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ABSTRACT Fault detection for closed-loop control systems is the future development in the field of the

fault diagnosis. Since a closed-loop control system is generally very robust to the external disturbances,

fault detection has been challenging a hot research area. Traditional data-driven detection methods are not

particularly designed for closed-loop control systems and thus can be improved. In this paper, a new fault

detection method is proposed, which is based on the parity space for the closed-loop control system. The

main principle of our method is to transform the detection residual into the parity space of the original space

to restrict false detection or leak detection caused by the estimation of uncertain states. More specifically,

the construction of the stable kernel matrix in the parity space is given, and the residual sequence is

accumulated to improve the fault-to-noise ratio and thus increase the detection performance. To verify

our method, we have conducted a simulation which is based on a numerical simulation model and the

Tennessee industrial system respectively. The results show that the proposed method is more feasible and

more effective in fault detection for closed-loop control systems compared with the traditional data-driven

detection methods, including the time series modeling method and the partial least squares method.

INDEX TERMS Fault detection, closed-loop control, parity space, stable kernel matrix, detection perfor-

mance.

I. INTRODUCTION

With the development of science and technology, the com-

plexity of the industrial systems has been increasing. The

fault of these complex systems can lead to the decline in the

product quality andmay cause significant property damage or

casualties [1]. Therefore, it has become the research focus to

improve the safety and the reliability of the system operation

and to detect the fault timely and accurately [2].

In order to achieve the predetermined production goals

or to meet the stability and the robustness for the industrial

systems, the closed control loop is generally applied. Through

the closed control loop, the influence of external disturbance

on the operation of the system is reduced, which makes the

system much more robust. At present, a large number of

The associate editor coordinating the review of this manuscript and
approving it for publication was Guangdeng Zong.

closed control loops have been widely used in the industrial

production processes [3], such as proportional integral differ-

ential control, optimal control, robust control, etc.

Due to the nature of closed control loops, the performance

of fault detection and diagnosis is degraded. Themain reasons

are as follows [4]:

1) In terms of fault detection, the closed control loop

usually makes the system more robust to the external distur-

bances. Therefore, when the fault happens in the early stage

or the fault magnitude is small, the fault signal will be covered

by the external control signal, which is difficult for the fault

to be detected, resulting in lower fault detection rate;

2) In terms of fault identification, the closed control loop

will encourage the fault to propagate inside the system, lead-

ing to the faults existing in many variables/signals. Such fault

transmission phenomenon increases the difficulty for fault

identification.
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This paper focuses on addressing fault detection issues in

closed-loop control systems. The main aim is to achieve fault

detection in closed-loop control systems and improve fault

detection performance.

There have been a lot of research results in the area of fault

detection for open-loop systems [5]–[10]. However, due to

the nature of closed control loops, the operating characteris-

tics of closed-loop control systems are significantly different

from open-loop systems, and the closed-loop control system

is generally much more robust and stable. Therefore, most

of existing fault detection methods for open-loop systems

cannot be directly applied to closed-loop control systems.

To be more specific, the difficulty of fault detection in

closed-loop control systems is mainly due to the following

facts: (1) The closed control loop makes the fault mag-

nitude smaller, therefore the detection residual constructed

by traditional methods is unable to meet relevant detection

requirements [11]–[13]; (2) The dynamicity of the system

poses great challenges in constructing the accurate model

and determining the model parameters, leading to the con-

sequence that state vectors cannot be estimated accurately.

In a word, the closed-loop control system can reduce the

external disturbance, so that the fault could be overwhelmed

by the noise, which brings difficulties to the fault detection.

Based on these observations, in this paper, we propose to

increase fault-to-noise ratios through the accumulation of

the residual sequence and to construct the detection resid-

ual when the fault magnitude is small in close-loop control

systems. Besides, we adopt the parity space transformation

to change the characters of the detection residual when the

model state is not clear or the model parameters are unknown,

aiming to improve the fault detection performance.

