the bearing or the shaft, an innovative 

solution based on elastically expandable geometry was adopted at 

the right end of the shaft to fit this purpose. The vibration signal 

was collected using an ICP accelerometer (PCB Piezotronics, 

Model No. 352C33, 100mV/g). The readings were controlled by a 

four-channel NI-9234 sound and vibration input module at a 
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sampling frequency of 51.2 kHz during time intervals of 10 

seconds each. 

 
Fig. 4. The experimental setup. 

To simplify defects seeding process on the raceways, a 

sufficiently large tested bearing was selected. For this purpose, a 

bore diameter of 40 mm was chosen (bearing type NSK-6208). In 

general, a bearing can contain both localized and distributed 

defects. Condition monitoring and system maintenance basically 

rely on vibration signals caused by localized defects, while signals 

resulting from distributed defects are used in quality assurance 

monitoring. This study focuses on localized defects only. Such 

defects were brought to the bearings using Electric Discharge 

Machining (Fig. 5). 

  
(a) (b) 

Fig. 5. Bearing defects machining. (a) A sample of defect seeded on 
the outer race. (b) Example of the machining tool. 

V. EXPERIMENTAL RESULTS 

With the aforementioned experimental setup, vibration signals 

corresponding to the following 27 scenarios were acquired: 

1) Reference case: 3 scenarios corresponding to 3 similar 

undamaged bearings. 

2) Damage in the inner ring: 9 scenarios corresponding to 9 

levels of damage in the inner ring: 0.35, 0.40, 0.50, 0.58, 1.00, 

1.50, 2.00, 2.50, and 3.00 mm. 

3) Damage in the outer ring: 9 scenarios corresponding to 9 

levels of damage in the outer ring: 0.35, 0.40, 0.50, 0.58, 1.00, 

1.50, 2.00, 2.50, and 3.00 mm. 

4) 6 scenarios corresponding to the following multiple damage 

cases: 

a. 0.50 mm inner defect + 2.00 mm outer defect. 

b. 2.00 mm inner defect + 2.00 mm outer defect. 

c. Three inner defects: 1.00+2.00+3.00 mm. 

d. 2.00 mm inner defect + 0.50 mm outer defect. 

e. 1.00 mm inner defect + 1.00 mm outer defect. 

f. Three outer defects: 1.00+2.00+3.00 mm. 

Examples of the defects introduced to the bearings are provided 

in Fig. 6. For each of the 27 scenarios, 10 vibration signals were 

measured. Each signal is 10 secs long and sampled at 51.2 kHz. All 

signals were filtered by a lowpass filter with a cutoff frequency of 

6400 Hz, then down-sampled to 12800 Hz, and divided into frames 

with a fixed length 𝑛𝑠 = 1024 samples. 

  
(a) (b) 

Fig. 6. Examples of multiple defects introduced to the bearings. (a) 

Defects on inner raceway. (b) Defects on outer raceway. 

A. Training of  𝐶𝑁𝑁𝑖  and 𝐶𝑁𝑁𝑜 

The aforementioned data sets were used to train and evaluate 

classifiers CNN𝑖 and CNN𝑜 as explained in Section III. In this 

demonstration, defects in inner and outer rings which are larger 

than or equal to 2.50 mm, which represent a defect-to-ball ratio of 

21%, were considered as “severe” defects. Hence, the sets, 𝐂1, 𝐂2, 

and 𝐂3 required to train the classifiers CNN𝑖 and CNN𝑜 were 

defined as follows: 

1) Set 𝐂1 contains 5 signals out of the 3×10=30 signals available 

for the reference case. Note that these 5 signals correspond to 

the first undamaged bearing. The remaining 5 signals of the 

first undamaged bearing along with the 10+10=20 signals of 

the second and third undamaged bearings were kept for 

evaluating the CNNs. 

2) Set 𝐂2 contains 5 out of the 10 available signals acquired at 

2.50 mm inner ring damage along with 5 out of the 10 

available signals acquired at 3.00 mm inner ring damage. 

