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Abstract: A comprehensive review on the methods used for fault detection, classification and location in transmission
lines and distribution systems is presented in this study. Though the three topics are highly correlated, the authors try
to discuss them separately, so that one may have a more logical and comprehensive understanding of the concepts
without getting confused. Great significance is also attached to the feature extraction process, without which the
majority of the methods may not be implemented properly. Fault detection techniques are discussed on the basis of
feature extraction. After the overall concepts and general ideas are presented, representative works as well as new
progress in the techniques are covered and discussed in detail. One may find the content of this study helpful as a
detailed literature review or a practical technical guidance.
1 Introduction

Methods for fault detection, classification and location in
transmission lines and distribution systems have been intensively
studied over the years. With the concepts associated with smart
grid attracting growing concern among researchers, the importance
of building an intelligent fault monitoring and diagnosis system
capable of classifying and locating different types of faults cannot
be overstated.

The past 20 years has witnessed the rapid development in various
fields concerning the detection, classification and location of faults in
power systems. The advances in signal processing techniques,
artificial intelligence and machine learning, global positioning
system (GPS) and communications have enabled more and more
researchers to carry out studies with high breadth and depth in that
the limits of traditional fault protection techniques can be
stretched. Furthermore, two major restrictions of online fault
diagnosis systems are also being solved. The first restriction is the
difficulty in data acquisition. In addition to traditional
measurement equipment such as potential transformer, current
transformer and remote terminal unit, newly developed intelligent
electronic devices (IEDs) are being deployed [1] to obtain
information at multiple nodes in the grids. Self-powered
non-intrusive sensors are also being developed with the potential
to form sensor networks for smart online monitoring of smart
grids [2, 3]. With more data available, researchers are able to
develop intelligent fault diagnosis systems through mining
knowledge from the data corresponding to different conditions.
The effect of complex and varied network configurations can also
be eliminated when the current and voltage signals can be
collected by interspersed sensors that are plentiful in number. The
second restriction is the lack of communication and computation
capability. The prospective of GPS-based synchronised sampling
and high-speed broadband communications for IEDs in power
grids were mentioned in [1]. The application of phasor
measurement units has also gained wide attention and a brief
introduction of which is found in [4]. These technical
improvements can guarantee fast response to faulty situations and
the proper functioning of online monitoring systems based on
sensor networks. The computational ability of computers has also
increased rapidly. High-performance computing solutions such as
server clusters are able to complete distributed computing tasks
within very short period of time, thus allowing methods with
higher computation complexity to be implemented.

In this paper, we present a comprehensive review on the methods
used in fault detection, classification and location. A simplified
framework for fault detection, classification and location is
illustrated in Fig. 1. In the first step, current and voltage signals
are sampled and the sampled points are passed to the feature
extraction module. This module then extracts features used by the
fault detector, the fault classifier and the fault locator. The outputs
are the fault type and the fault location provided by the fault
classifier and the fault locator, respectively. Some of the works
cover all three aspects, while some others focus on one or two of
the aspects.

2 Feature extraction and fault detection

Although the current and voltage signals contain all the information
within themselves, it is extremely hard to fit the raw signals into
some sets of rules and criterions capable of intelligently
interpreting the underlying messages brought by the signals. This
is where the feature extracting techniques come in handy, as they
dig out useful information purposefully and reduce the impact of
variance within the studied system. After proper feature extraction
techniques are used, researchers may gain a better awareness of
the nature of the fault classification or location problems and thus
solve them in a more coherent and efficient manner. Moreover, a
reduced dimensionality of the data can sometimes boost the
performance of certain algorithms used in the classifiers or
locators, providing more accurate and robust results as fast as
possible. In this section, methods used for feature extraction are
presented together with detailed application examples. At the end
of this section, a brief introduction to fault detection methods,
which is highly dependent on the feature extraction process, is
presented.

2.1 Fourier transform (FT), wavelet transform (WT) and
S-transform (ST)

It is well known that when a fault (e.g. a single-phase grounding
fault) occurs, the frequency characteristics of current and voltage
signals within different frequency ranges would change
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Fig. 1 Simplified framework for fault detection, classification and location
dramatically [5], which if detected and analysed properly may help
protect the affected transmission lines and distribution systems to a
great extent. A variety of methods used to analyse frequency
characteristics of time-domain signals have been proposed, and
three frequently used methods in fault diagnosis systems are
presented as follows.

FT is a widely used mathematical tool when analysis of signals in
frequency domain is needed. For applications where time-domain
signals and frequency-domain coefficients are both discrete, the
transform is referred to as discrete FT (DFT), which can be
computed using fast FT (FFT) for fast implementation. In [6],
researchers used full cycle DFT and half cycle DFT (HCDFT) to
remove DC and harmonic components and estimate phasor
elements. Authors in [7–9] also adopted HCDFT to calculate
fundamental and harmonic phasors used for fault-type
classification. Hagh et al. [10] used full cycle FFT to determine
fundamental components of currents and voltages.