The main contributions of this paper are as follows: Firstly,

the parity space transformation is adapted and applied in the

fault detection of the closed-loop control systems, which can

solve the uncertain estimation of the state vector for the fault

detection in closed-loop control systems and improve fault

detection rates. Secondly, for the parity space transforma-

tion, a more effective method for selecting a stable kernel

matrix is designed, which can obtain much more accurate

parity space. Thirdly, when dealing with the problem that

the system fault amplitude becomes smaller in the closed

control loop, the residual sequence in the time window is

used to construct new detection residuals for enhancing the

fault-to-noise ratio and improving the fault detection rate.

Finally, the improved fault detectionmethod is applied to both

the numerical simulation system and the Tennessee industrial

system to implement and verify fault detection in closed-loop

control systems.

The remainder of this paper is organized as follows: In

Section II, we introduce the related works. In Section III,

the parity space principle is introduced, and a classic con-

struction method of detection residuals and stable kernel

matrix are also described. Section IV firstly presents a

straightforward fault detection method based on the parity

space in a closed-loop control system, and then develops an

improved fault detection method with a technique of accumu-

lating residuals for systems with smaller fault-to-noise ratios.

SectionV presents experiments on both the numerical simula-

tion model systems and the Tennessee industrial systems, and

the results are reported and discussed. Finally, the conclusion

is drawn in Section VI.

II. RELATED WORK

At present, there are a lot of research results in fault detection

for open-loop systems [5]–[10].

The impact of fault detection on a lab-scale electric

machine system was studied [14]. Under the open-loop con-

trol system, the torque current power spectrum can be used

to detect the electrical faults. Nevertheless, in closed-loop

control systems, the frequency features are covered by the

control signal. Therefore, the fault detection methods for

open-loop systems cannot be used for closed-loop control

systems directly.

When the system model and its parameters are certain,

the traditional model-based fault detection methods usually

use the calculated value of the model and the output value of

the actual system to construct the residual statistic to realize

the fault detection [15]–[17].While in the closed-loop control

systems [18], [19], the system residuals may tend to zero

because of the designed closed control loop [20]. Therefore,

the system residuals are not sensitive to detect the faults in

closed-loop control systems, which will increase the fault

detection difficulties.

Due to the complexity of the practical system, it is dif-

ficult to establish the accurate system model [21]. Besides,

to establish a complete fault model database is also too

expensive. Therefore, when the system model is uncertain,

the data-driven fault detectionmethods are generally selected.

In open-loop systems, the research results based on the

data-driven fault detectionmethods are also significant. How-

ever, due to the inherent characteristics of closed-loop con-

trol systems, most of the data-driven detection methods for

open-loop systems are also difficult to be directly applied to

closed-loop control systems.

The fault detection methods based on the time series was

proposed in Reference [22], [23]. The ARMA model aims at

predicting the current measurement value through the histor-

ical measurement values and the corresponding noise. The

closed-loop control system will make the fault magnitude

tend to zero, which cannot distinguish the noise from the fault

well. Therefore, the time series modeling method cannot be

applied to the fault detection in closed-loop control systems.

The fault detection method based on the Partial Least

Squares (PLS) was studied [24], [25]. This method combines

the idea of the Principal Component Analysis (PCA) and the

Canonical Correlation Analysis (CCA) to find the relation-

ship between the input data and the output data of the system.

And this method works well in the static data detection.

However, the data will not be static due to the closed control

loop in the close-loop control systems. Besides, there is a

strong correlation among the data, which makes the PLS
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method cannot handle well for closed-loop control systems.

In addition, the PLS needs to estimate the state vector accu-

rately to construct the detection residuals. When the state

vector cannot be accurately estimated, the method will break

down.

The fault detection for the sensor faults in the linear

closed-loop dynamic systems was studied with the multiple

inputs and the multiple outputs [26]. A classification method

based on the data-driven residual generators was proposed.

Since it is necessary to seek the proportional relationship

among the measured data and to estimate the relationship by

the least squares method, the initial state vector of the system

must be ignored, which has a great influence on the prediction

accuracy, thus affects the detection result.

The parity space is an abstract expression of the vector

space relationship and any vector space has its corresponding

parity space. The parity space corresponding to the original

vector space can be found through the parity space transfor-

mation. The parity space is orthogonal to the original vector

space. Besides, it can be directly connected to the original

space to construct the full space. In this way, some spatial

characteristics in the original vector space are better reflected

in its parity space [2], [20].