3) Set 𝐂3 contains 5 out of the 10 available signals acquired at 

2.50 mm outer ring damage along with 5 out of the 10 

available signals acquired at 3.00 mm outer ring damage. 

One can notice here that 7 sets of signals corresponding to 0.35 

up to 2.00 mm defects in both inner and outer rings along with the 

signals under the multiple damage cases were not used for training. 

Next, the signals in the three sets were divided into frames having 

a fixed length of 𝑛𝑠 = 1024 samples. Then, the frames in 𝐂1, 𝐂2, 

and 𝐂3 were grouped, normalized, and shuffled as explained in 

Section III.A. Accordingly, each of the resulting 𝐔𝐍𝑖 and 𝐔𝐍𝑜 

contained (5+5+5)×12800 Hz×10 sec/1024=1875 frames, while 

each of 𝐃𝐍𝑖 and 𝐃𝐍𝑜 contained (5+5)×12800 Hz×10 

sec/1024=1250 frames. 90% of the frames in 𝐔𝐍𝑖 and 𝐃𝐍𝑖 were 

used to train the classifier CNN𝑖 and 90% of the frames in 𝐔𝐍𝑜 and 𝐃𝐍𝑜 were used to train CNN𝑜. The remaining 10% was left out for 

validation. A compact CNN architecture was used for both 

classifiers with only two hidden convolution layers and two fully-

connected layers. Classifiers CNN𝑖 and CNN𝑜 had only (3, 3) 

neurons in the two hidden convolution layers and (10, 10) neurons 

in the two MLP-layers. The kernel size and subsampling factor 

were set to 40 and 20, respectively.  The following stopping criteria 

for BP training was considered: 

1) The train classification error (CE) of 1%. 

2) Maximum 200 BP iterations.  

The CNNs were trained according to the back-propagation 

methodology detailed in Section II. For CNN𝑖 the classification 

error was 0.53% for the training set and 0.64% for the testing set, 

while for CNN𝑜, the classification error was 0.00% for both 

training and testing sets. Achieving such accuracy levels above 

99% for the test sets can be considered an elegant damage 

monitoring performance level for the proposed solution. 
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B. Performance evaluations 

The damage monitoring (detection, localization, and 

quantification) performance was evaluated over all the scenarios 

presented earlier. The signals used for the training phase (listed in 

Section V.A) were totally excluded from this evaluation. For each 

scenario, all signals under that scenario (except the ones using for 

CNN training) were decimated as explained in Section V and then 

divided into frames with a fixed length of 1024 samples. The 

frames were then normalized and fed to both CNN𝑖 and CNN𝑜. 

According to the classification output of the two classifiers, the 

indices 𝑃𝑖  and 𝑃𝑜 were computed. 

For the three undamaged scenarios corresponding to three 

similar undamaged bearings, 𝑃𝑖  and 𝑃𝑜 values were both correctly 

assigned as zero indicating that both the inner and outer rings are 

undamaged. As shown in Fig. 7a, for the scenarios associated with 

a single defect in the inner ring, the resulting 𝑃𝑖  values are 

proportional to the size (severity) of the defect, while zero 𝑃𝑜 values 

were obtained across all damage levels indicating that the outer 

ring is undamaged. For small defects (0.35 to 0.58 mm), the 𝑃𝑖  
values ranged between 0 to 0.066 which indicate an insignificant 

inner ring damage. For medium-sized defects in the inner ring 

(1.00 to 2.00 mm), the 𝑃𝑖  values vary between 0.37 to 0.76, while 

for severe defects (2.50 and 3.00 mm) the resulting 𝑃𝑖  values were 

close to 1.00. In a similar fashion, as displayed in Fig. 7b, for the 

damage scenarios associated with a single defect in the outer ring, 

the 𝑃𝑜 values are well-correlated with the defect size and the 𝑃𝑖  
values are all zeros. The fact that the classifiers were able to handle 

small and medium-sized defects in inner and outer rings is quite 

interesting indeed since both CNN𝑖 and CNN𝑜 were trained using 

only signals from undamaged and severely damaged scenarios. 