WT is one of the most used feature extraction methods for various
fault diagnosis systems, a comprehensive introduction to which can
be found in [11]. In practice, most of the studies use discrete WT
(DWT) rather than continuous WT (CWT) to decompose the
original current and voltage signals, so that characteristics of the
signals in multiple frequency bands can be revealed. Theoretically
speaking, the multiresolution decomposition of signals can be
done with a filter bank of quadrature mirror filters, and the filter
bank decomposes the signal into detail coefficients at multiple
levels and approximation coefficients at one level [12]. Thus,
when implementing DWT, researchers need to decide which
mother wavelet (which decides the properties of the filter bank)
and which decomposition levels to use before actually creating the
features. A comparison of different mother wavelets for fault
detection and classification was provided in [13], which
recommended bior3.9, Meyer, coif5, Db10 and Sym8 mother
wavelets for fault detection. Note that different sampling rates
were adopted, and we should focus mainly on the bounds of
frequency bands rather than the level itself. Authors in [14–16]
simply used the coefficients in detail levels as features. Meyer
wavelet was selected in [14], while Db2 was chosen in [15, 16], in
which the researchers used frequency bands of 1–2 and 4–8 kHz,
respectively. In [17–20], features were extracted by calculating the
summations of absolute coefficients of detail levels. The
coefficients in 97–195 or 99–199 Hz frequency bands were used in
[17–19], where three Daubchies wavelets, namely Db8, Db4 and
Db1 were chosen. Shaik and Pulipaka [20] used bior2.2 wavelet
and coefficients within the 480–960 Hz frequency band. Besides
summation of coefficients, maximums of coefficients in detail
levels were also used as features. For instance, Pradhan et al. [21]
used maximums of coefficients at level 1 and level 2 details
(corresponding to 2.5–10 kHz) and approximation as features.
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Another way to use the coefficients is to calculate the energies of
detail levels. Energy within the frequency band 3840–7680 Hz
was used in [22], while 50–100 and 1.5625–3.125 kHz frequency
bands were adopted in [23]. On the basis of wavelet energies, the
wavelet energy entropy (WEE) introduced in [24] can be
calculated, as used in [25]. In addition to WEE, He et al. [26]
adopted wavelet singular entropy (WSE), a combination of WT,
singular value decomposition and Shannon entropy, to create
features. To make better use the information contained in the
detail levels, authors in [25, 27] used wavelet packed transform
(WPT), which not only decomposes approximation coefficients,
but also decomposes detail coefficients repeatedly. Thus, the
frequency resolution in higher frequency ranges could be greatly
improved. In [28], the multiwavelet packet transform, which is
based on multi-WT (MWT) and WPT, was used by researchers.
The MWT possesses the properties including tight support,
orthogonal and symmetrical [29], which when combined with
WPT can extract features with higher information density. As a
result, extremely high classification accuracy was obtained in [28].
With a variety of mother wavelets adopted and coefficients in both
high- and low-frequency detail levels used, the works mentioned
above proved the effectiveness of DWT in facilitating the fault
classification and location methods.

As a method derived from CWT, ST provides joint time–
frequency representation with frequency-dependent resolution
based on a moving and scalable localising Gaussian window, as
put forward by Stockwell et al. in [30]. The two-dimensional
time–frequency representation of ST can effectively reveal local
spectral characteristics that are especially useful in detecting and
interpreting transient events [31]. Concretely, the calculation result
of ST is stored in the S-matrix, on which basis the ST contours
can be plotted for a two-dimensional visualisation and features can
be further extracted. Some researchers selected ST rather than
DWT partially in order to avoid some deficiencies of DWT, such
as being sensitive to noise and unable to precisely reflect the
characteristics of particular harmonics [32, 33]. Samantaray and
Dash [34] used standard deviation and energy of ST contour to
help select faulty phase and faulty section. Hyperbolic ST (HST)
was implemented in [35], where the researchers calculated change
of signal energy and standard deviation of ST contour. Variance of
the S-matrix and auto-correlation of the absolute value of the
S-matrix were also used in [36]. In order to locate the fault point,
amplitude and phase angle of the phasors and impedance to the
fault point were calculated in [37]. On the basis of the fast discrete
ST introduced in [38], Dash et al. [32] proposed the fast frequency
filtering ST and calculated the maximum energy among frequency
components of each phase to select the faulted phase. Another
modification to ST, fast discrete orthonormal ST (FDOST), was
used in [33] to obtain magnitudes of negative sequence
components and high-level positive components. The authors also
calculated the difference between the mean absolute magnitudes of
the frequency bands at fault inception and before fault.

2.2 Modal transformation

Modal transformations such as Clarke transformation (CT) was used
in [39–41] to decouple three-phase quantities represented by a, b and
c and transform them into components represented by α, β and 0, on
the basis of which fault types were characterised by describing the
relationships between phase quantities and modal components
[41], and fault detection and location indices were calculated [39,
40]. Authors in [42, 43] adopted a modification of CT called
Clarke-Concordia transformation. Karrenbauer transformation,
another type of modal transformation, was used in [44] to facilitate
the implementation of fault characteristics.

2.3 Dimensionality reduction

Principal component analysis (PCA) is useful to reduce the
dimensionality of data by mapping the data from the original
high-dimensional space onto a low-dimensional subspace in which
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the variance of the data can be best accounted for [45]. Thukaram
et al. [46] used PCA to obtain features from raw current and
voltage signals. In [47], researchers applied PCA to the wavelet
coefficients and used the principal components for fault
classification and location tasks.