According to the statement above, this paper aims at solv-

ing the problem of fault detection in closed-loop control sys-

tems. With the parity space transformation, it can effectively

solve the problem of the fault alarm or the missed detection

due to the inaccurate estimation for the state vector. Through

the data characteristics in the parity space, the change of

detection residuals can be calculated in the parity space. Then

the fault in the closed-loop control system can be detected.

III. PRINCIPLE OF PARITY SPACE

A. CONSTRUCTION OF DETECTION RESIDUALS

Firstly, we establish a discrete linear model for the a control

system as follows:
{

xk+1 = Axk + Buk + f xk + wk

yk = Cxk + f
y
k + vk

(1)

where xk ∈ R
nx is the state vector, uk ∈ R

nu is the input

vector, yk ∈ R
ny is the output vector, wk ∈ R

nx and vk ∈ R
ny

are the independent process noise and themeasurement noise,

with zero mean, and the covariance matrices are the normal

distribution of Q ∈ R
nx×nx and R ∈ R

ny×ny respectively;

f xk ∈ R
nx and f

y
k ∈ R

ny are the actuator fault and the sensor

fault (When the system operates normally, i.e., f xk = 0 and

f
y
k = 0); A,B,C are the parameter matrices with appropriate

dimensions, which are all unknown.

For Model (1), if we unite the measurement data of q

moments to rearrange the sampled data, and let Y k,q =
[

yk , yk+1, . . . , yk+q−1

]T
, then we have another model as

follows:

Y k,q = Ŵqxk + 2u,qUk−1,q

+ 2w,qW k−1,q + V k,q + 2f ,qF
x
k,q + F

y
k,q (2)

where Uk−1,q =
[

uk−1,uk , · · · ,uk+q−2

]T
,

W k−1,q =
[

wk−1,wk , · · · ,wk+q−2

]T
,

V k,q =
[

vk , vk+1, · · · , vk+q−1

]T
,

Fxk,q =

[

f xk , f
x
k+1, · · · , f xk+q−1

]T
,

F
y
k,q =

[

f
y
k , f

y
k+1, · · · , f

y
k+q−1

]T
,

Ŵq =

[

(

CA0
)T

,

(

CA1
)T

, . . . ,

(

CAq−1
)T

]T

∈R
qny×nx ,

2u,q =













CA0B 0 · · · 0

CAB CA0B
. . .

...
...

. . .
. . . 0

CAq−1B · · · CAB CA0B













∈ R
qny×qnu ,

2w,q =













CA0
0 · · · 0

CA CA0 . . .
...

...
. . .

. . . 0

CAq−1 · · · CA CA0













∈ R
qny×qnw ,

2f ,q =













0 0 · · · 0

CA0
0

. . .
...

...
. . .

. . . 0

CAq−2 · · · CA0
0













∈ R
qny×qnw

In Model (2), the state vector xk cannot be accurately

obtained, therefore if the state vector can be eliminated,

the accuracy of the fault detection can be improved.

The state vector inModel (2) can be eliminated through the

parity space transformation, that is to calculate Ŵ
⊥
q , which is

the left null space of Ŵq. Furthermore, the left null space Ŵ
⊥
q

should satisfy that Ŵ
⊥
q Ŵq = 0 and the two matrices can be

extended to the full space. Hence, inModel (2), if wemultiply

both sides by Ŵ
⊥
q , then we have

Ŵ
⊥
q Y k,q

= Ŵ
⊥
q

(

2u,qUk−1,q+2w,qW k−1,q+V k,q+2f ,qF
x
k,q+F

y
k,q

)

(3)

Further, Eq. (3) can be rewritten as

Ŵ
⊥
q Y k,q − Ŵ

⊥
q 2u,qUk−1,q

= Ŵ
⊥
q

(

2w,qW k−1,q + V k,q + 2f ,qF
x
k,q + F

y
k,q

)

(4)

Let














8 =

[

−Ŵ
⊥
q 2u,q Ŵ

⊥
q

]

zk,q =

[

UT
k−1,q YT

k,q

]T

rk,q = 8zk,q

(5)

where 8 is the stable kernel matrix of the parity space trans-

formation. When the system operates normally, i.e., Fxk,q = 0
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and F
y
k,q = 0, we have

rk,q = Ŵ
⊥
q

(

2w,qW k−1,q + V k,q

)