This demonstrates an elegant interpolation ability of the CNNs 

trained according to the proposed systematic approach to deal with 

such damage cases that are completely new (unseen). In reality, 

this is a desired and practical property that voids the need for 

creating all damage scenarios for a proper damage monitoring. 

In addition to the single defect cases, the proposed method was 

further tested over the six multiple damage scenarios. As shown in 

Fig. 7c, the resulting 𝑃𝑖  and 𝑃𝑜 values are both in agreement with 

the size of the defects. For all six cases, the classifiers were able to 

correctly quantify the damage in at least one of the damaged 

components. Again, this highlights the ability of the proposed 

approach to deal with entirely new scenarios which were not used 

in CNN training. 

C. Effect of the total number of frames 𝑁𝑇 

As mentioned in Section III.B, in order to evaluate the condition 

of the monitored bearing, the vibration signal is measured for a 

certain amount of time and then divided into 𝑁𝑇 frames. The 𝑁𝑇 

frames are then processed by the two CNNs to compute 𝑁𝑖  and 𝑁𝑜, 

which can be used to calculate the probabilities of damage 𝑃𝑖  and 𝑃𝑜 as explained by Equation (25). It is clear from the equation that 

the probabilities are dependent on the total number of frames 𝑁𝑇. 

Therefore, a sufficient number of frames should be provided to the 

classifiers in order to achieve an acceptable degree of accuracy. 

The effect of 𝑁𝑇 was investigated for 4 damage cases which are: 

1) 1.50 mm inner ring defect, 2) 3.00 mm inner ring defect, 3) 1.00 

mm outer ring defect, and 4) 3.00 mm outer ring defect. For each 

case, the corresponding vibration signal was fed into the classifier 

in a frame-by-frame manner. As shown in Fig. 8, starting from 

𝑁𝑇 = 4 frames, the probabilities 𝑃𝑖  and 𝑃𝑜 were computed for every 𝑁𝑇 value up until 𝑁𝑇 = 100 frames. The results for the 4 damage 

cases suggest that 𝑃𝑖  and 𝑃𝑜 stabilize starting at 𝑁𝑇 = 13 frames. 

Hence, a signal consisting of 13 frames (equivalent to 

13×1024/12800 = 1.04 sec) is sufficient for accurately characterize 

the condition of the bearing. 

  
(a) (b) 

 
(c) 

Fig. 7. 𝑃𝑖 and 𝑃𝑜 values obtained by the proposed CNN-based approach 

for (a) nine levels of inner ring damage, (b) nine levels of outer ring 
damage, and (c) six multiple damage scenarios. 

 
Fig. 8. 𝑃𝑖 and 𝑃𝑜 values obtained for 4 damage scenarios with 𝑁𝑇 values 

ranging from 4 to 100. 

D. Robustness against noise 

In order to test the robustness of the proposed system against the 

measurement noise, the signals corresponding to all scenarios 

(except the ones used for CNN training) are contaminated by 
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different levels of additive noise. The level of noise is typically 

measured by the signal-to-noise ratio (SNR) expressed as, SNR = 10 log10 (𝑃signal𝑃noise )                                                                (15) 

where 𝑃signal is the power of the signal and 𝑃noise is the power of 

the White Gaussian noise. 

The results for the undamaged cases, single inner ring defect 

scenarios, single outer ring defect scenarios, and multiple defects 

scenarios are shown in Table 1, Fig. 9, Fig. 10, and Fig. 11, 

respectively. It is clear from the results that both CNN𝑖 and CNN𝑜 

displayed a robust performance in terms of damage localization 

and quantification even at SNR values as low as -2dB. This is 

another crucial advantage of the proposed approach compared to 

the state-of-the-art method in [36], the performance of which 

suffered significantly with the increasing noise power, especially 

at SNR values around 2dB and lower.  