Cheng et al. [48] proposed a feature extraction method based on
random dimensionality reduction projection (RDRP). The
measurement matrix used in RDRP to reduce the dimensionality
of original input vector is a Gaussian random matrix, making this
method independent of the training data. In addition, this method
requires small memory space, as the feature extraction process is
done with matrix multiplication.
Fig. 2 Histogram of fault detection time reported in the literature (<10 ms)
2.4 Other methods for feature extraction

Extra computation is needed for the above-mentioned methods to
extract features from original current and voltage signals, which
adds much computational burden to the monitoring devices. Thus,
it is also suggested by some researchers to use sampled points of
current and voltage signals within a quarter of a cycle, a third of a
cycle, half a cycle or one cycle as features for fault detectors,
classifiers and locators [22, 49–52].

The current and voltage signals can also be used to calculate some
quantities as features. In [53], the root mean square (RMS) values of
phase currents and zero sequence current were calculated.
Khorashadi-Zadeh [54] calculated normalised ratios of maximum
absolute values of currents for two different phases first and then
used the differences of the normalised ratios as features. Gracia
et al. [55] calculated ratios of phase angle differences between
phases and the ratio of zero sequence current amplitude to positive
sequence current amplitude. Ratios of during fault and pre-fault
amplitudes of quantities were used in [56]. In [57], authors
calculated superimposed sequence components of current signals
and measured apparent impedance of faulted lines.
2.5 Fault detection based on extracted features

Generally speaking, the task of fault detection is done prior to
fault-type classification and fault location. When an independent
method is used for fault detection, the classifier and the locator are
triggered after a fault is securely detected. This can be done easily
by setting some thresholds for the extracted features. Moreover, in
the case where the classifier or the locator is capable of
distinguishing between faulty and non-faulty states, there is no
need to implement additional fault detection methods. One scheme
to perform fault detection in this case is to use an individual
classifier to differentiate faulty and non-faulty states. The other
scheme is to add the non-faulty state to the output categories, and
a fault is detected whenever the output is other than the non-faulty
state. Considering the learning abilities of the models used for
classification, there is no essential difference between both
schemes. Thus, for clarity, we only present here either methods
that are used in some special cases or representative methods that
are independent of the classification methods discussed in detail in
Section 3.

Negative sequence components were calculated in [47] for fault
detection. For a more stable detection of faults, the authors
designed a joint fault indicator by convoluting the partial
differential with respect to time of negative sequence components
with a triangular wave, so that the chance of issuing false alarms
can be reduced. This fault detection method using the joint fault
indicator also shows robustness in cases of frequency deviation
and amplitude variation.

In [58], the author proposed a wavelet-based method for real-time
fault detection in transmission lines. The border effects of the sliding
windows used to obtain the wavelet coefficients used for energy
calculation were considered, allowing a shorter detection time than
considering the transients alone. The method was not affected by
the choice of mother wavelet and had no time delay for fault
detection for compact and long wavelets.
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A number of studies have been made on the detection of high
impedance faults (HIFs) [59–62], for traditional detection
techniques may fail when a HIF occurs. In [59], authors used DWT
with quadratic spline mother wavelet to extract high-frequency
information for HIF detection. Lai et al. [60] converted scale
coefficients and wavelet coefficients obtained by DWT to RMS
values to help detect HIF. PCA was applied to mean values of
DWT coefficients in different frequency bands to reduce the
dimensionality of features in [61]. The method introduced in [58],
as presented earlier, was used for HIF detection in [62].

Some works cited in this paper reported the time used for fault
detection. For some of these studies, the time lengths needed for
fault detection were smaller than 10 ms, which is half a cycle, as
summarised in Fig. 2. It is worth noting that some of the methods
were even able to detect faults within 2 ms. If we take into
consideration the time needed for classification of faults (over 30
ms in many cases), we would see that the difference made by fault
detection time on the overall performance of fault classification
and location systems is not very significant. Nevertheless,
detecting the faults as fast as possible while maintaining high
robustness and accuracy is worth the efforts of researchers.
3 Fault-type classification

Fault-type classification plays a significant role in protection relay for
transmission lines and power distribution systems, thus researchers
have had constant interest in developing new, robust and accurate
fault classification algorithms and models for decades. The
majority of the classification methods adopt classifier models
based on statistical learning theory [63], while some other works
used logic flows based on experience and observation of collected
data. It is noteworthy that the development of studies in this
particular field has been highly relevant to the development of
pattern recognition and machine learning (more specifically,
supervised leaning algorithms for classification). In this section, a
detailed review of methods for fault-type classification is provided
in a developmental and comprehensive point of view.