(6)

It should be noted that the residual follows the normal dis-

tribution with zero mean. Then we have the covariancematrix

as 6 = Ŵ
⊥
q 2w,qQ

(

Ŵ
⊥
q 2w,q

)T
+ Ŵ

⊥
q R

(

Ŵ
⊥
q

)T
, i.e., rk,q ∼

N (0, 6)when the system operates normally; if a fault occurs,

the residuals can be represented as

rk,q = Ŵ
⊥
q

(

2w,qW k−1,q + V k,q + 2f ,qF
x
k,q + F

y
k,q

)

(7)

and then the expectation of the residual will deviate from zero.

B. ESTABLISHMENT OF STABLE KERNEL MATRIX

The matrix 8 is an important operator for the parity space

transformation, and its choice has a great influence on the

structure and the characteristics of the constructed parity

space. Here, a stable kernel matrix can play a critical role

in the parity space transformation. There have been quite a

few research efforts in mathematics on how to derive a stable

kernel matrix [2], [27], [28].

When the system operates normally, Erk,q = E8zk,q = 0

for Eq. (5) and Eq. (6). Therefore, the stable kernel matrix 8

can be obtained with the training data from the normal oper-

ating system. Assume that the total number of the training

samples is Ñ , let N = Ñ − q, then we have

ZN =

[

U1,q U2,q · · · UN−1,q

Y2,q Y3,q · · · YN ,q

]

∈ R
q(nu+ny)×(N−1)

(8)

We apply the singular value decomposition (SVD) for the

training data set ZN

ZN =
[

H1 H2

]

[

31

32

]

[

P1 P2

]T
(9)

Let nr = qny − nx > 0, where 32 ∈ R
nr×nr ,

P2 ∈ R
q(nu+ny)×nr , H2 ∈ R

q(nu+ny)×nr . Since the matrix
[

H1 H2

]

is a unitary matrix, Eq. (9) can be rewritten as

[

HT
1

HT
2

]

ZN =

[

31

32

] [

PT
1

PT
2

]

(10)

Through calculating the rank of the matrix ZN , the singular

value32 ≈ 0. ThenH2 can be expanded into the parity space

of the training data set ZN , which is

HT
2 zk,q = 32P

T
2 ≈ 0 (11)

Then the stable kernel matrix 8 is established, and

8 = HT
2 .

C. EXISTENCE OF STABLE KERNEL MATRIX

According to Model (2), the observed sequence vector Y k,q
can be written as a linear combination of the input sequence

vector Uk−1,q and the state vector xk . If the system has no

noise, combining with Eq. (8), the following equation can be

obtained:

ZN =

[

E 0

2u,q Ŵq

] [

U1,q U2,q · · · UN−1,q

x2 x3 · · · xN

]

(12)

Because the matrix

[

E 0

2u,q Ŵq

]

is of full column rank,

the rank of

rank

([

U1,q U2,q · · · UN−1,q

x2 x3 · · · xN

])

= qnu + nx

according to Eq. (12). The number of rows of the matrix ZN
is qnu+qny, and the last qny−nx items for the singular values

of the matrix ZN are zero, which is 32 = 0. Due to the noise,

the singular values32 ≈ 0 in practice, we only need to select

the value of the appropriate sampling number q, so that qny−

nx > 0, then we can ensure that the stable kernel matrix 8

exists.

IV. FAULT DETECTION BASED ON PARITY SPACE FOR

CLOSED-LOOP SYSTEM

A. LINEAR MODEL FOR CLOSED-LOOP SYSTEM

If we add the closed control loop into Model (1), the closed-

loop control system equation can be written as


















xk+1 = Axk + Buk + wk + f xk
yk = Cxk + vk + f

y
k

xck+1 = Acxck + Bcyk

uk = Ccxck + Dcyk

(13)

where xck ∈ R
nxc is the state control vector, Ac,Bc,Cc,Dc

are the parameter matrices with appropriate dimensions. It is

worth noting that, because of the closed control loop, themea-

sured output will affect the input value at the next moment.