 
Fig. 9. 𝑃𝑖 and 𝑃𝑜 values for the 9 damage levels in the inner ring under 

different noise levels. 

 
Fig. 10. 𝑃𝑖 and 𝑃𝑜 values for the 9 damage levels in the outer ring under 

different noise levels. 
 

 
Fig. 11. 𝑃𝑖 and 𝑃𝑜 values for the 6 multiple damage scenarios under 

different noise levels.

TABLE I 𝑃𝑖 AND 𝑃𝑜 VALUES OBTAINED BY THE PROPOSED CNN-BASED APPROACH FOR THREE UNDAMAGED SCENARIOS UNDER DIFFERENT NOISE LEVELS.

ID SNR = 10 dB SNR = 8 dB SNR = 6 dB SNR = 4 dB SNR = 2 dB SNR = 0 dB SNR = -2 dB 𝑃𝑖 𝑃𝑜 𝑃𝑖 𝑃𝑜 𝑃𝑖 𝑃𝑜 𝑃𝑖 𝑃𝑜 𝑃𝑖 𝑃𝑜 𝑃𝑖 𝑃𝑜 𝑃𝑖 𝑃𝑜 

1 0 0 0 0 0 0 0 0 0.0016 0 0 0 0 0 

2 0 0 0.0016 0 0 0 0.004 0 0 0 0.0024 0 0.0016 0 

3 0.0032 0 0.0048 0 0.0032 0 0.0016 0 0.008 0 0.004 0 0.0016 0 

TABLE II 
COMPARISON WITH THE PREVIOUS 1D-CNN BASED METHODS.  

 Eren [35] Zhang et al. [36] Current work 

Damage detection Yes Yes Yes 

Damage quantification No Yes Yes 

Damage localization No Yes Yes 

Number of defects Single defect Single defect Single and multiple defects 

Data required for training Undamaged + all damaged cases Undamaged + all damaged cases 
Undamaged + a single severely 

damaged case 

1D-CNN architecture Medium-sized 1D-CNN An ensemble of deep networks Shallow 1D-CNN. 

Tricks required for training None 

Data augmentation, batch 

normalization, dropout, and 

majority voting 

None 

Robustness against noise Not investigated 
Performance deterioration at 0 

dB (or less) noise levels. 

Robust even at noise levels as 

low as -2dB 
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E. Complexity analysis 

The proposed system is implemented using MATLAB [43] and 

C++ by MS Visual Studio 2013 in 64-bit. Since the compact 1D 

CNNs are used, this is a non-GPU implementation; however, Intel 

® OpenMP API is used to obtain multiprocessing with a shared 

memory. This program is capable of carrying out the forward and 

back-propagation steps required for training and using the CNNs. 

The   MATLAB [43] codes are then developed and utilized: 1) to 

extract raw signal arrays, U𝑖, D𝑖 , U𝑜, D𝑜 based on the methodology 

detailed in Section III.A, 2) to compute the indices 𝑃𝑖  and 𝑃𝑜 

directly from the raw vibration signals using the trained CNN𝑖 and CNN𝑜 as explained in Section III.B, and 3) to present the final 

output in a proper GUI with the corresponding probability 

plots/graphs The experimental verification was conducted using a 

computer with I7-4910MQ at 2.9 GHz (8 cores) and 32-Gb 

memory.  

As mentioned earlier, the key feature of the proposed 1D 

CNN-based damage detection technique is that the 

computational time and power required to classify the signals 

are significantly reduced due to the fact that shallow 1D CNN 

architectures are used. To demonstrate this feature, CNN𝑖 was 

used to classify a 2-sec vibration signal having a sampling 

frequency of 12800 Hz (i.e. the signal consists of 25600 

samples). The signal was divided to 25 frames each having 𝑛𝑠 = 1024 samples. The total time required for the 

classification of this 2-sec signal was only 240 msec. This speed 

is about 8× faster than the real-time requirement. The same 

speed was obtained for CNN𝑜 as well since CNN𝑜 has exactly 

the same architecture as CNN𝑖.  
F. Comparison with previous 1D-CNN based methods 

To highlight its significance, the method proposed in the 

current paper is compared with the previous 1D-CNN based 

methods developed by Eren [35] and Zhang et al. [36] as shown 

in Table II.  