3.1 Fault classification based on logic flow

If no machine learning or artificial intelligence based algorithms are
implemented, usually a tree-like logic flow with multiple criterions is
used. In [64], authors compared the values of four extracted features
for three phases and ground to pre-set thresholds. If any one of the
values exceeds its threshold, the corresponding phase (or ground)
is involved in the fault. Researchers in [65–67] extracted the
features using WMA and generated logic flows based on
observations of the characteristics of the features. At each node in
the logic flow, certain comparisons were made between feature
values or between a feature value and a threshold. Authors in
27e Creative Commons



[40, 44] adopted modal transformation for feature extraction. CT was
used in [40] to produce fault detection indexes for each phase.
Thresholds were then added to complete the classification task. In
[44], Karrenbauer transformation and WT were used. Modulus
maxima of the WT were then fed to the logic flow to decide the
fault type. WT and Shannon entropy were used in [26, 68] to
produce features. In [26], where the authors used the WSE
method, logic flows were implemented after the features related to
the entropies were calculated.
3.2 Artificial neural network

Artificial neural networks (ANNs) are a family of non-linear
statistical models and learning algorithms with the intention to
imitate behaviours of connected neurons within biological neural
systems, which has developed and evolved over a long period of
time. Different ANN models have been used for applications in
various fields, including fault classification in transmission lines
and distribution systems.

Of all the ANN models, one may find a feedforward neural
network (FNN) the simplest in configuration, which can be
characterised as single-layer or multi-layer perceptrons. A FNN
often has an input layer, an output layer and at least one hidden
layer. Generally, the nodes (or neurons) in adjacent layers are fully
connected, and the parameters (weights assigned for the
connections and biases for the nodes) decide the output of the
network given an input. To put it simply, the so-said learning
process is carried out by adjusting the parameters of the network,
so that the output would satisfy certain conditions, such as
estimating a function accurately [69]. The application of FNN with
back-propagation (BP) in power systems dates back to late-1980s
[70] and early-1990s [71], not long after the BP algorithm was
first developed in 1986 by Rumelhart et al. [72]. Since then, a
considerable number of studies have used FNNs for the task of
fault-type classification. As FNN is the simplest type of ANN,
they are primarily referred to as ANNs or NNs instead of FNN.
Moreover, as the training process of FNNs mainly uses BP
algorithm, the term BPNN is also used (though BP is also used in
many other ANN models). A two-hidden-layer FNN was used in
[73], where the hidden layers have 20 and 15 nodes, respectively.
The authors used five consecutive sample points of voltage and
current of each phase as the input, and 11 output nodes
representing ten fault types and no fault state form the output
layer, thus forming a 30-20-15-11 FNN. In [74], authors
decomposed the voltage signals into six frequency ranges, and the
energy of each range was calculated, creating 18 features for the
input layer. The 18-12-3 FNN is capable of achieving fault phase
selection. Xu and Chow [75] used FNN to identify two major fault
causes in distribution systems, namely tree contact and animal
contact. The FNN structure introduced in [22] is 40-30-4, where
five sample points of both zero sequence current and voltage
signals were added to the input used in [73]. The authors adopted
binary coding for the output layer, thus four nodes were used for
11 fault situations (ten fault types and no fault state). In [10],
authors employed separate FNN modules to identify different
types of faults, so that each network had less patterns to learn.
Researchers implemented Clarke’s transform and DWT in [41] to
produce appropriate input for the FNN. For the dataset used in
[41], the 12-24-48-4 structure outperforms the 12-6-12-4 and the
12-12-24-4 structures, for such a structure has better learning ability.

Radial basis function networks (RBFNs) are FNNs that use radial
basis function as activation functions for hidden nodes. Typically, a
RBFN has one hidden layer, and the activation functions are
Gaussian functions whose response to x decreases monotonously
as the distance from x to the centroid c increases [76]. In [77, 78],
Park and Sandberg proved that a RBFN with one hidden layer is
capable of approximating any bounded continuous functions.
Taking the deficiencies of FNNs with sigmoid activation functions
into consideration, researchers used RBFN to build fault-type
classifiers with good classification effects. Minimal RBFN
(MRBFN) was introduced in [79, 80] to systematically decide the
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minimal number of hidden nodes, reducing both the number of
hidden nodes and training time. The linear iterated Kalman filter
was used to adjust the parameters of the MRBFN in [79].
Orthogonal least squares algorithm and recursive least squares
algorithm were used for the learning procedure in [35, 49, 81],
respectively. In [81], two RBFNs were trained separately to
classify faults involving earth and not involving earth, respectively.

Probabilistic neural network (PNN) is another type of FFN that
uses exponential activation functions. The PNN structure proposed
in [82] by Specht has four layers, namely input layer, pattern layer
(hidden layer), summation layer and output layer. The activation
function of nodes in the pattern layer is exp(−(wi−x)T(wi−x)/2σ2),
where x is the input vector, wi is the weight vector of the ith
pattern node and σ is the smooth factor. The summation nodes
sum the values given by pattern nodes belonging to the same
category and the classification result is given by output layer after
comparing the sums calculated by the summation nodes. No
iterative training process is required for PNN, as one pattern node
is added for each x in the training set, and the weight vector is set
equal to x. This indicates that a PNN can be trained in a very fast
manner. Furthermore, no retrain is needed when new training
samples are added [83]. An early implementation of PNN in
power system fault classification is [84], where the authors found
that the classification rate of PNN was 10% higher than FNN for
the case they studied. In [14, 85], researchers used PNNs with
features extracted by DWT as the input. Nine pattern nodes were
used in [14]. Both studies achieved classification accuracies of
near 100%. ST was implemented in [34] to extract features for
PNN, and the pattern layer had five pattern nodes. Mirzaei et al.
[86] compared FNN, RBFN and PNN in an application of power
distribution systems, where the implementation of PNN required
much less training time and obtained better classification results.