If the feedback control is a negative feedback, the fault ampli-

tude will be reduced, which brings the difficulties for fault

detection.

B. STABLE KERNEL MATRIX FOR A CLOSED-LOOP

CONTROL SYSTEM

Similar to Eq. (2), without considering the closed control

loop, the formula can be obtained when the system operates

normally as follows:

Y k,q = Ŵqxk + 2u,qUk−1,q + 2w,qW k−1,q + V k,q (14)

According to the parity space transformation introduced

in Section III, if the stable kernel matrix 8 can be obtained,

the residual at eachmoment can be calculated through Eq. (5).

Once we successfully calculate the residual characteristics

according to the training data under the normal conditions

and combine the detection statistics with the corresponding

detection thresholds, we can then judge whether the faults

occur or not.

Unlike an open-loop control system, in a closed-loop con-

trol system, the measured data Y also affects the input dataU .

However, in such situation, the rank of the data set may
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become smaller. If we completely adopt themethod described

in Section III to obtain the stable kernel matrix 8, it may

further compress the residuals in the parity space and the

performance for the fault detection will be decreased.

Similar to Eq. (14), consider the equation of the input data

and the output data with the closed control loop as follows:

Uk,q = Ŵ̃qx
c
k + 2y,qY k,q (15)

where Uk,q and Y k,q are the output data and the input data of

the closed-loop control system respectively, whose symbol

form is similar to that in Eq. (2), which can be demonstrated

as follows:

2y,q =











Dc 0 · · · 0

CcBc Dc · · · 0

...
...

. . .
...

Cc(Ac)q−2Bc Cc(Ac)q−3Bc · · · Dc











∈ R
qnu×qny ,

Ŵ̃q =











Cc

CcAc

...

Cc(Ac)q−1











∈ R
qnu×nxc .

It can be seen from Eq. (15) that the input data in the

closed-loop control system is affected by both the output

data and the state control vector. Consider the training data

set for Eq. (8) constructed in Section III, The rank of the

matrix ZN can be determined by the state vector xk , the state

control vector xck and the k-time input uk , i.e., rank (ZN ) =

nx+nxc +nu. Now the rank of the parity space is not qny−nx ,

and actually it becomes nr = qny + (q− 1) nu − nx − nxc .

In essence, the parity space method finds the left null

space. Since the matrix ZN in Eq. (12) is not full of rank,

the projection in the left null space can be regarded as the

system residuals, that is, the projection of noise in this space.

Then calculate the statistical characteristics of the residuals

for fault detection.

C. IMPROVEMENT FOR CONSTRUCTING DETECTION

RESIDUAL

In the closed-loop control system, since the output vector has

a feedback adjustment function to the system, it generally

counteracts the external disturbance. However, its effect on

the white Gaussian noise is opposite, which may increase the

variance of the noise. On the other hand, when the fault occurs

in the closed-loop control system, the fault magnitude will

become smaller due to the closed control loop. Because of the

above reasons, the fault-to-noise ratio will be reduced and the

difficulty of the fault detection will increase, which is a key

problem of fault detection in closed-loop control systems.

When detecting the fault based on the parity space trans-

formation, the problem above may also exist. In this case,

the residual with only a single moment is not enough for

fault detection, but it can increase the fault-to-noise ratio by

accumulating the residual sequence of a sliding window to

construct an improved residual with a higher fault-to-noise

ratio, which can improve the fault detection performance.

However, the real-time performance of the fault detection

may not achieve the best results due to the accumulation of

the residual sequence.

Take a one-dimensional fault as an example, and let the

fault magnitude be fk at k-time. When the system operates

normally, the residual rk follows the distribution as follows:

rk ∼ N
(

0, 6̃
)

(16)

where 6̃ is the variance of the residual rk , and when the fault

occurs, the residual rk follows the distribution as follows

rk ∼ N
(

fk , 6̃
)

(17)

The fault is easily overwhelmed by the noise with a lower

fault-to-noise ratio, which makes it difficult to detect the fault

accurately. If we accumulate the N0 residuals in a sliding

window, then

r̃k =

k
∑

j=k−N0+1

rj (18)

Now the residual follows the distribution as follows

r̃k ∼ N





k
∑

j=k−N0+1

fj,N06̃



 (19)

Now the fault-to-noise ratio is

∣

∣

∣

∣

∣

k
∑

j=k−N0+1

fj

/

√

N06̃

∣

∣

∣

∣

∣

,

which is increased obviously.