VI. CONCLUSIONS 

This paper proposes a novel online bearing monitoring system 

for detection, quantification, and localization of bearing defects. 

The core of the system is composed of two compact 1D CNNs that 

can fuse the feature extraction and classification processes of a 

traditional damage monitoring system into a single learning body. 

In this way, the computational burden and the problems that arise 

due to the choice and design of hand-crafted features are avoided 

and features can be optimized to maximize the 

detection/quantification performance. The experimental results 

demonstrate that the aforementioned five objectives are all 

achieved, and the following novel contributions are accomplished: 

1) The proposed systematic approach is able to accurately 

localize and quantify bearing damage. The values of the 

indices 𝑃𝑖  and 𝑃𝑜 assigned by the proposed approach is well-

correlated with the actual amount of damage introduced to the 

components of the monitored bearing. 

2) The minimally-trained classifiers, CNN𝑖 and CNN𝑜 are able to 

handle all new (unseen) damage scenarios with utmost 

accuracy.   

3) The proposed system displayed a superior robustness against 

the severe additive noise.  

4) The utilization of the compact 1D CNNs in the core of the 

proposed system voids the need for large training data, special 

hardware and many compulsory tricks such as data 

augmentation, batch normalization, dropout, majority voting, 

etc. 

5) As a result, with these crucial properties, the proposed system 

can conveniently be used in practice for online health 

monitoring of bearings. It will be further interesting to test it 

over the new motors with unseen bearings without any 

training ever performed. This will be the topic of our future 

work. 

6) In this work, the two 1D CNNs (corresponding to the inner 

and outer rings) were trained and tested under the same speed 

and torque conditions. The results showed that CNNs with a 

very shallow structure were able to achieve the required 

accuracy level. This shallow structure allows very fast training 

performance. Therefore, it is feasible to train an individual set 

of 1D-CNNs for each possible level of speed and torque.  

Nevertheless, it would be quite interesting to investigate if a 

1D-CNN trained under a specific level of speed and torque 

will perform properly under another set of conditions. This 

can be also a subject for future work. 

APPENDIX 

A. Forward and back-propagation in CNN-layers 

In the CNN-layers, one-dimensional forward propagation (1D-

FP) is defined as: 𝑥𝑘𝑙 = 𝑏𝑘𝑙 + ∑ conv1D (𝑤𝑖𝑘𝑙−1, 𝑠𝑖𝑙−1)                                             (16)𝑁𝑙−1
𝑖=1  

where 𝑥𝑘𝑙   is defined as the input, 𝑏𝑘𝑙   is defined as the bias of the 𝑘𝑡ℎ neuron at layer 𝑙, 𝑠𝑖𝑙−1 is the output of the 𝑖𝑡ℎ neuron at layer 𝑙 − 1, 𝑤𝑖𝑘𝑙−1 is the kernel from the 𝑖𝑡ℎ neuron at layer 𝑙 − 1 to the 𝑘𝑡ℎ neuron at layer 𝑙. The output 𝑦𝑘𝑙  can be written from the input 𝑥𝑘𝑙  as, 𝑦𝑘𝑙 = 𝑓(𝑥𝑘𝑙 )        and           𝑠𝑘𝑙 = 𝑦𝑘𝑙 ↓ 𝑠𝑠                                        (17) 

where 𝑠𝑘𝑙  stands for the output of the neuron and ↓ 𝑠𝑠 represents 

the down-sampling operation with factor, 𝑠𝑠. 

The back-propagation (BP) methodology can be summarized as 

follows. The BP of the error starts from the output MLP-layer. 