Recently, the Chebyshev neural network (ChNN), which belongs
to the functional link neural networks, was used in [27, 87] for fault
classification in transmission lines. In these studies, the Chebyshev
polynomials were used as functional expansion to map the original
input into higher-dimensional space, and the hidden layer was thus
replaced, leaving only one layer in the network. The researchers
compared the classification results obtained by the ChNN, and
proved it a very effective method for fault classification in
transmission lines with high accuracy. Further, as a ChNN has the
single-layer structure, only one parameter is tunable, making it
easier to implement than methods such as support vector machine
(SVM) and other ANN models.
3.3 Support vector machine

SVM was invented by Cortes and Vapnik in 1995 [88], the
theoretical foundation of which can be found in [89]. The main
idea of SVM classifiers is to find an optimal hyperplane that
maximises the margin between two groups of examples. By using
non-linear kernel functions which map the examples into higher-
dimensional spaces, one can obtain non-linear SVM classifiers.
The structural-risk-minimising nature of SVM prevents the
presence of over-fitting. Moreover, the parameter optimisation
process of SVM is a convex optimisation problem, which means
falling into local optima can be avoided. The advantages of SVM
made it a powerful tool for fault classification in transmission lines
and distribution systems. In [51, 90], authors used SVM for fault
classification in series-compensated transmission lines. Both
studies used three separate SVMs for three phases and another
SVM for ground fault detection. Polynomial and Gaussian kernels
were used, and Gaussian kernel outperformed polynomial kernel
in [90]. Authors in [16, 91–93] used features extracted by DWT as
inputs to SVMs. In [16], apart from one SVM for each phase, an
extra SVM was added to distinguish between fault and transient
switching conditions. In addition to DWT, authors in [47, 94] used
PCA to reduce the dimensionality of the wavelet coefficients
before sending the coefficients to the SVMs for fault-type
classification. Hardware implementation was also done using
FPGA and a real-time power system simulator. Researchers also
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reported SVM classifiers using features extracted by ST [95, 96].
Moravej et al. [33] implemented FDOST to obtain useful features
and ranked the features by the Gram–Schmidt method for better
classification performance. In [97], authors used the one-class
quarter-sphere SVM (QSSVM) to detect and classify faults. The
QSSVM is able to map the input vectors in a way that the inputs
corresponding to normal state are enclosed in the quarter sphere
and the inputs of faulty states are kept outside of the quarter
sphere. Satisfactory fault detection and classification results were
obtained by the temporal-attribute QSSVM and attribute QSSVM,
respectively.

3.4 Fuzzy inference systems (FISs)

FISs employ fuzzy logic and perform inference operations based on
fuzzy if–then rules. On contrary to Boolean logic, fuzzy logic allows
the degree of truth to be indicated by values in the range [0, 1], 0
representing absolute falsity and 1 representing absolute truth. A
basic FIS can be divided into three stages, namely fuzzification
stage, inference stage and defuzzification stage [98]. The
membership degrees of inputs for different membership functions
are calculated in the fuzzification stage, which are then fed to the
inference engine where the if–then rules are used. The
defuzzification stage then gives the final decision based on results
of inference stage, such as the classification decision for the input.
Mahanty and Gupta [57] used sample points of post-fault
three-phase currents to calculate characteristic features for the
fuzzy rule base. The features were calculated as the differences of
normalised ratios of phase current maximums. Other characteristic
features include angles between the positive and negative sequence
components and ratios of magnitudes of different sequence
components, as used in [7, 56]. Peak values of coefficients
obtained by DWT and features extracted by ST were also used in
[21, 36], respectively. In [36], the initial fuzzy rule base was
developed from a previously trained decision tree (DT), and the
rule base was then simplified by using similarity measure and
genetic algorithm. In [99], for the task of discriminating faults
caused by animal, lightning and tree using imbalanced data, the
E-algorithm, which heuristically finds the optimal fuzzy rules, was
proposed. Linguistic and descriptive data records were transformed
into numerical variables by the likelihood calculation module and
passed to the classification module. In [100], authors used the
fuzzy-neuro (also referred to as neuro-fuzzy and fuzzy-neural)
approach for fault classification. The fuzzy-neuro approach
combines ANN and fuzzy logic, so that uncertain knowledge can
be properly represented and that learning from examples becomes
possible. Zero, positive and negative sequence current components
were used as inputs in [100]. In addition to fuzzy-neuro approach,
adaptive-network-based FISs (ANFISs) have also been used, the
details of which are explained in [101, 102]. Concretely, an ANFIS
is a five-layer network based on Takagi–Sugeno’s fuzzy if–then
rules, and a hybrid learning algorithm was adopted to identify the
consequent parameters (parameters of the if–then rules) in forward
pass by least-squares method and the premise parameters
(parameters deciding the shape of the membership functions) in the
backward pass by gradient descent [102]. Yeo et al. [53] used four
ANFISs for RMS values of three-phase currents as well as zero
sequence current, and both low impedance and HIFs were
classified correctly. In [103], authors validated the robustness and
precision of ANFIS by adding white noise to the test data.