Assume 𝑙 = 1 for the input layer and 𝑙 = 𝐿 for the output layer. Let 𝑁𝐿  be the number of classes in the database; then, for an input 

vector 𝑝, and its target and output vectors, 𝑡𝑖𝑝 and [𝑦1𝐿 , ⋯ , 𝑦𝑁𝐿𝐿 ], 
respectively.  With that, in the output layer for the input 𝑝; the 

mean-squared error (MSE), 𝐸𝑝,  can be expressed as follows: 𝐸𝑝 = MSE (𝑡𝑖𝑝, [𝑦1𝐿, ⋯ , 𝑦𝑁𝐿𝐿 ]) = ∑(𝑦𝑖𝐿 − 𝑡𝑖𝑝)2                          (18)𝑁𝐿
𝑖=1  

To find the derivative of 𝐸𝑝 by each network parameter, the delta 

error, ∆𝑘𝑙 = ∂𝐸∂𝑥𝑘𝑙  should be computed. Specifically, for updating the 

bias of that neuron and all weights of the neurons in the preceding 

layer, one can use the chain-rule of derivatives as,  ∂𝐸∂𝑤𝑖𝑘𝑙−1 = ∆𝑘𝑙 𝑦𝑖𝑙−1           and                  ∂𝐸∂𝑏𝑘𝑙 = ∆𝑘𝑙                           (19) 

Then, the BP of the delta-error from the next layer (l+1) to layer 

l is expressed as: ∂𝐸∂𝑠𝑘𝑙 = ∆𝑠𝑘𝑙 = ∑ ∂𝐸∂𝑥𝑖𝑙+1 ∂𝑥𝑖𝑙+1∂𝑠𝑘𝑙
𝑁𝑙+1
𝑖=1 = ∑ ∆𝑖𝑙+1𝑁𝑙+1

𝑖=1 𝑤𝑘𝑖𝑙                            (20) 

Following BP to the input delta, ∆𝑘𝑙 , as, 
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  ∆𝑘𝑙 = ∂𝐸∂𝑦𝑘𝑙 ∂𝑦𝑘𝑙∂𝑥𝑘𝑙 = ∂𝐸∂us𝑘𝑙 ∂us𝑘𝑙∂𝑦𝑘𝑙 𝑓′(𝑥𝑘𝑙 ) = up(∆𝑠𝑘𝑙 )𝛽 𝑓′(𝑥𝑘𝑙 )          (21) 

where 𝛽 = (𝑠𝑠)−1. Then, the BP of the delta error (∆𝑠𝑘𝑙 Σ← ∆𝑙𝑙+1) 

can be expressed as:  ∆𝑠𝑘𝑙 = ∑ conv 1Dz (∆𝑙𝑙+1, rev(𝑤𝑘𝑖𝑙 ))                                        (22)𝑁𝑙+1
𝑖=1  

where rev(. ) is used to reverse the array and conv 1Dz(. , . ) is used 

to perform full convolution in 1D. This is another crucial difference 

from 2D CNNs where the 2D matrix operations such as lateral 

rotation (rot180) and 2D convolution (conv2D) are replaced by 

reverse (rev) and 1D convolution (conv1D and conv1Dz) 

operations [18], [34]. As such, the weight and bias sensitivities can 

be expressed as follows: ∂𝐸∂𝑤𝑖𝑘𝑙 = conv 1D(𝑠𝑘𝑙 , ∆𝑙𝑙+1)     and      ∂𝐸∂𝑏𝑘𝑙 = ∑ ∆𝑘𝑙 (𝑛)             (23)𝑛  

Once the weight and bias sensitivities are computed, they can 

then be used to update biases and weights with the learning factor, 𝜀 as, 𝑤𝑖𝑘𝑙−1(𝑡 + 1) = 𝑤𝑖𝑘𝑙−1(𝑡) − 𝜀 ∂𝐸∂𝑤𝑖𝑘𝑙−1                                                (24) 𝑏𝑘𝑙 (𝑡 + 1) = 𝑏𝑘𝑙 (𝑡) − 𝜀 ∂𝐸∂𝑏𝑘𝑙                                                              (25) 

Further details of the BP algorithm are given in [18], [34]. 
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