3.5 Decision tree

DTs refer to a class of tree-like graphs capable of making decisions.
The fundamentals of DT are discussed in [104, 105]. Concretely,
three types of nodes are included in a DT, namely a root node,
internal nodes and leaf nodes. For classification problems, the root
node is where the decision-making process begins, and each leaf
node represents a class label. Tests are made on the root node and
each internal node and the decision-making flow goes along the
path that satisfies the test conditions. A suboptimal DT was
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generated using the training dataset by greedy algorithms (e.g.
ID3, C4.5 and classification and regression tree, CART) [105] in
reasonable amount of time while the accuracy requirement was
satisfied. In order to overcome over-fitting, pruning procedures
were performed to reduce the size of the generated tree [105].
Samantaray [52] used sample points of zero sequence current,
three-phase currents and voltages to form the input vector for the
DT classifier, which outperformed SVM classifiers. In [8, 9], first
ten odd harmonics up to the 19th harmonic of voltage and current
signals were obtained by HCDFT. Random forest (RF) algorithm
was then implemented for classification of faults in single-circuit
and double-circuit transmission lines. Specifically, a RF consists of
a finite number of DTs and a plurality vote among the trees gives
the final decision [106]. As it turned out, the decision-making
process could be performed accurately in less than a quarter cycle
[8, 9]. Upendar et al. [19] used DWT coefficients as features for
CART DT and compared its performance with FNN. Both
methods achieved high accuracy, while CART DT’s performance
was even better. CART DT was also used in [107], in which the
authors extracted a set of differential features by HCDFT from
voltage and current signals.
4 Future outlook for fault classification methods

While the above-mentioned studies in transmission line and distribution
system fault classification mainly adopted well-developed machine
learning algorithms, a huge number of developments and new trends
in the fields of machine learning and data mining are worth noticing.
In 2006, Hinton et al. presented the possibility of extracting feature
representations from data using restricted Boltzmann machines
(RBMs) or autoencoders [108], laying the foundation for deep
learning (DL). The structure of a DL model is similar to that of a
multi-layer FNN, but the unsupervised feature learning from large
amount of unlabelled input data can prevent the model from
over-fitting and falling into local optima. The easy access to massive
amount of data and high computing ability of machines have made
such a pre-training method possible. Recent developments in DL
have successfully improved classification ability in many fields [109],
and the application of DL in power system fault classification is
promising. Methods such as convolutional neural networks (CNNs)
are also used to deal with multi-channel sequence recognition
problems [110], providing new ideas for the fault classification tasks,
where three-phase current and voltage signals are also in the form of
multi-channel time sequences.
5 Fault location

A considerable number of studies have focused on fault location in
that accurate location of faults in transmission lines and distribution
systems can greatly reduce the time to recovery. A comprehensive
review of fault location in power systems is provided in [111]. In
[1], where a smart fault location method was proposed, the
background knowledge for fault location was also provided. Thus,
in this paper, on the basis of existing review studies, we present the
fundamentals and some new progress in fault location techniques.

For transmission lines, conventional fault location methods can be
divided into impedance focused methods (phasor or time-domain
based) and travelling wave based methods. For distribution
systems, methods using superimposed components and power
quality data may also be considered [1]. Depending on the source
of data, fault location methods may be further categorised as
single-end methods, double-end methods, multi-end methods and
wide-area methods. In this paper, however, we present fault
location methods in a different manner as we only focus on some
special portions of them. Due to the fast development of wide-area
methods and the need of building reliable large-scale smart grids,
we take wide-area methods into account. Similarly, we take fault
location methods of series-compensated transmission lines and
hybrid transmission lines into consideration because of their
special properties that distinguish them from normal transmission
29e Creative Commons



lines. At the same time, we take modern artificial intelligent methods
into account because of their good performance on fault location and
broad application prospects. Consequently, the following fault
location algorithms to be discussed mainly concentrate on
wide-area fault location algorithms, series-compensated
transmission lines fault location algorithms, hybrid transmission
lines fault location algorithms and artificial intelligence based fault
location algorithms.

5.1 Wide-area fault location algorithms

Traditional fault location methods fail to locate faults when either of
the monitor devices at the terminals of the faulty line fails to record
the fault waveform. Wide-area fault location methods are
applications of the wide-area monitoring system and they can
overcome the adverse situation by providing a viable solution to
the fault location problem [112]. In other words, wide-area fault
location methods can precisely locate the fault point within the
entire large-scale transmission network by using the information
provided by a small amount of monitor devices that are dispersed
in the network. Authors in [113, 114] proposed a non-linear
optimisation-based synchronised algorithm. By acquiring the arrival
time of voltage travelling waves at different sensor nodes in the
network and splitting all the transmission line at virtual bus nodes,
a closed-form expression solution was obtained. In [115], multiple
synchronised voltage measurements were utilised to model the fault
location problem as a non-linear estimation problem, which was
solved by applying a novel transform based on pre-fault bus
impedance matrix to convert the non-linear problem to a linear
weighted least-squares problem. Azizi and Sanaye-Pasand [116]
proposed a synchronised voltage-based non-iterative method by
taking advantage of the substitution theorem. By replacing the
faulted line with a suitably adjusted current source injecting the
same amount of transmission line current, an equivalent network
was established. The positive-sequence and negative-sequence
network impedance matrix constructed based on the pre-fault
network topology was utilised to calculate the location of fault
using the linear least-squares method. In [117], through building a
positive-sequence network, a matching degree factor, which is a
function of fault distance and is equal to zero only at the exact fault
point, was defined. Concretely, calculating the matching degree
factor at every bus that is temporarily assumed to be the faulty bus
can point out the fault region. Fault location is then determined by
calculating the factor at all the lines included in the fault region by
a small step. Similarly, the impedance-based method proposed in
[118] locates the fault in a hierarchical manner, by which the
faulted zone, faulted line and fault point are located in turn.

5.2 Fault location algorithms for series-compensated
lines

Series-compensated lines are installed with series capacitors (SCs)
and metal oxide varistors (MOVs) to accomplish series
compensation. In spite of the favourable performance of series
compensation, the presence of SC and MOV causes some
difficulties to faulty segment detection for fault location because of
their non-linear behaviour. Thus, traditional approaches need
improvement so as to fit the fault location task on
series-compensated lines [111, 119, 120]. In [121], an
impedance-based algorithm utilising double-end voltage and
current signals was proposed. Impedance between the capacitor
and the fault point was calculated to obtain the entire fault current.
As the angle difference of fault voltage and fault current at the real
fault point is minimised, the real fault point can be found by
searching the potential fault point along the entire line with small
steps. Swetapadma and Yadav [122] used artificial intelligent
method to locate the multi-location faults and normal single fault.
DWT was used to extract the third level (62.5–125 Hz)
approximate wavelet coefficients from one pre-fault cycle and two
post-fault cycles of voltage and current signals. The features of
standard deviation of approximate coefficients of voltage and
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current signals were then calculated as inputs for an ANN. In
[123], a time-domain model of thyristor-controlled SC (TCSC) and
distributed transmission line model was built. The method requires
synchronised information from two ends of the line, and the
transient resistance of the TCSC measured during the first cycle of
fault inception can be acquired as a fault section indicator.

5.3 Fault location algorithms for hybrid transmission
lines

Similar to series-compensated lines, hybrid transmission lines
consisting of overhead transmission lines and underground cables
have discontinuous points named joint-nodes where reflections of
fault signal are generated. Another important property of hybrid
transmission line is the difference of travelling wave velocities in
line and cable. Therefore, conventional approaches need
improvement to be suitable for hybrid transmission lines [124]. A
travelling wave based algorithm was proposed in [125], in which
the authors used transients caused by opening of circuit breaker
instead of using fault-induced transients. The arrival time of modal
components of voltage travelling wave was detected by WT, and
the fault zone was then judged by the polarity of the reflections.
Further, the wave speed in cable section and overhead line was
also calculated, after which the fault point was acquired through a
normal double-end travelling wave method. In [126], the current
signal was passed through two sample FIR filters to remove DC
offset. Wavelet detail and approximate coefficients of voltage and
current signals were obtained by applying DWT. The first level
detail coefficients (800–1600 Hz) were set as inputs to a
neuro-fuzzy system to determine whether the fault section was on
the overhead transmission line or the underground cable. Then, the
third level approximate coefficients (0–200 Hz) were set as inputs
to another neuro-fuzzy system to calculate the fault location. In
[127], time reversal method was used to locate the fault. After
recording the fault-originated transient waveform at an observation
point, back-injection at the observation point of the time-reversed
measured fault waveform for different guessed fault locations was
simulated. By comparing all the fault current energies at a series
of guessed fault location, the real fault point with the maximum
fault current energy was found out.

5.4 Artificial neural network based algorithms

On the basis of the capability of self-learning, self-organisation, fast
processing, highly fault tolerance and non-linear function
approximation, different kinds of ANNs have also been applied to
fault location tasks. In [128], approximate and detail coefficients in
the bandwidth of 0–500 Hz were extracted by DWT from
three-phase current and voltage signals at one end of a double
circuit transmission line, which were then used to train the ANN
with Levenberg Marquardt algorithm to locate faults. In [129], the
magnitudes of fundamental components of three-phase voltage and
current signals were extracted by DFT. Three vectors formed by
different combinations of features were used as the inputs to three
different modular ANNs. The results showed that the ANN with
the features containing both voltage and current information had
the best performance with respect to fault location accuracy and
training speed. Complex-domain ANNs are simple extensions of
standard feedforward real-domain ANNs, whose inputs, outputs,
interconnection weights and biases are all complex number. In
[130], the fourth level of detail and approximate coefficients were
acquired by stationary WT (SWT) using Db2 mother wavelet, and
these features were input to a complex-domain ANN to locate
faults. Authors used DWT to extract features of first peak time in
first scale of faulty buses at 1/4 cycle of positive sequence for
post-fault currents in [131], in which the features were used as the
input for a PNN. Concerning different circuit structures including
single-circuit structure and loop structure, the PNN achieved an
average error of 0 km for fault location. In [132], a two-stage fault
location algorithm using RBF-based SVM and scaled conjugate
gradient (SCALCG)-based ANN was proposed. In the first stage,
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magnitudes of the fundamental harmonics of the positive sequence
voltage and current signals of the faulty phases were input to
RBF-based SVM to get an approximate fault area. In the second
stage, the SCALCG-based ANN was implemented to output the
precise fault location using high-frequency characteristics.

5.5 Fuzzy inference system based algorithms

As mentioned in [133], a ANFIS has the non-linear approaching,
fault-tolerant and self-learning abilities and is able to automatically
refine the preset fuzzy rules. Thus, fault location can also be
achieved by ANFISs [134–136]. In [134], fifth-level detail
coefficients (93.75–187.5 Hz) containing the second and third
harmonics of three-phase current signals were extracted by DWT
using Db4 mother wavelet. These features were used as the input
for ANFIS to locate faults, the efficacy of which was validated
through a Monte Carlo simulation, and the maximum error for
fault location was 5%. Kamel et al. [135] obtained features of
impedances including magnitude and phase information of
three-phase voltage and current as inputs for ANFIS, and the
maximum error was about 4% for different fault conditions. As
mentioned in [136], norm entropy of main frequency coefficients
(0–62.5 Hz), harmonic coefficients (62.5–500 Hz) and transient
coefficients (500–4000 Hz) acquired by six-level DWT using Db4
as mother wavelet were set as inputs for ten ANFIS regression
algorithms trained by BP gradient descent method in combination
with the least squares method, and the average error was 0.25%.

5.6 Support vector regression (SVR) based algorithms

In addition to fault classification, SVMs can also be applied to
regression problems. By replacing the linear terms in the linear
equations of SVMs with an alternative loss function named the
e-insensitive loss function, the SVMs are able to solve regression
tasks. Such a technique is called SVR. SVR retains the properties
of SVMs such as using structural minimisation principles to
choose discriminative functions so as to reduce the possibility of
over-fitting data. It is also trained as a convex optimisation
problem so that a global solution can be found [137, 138]. In the
proposed method in [139], current and voltage signals were
denoised and the decaying DC offset was filtered out by SWT. A
special determinant function transform was used to extract features
from level 2–5 SWT detail coefficients taken over 1/4 of a cycle.
After the fault type was classified by a SVM, the features were
sent to the radial basis kernel SVR corresponding to the fault type.
In [95], the authors used HST, which was implemented by
replacing the Gaussian window of ST by the hyperbolic window
as an asymmetrical window to extract features from current and
voltage signals. Eleven different kinds of features obtained from
the HST-matrix were used as the input of the corresponding SVR.
In [140], wavelet packet decomposition (WPD) with Db1 mother
wavelet was used to extract distinctive fault features from 1/2
cycle of post-fault voltage signals after noises were eliminated by
a low-pass filter. The eight-element features of sub-band energies
of WPD level-nodes were then passed on to the SVR.
6 Future outlook for fault location methods

With the development of large-scale smart grid, complex networks
with insufficient measurement points are expected to become more
and more common, providing the wide-area methods with great
promise to be widely implemented in the future. Moreover,
compared with conventional impedance based or travelling wave
based fault location methods, machine learning based fault
location methods have better adaptability and are less likely to be
influenced by parameters of lines or fault parameters. With the
ever increasing computation and communication abilities, machine
learning based fault location will play a more significant role
among methods for fault location. Similar to fault classification,
advanced machine learning methods such as DL may have a better
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This is an open access article published by the IET and CEPRI under th
Attribution License (http://creativecommons.org/licenses/by/3.0/)
performance than the methods used currently. Thus, the machine
learning algorithms including DL methods may be considered for
future research in fault location.
7 Conclusions

This paper presents a review on the methods used for fault detection,
fault classification and fault location in transmission lines and
distribution systems. A variety of methods are introduced and
representative works are presented in detail.

Prior to introducing the methods directly used in the three topics,
we first give an overall review on the methods used for feature
extraction, which lays the foundation for other fault diagnosis
tasks. Different types of transforms as well as dimensionality
reduction methods are presented. We can see that information
across the low-frequency ranges and high-frequency ranges is fully
exploited, and researchers are more purposeful when choosing the
feature extraction techniques as well as selecting the extracted
features. Fault detection is presented on top of the feature
extraction methods, as the detection techniques are highly
dependent on feature extraction. Still, some noteworthy aspects
and newly developed ideas regarding to fault detection are
presented. A brief summary of fault detection time in the literature
is also provided.

For the fault classification task, we mainly put forward various
machine learning algorithms that have been intensively
implemented by researchers. In addition to the classical models
such as ANN and SVM, we also present some promising new
models emerged lately. Based on the fact that the development of
fault classification methods is highly relevant to the progresses
made in artificial intelligence and machine learning, we propose
the possible trend for future works, including the application of
models such as RBM and CNN.

As surveys of fault location methods can be found in existing
literature, we mainly present some fault location methods under
several topics that are of interest, including complex line
conditions and important artificial intelligence based methods. We
also put forward the possibility of using the latest machine
learning models to facilitate the fault location tasks.
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