According to the above analysis, the fault detection per-

formance can be improved by appropriately increasing the

detection delay. However, the abovemethod is not suitable for

sudden faults, and currently there is no appropriate solution

for sudden fault detection with a small magnitude.

D. DETECTION STATISTICS AND DETECTION

PERFORMANCE

If r̃k ,the sum of the N0 residuals rj, can be calculated (as

shown in Eq. (18)), where k represents the current moment,

then the statistical characteristics from the training data can

be used to detect fault in the test data.

Assume that the sample number of the improved residuals

is N − k + 1, let

R =
[

r̃k ˜rk+1 · · · ˜rN
]

(20)

We can calculate the covariance matrix of the training data

as follows:

S =
1

N − k
RRT (21)

As for the improved residual r̃ from the test data, the T 2

statistics can be computed as

T 2 = r̃TS−1r̃ (22)
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The T 2 statistics obeys F-distribution in the normal

system [29]. Let N̂ = N−k+1 and the threshold is as follows

T 2
α =

m
(

N̂ − 1
) (

N̂ + 1
)

N̂
(

N̂ − m
) Fα

(

m, N̂ − m
)

(23)

where m = row (R) is the dimension of the measurement

space.

Proof: Consider R =
[

r̃k , r̃k+1, · · · , r̃N
]T

,

r̃i
iid
∼ N

(

0,
⌢

6

)

, i = k, · · · ,N , and then the matrix S =

1
N−k

RRT obey the Wishart distribution (W-distribution).

So let














zi =

√

N̂

N̂ + 1
6

1/ 2
r̃i
iid
∼ N (0, I) , i = k, · · · ,N

W =

(

N̂ − 1
)

6
−1/ 2

S−1
6

−1/ 2
(24)

So

N̂
(

N̂ − m
)

m
(

N̂ 2 − 1
) r̃TS−1r̃

=
N̂

(

N̂ − m
)

m
(

N̂ 2 − 1
) rT

˜
6

1/ 2 (

6
−1/ 2

S−1
6

−1/ 2
)

6
1/ 2

r̃

=
N̂ − m

m
zTW−1z ∼ F

(

m, N̂ − m
)

(25)

Further,

T 2 ∼
m

(

N̂ − 1
) (

N̂ + 1
)

N̂
(

N̂ − m
) F

(

m, N̂ − m
)

(26)

The detection criterion is as follows:

T 2

{

≤ T 2
α fault − free

> T 2
α faulty

(27)

In order to compare the differences among different fault

detection methods, the two important performance indicators

are used, i.e., the false alarm rate (FAR) and the fault detection

rate (FDR). The FAR can be given as follows [30]

FAR =
Nfalse−alarm

Nfault−free
(28)

where Nfalse−alarm is the number of the normal data sets

misjudged as the fault and Nfault−free is the number of the

normal data sets. The FDR can be given as follows

FDR =
Nfault−detected

Nfaulty
(29)

whereNfault−detected is the number of the fault data sets judged

successfully and Nfaulty is the number of the fault data sets.

FIGURE 1. The fault detection flow for the proposed method.

E. FAULT DETECTION FLOW

The algorithm steps for the fault detection in a closed-loop

control system based on the parity space transformation are

given in Fig. 1.

Step1. Determine the training data set and the number of

the combination data q, and rewrite it in ZN form

according to Eq. (8);

Step2. Make the SVDof the data set, and use the rank and the

unitary matrix to determine the stable kernel matrix

8;

Step3. Calculate the residuals rk,q = 8zk,q of the training

data by using the stable kernel matrix 8 and the data

set ZN ;

Step4. According to the method introduced in the

Section IV-C, get the improved residuals by accumu-

lating the N0 residuals to increase the fault-to-noise;

Step5. According to Eq. (22) and Eq. (23), calculate the T 2

statistics by the improved residuals and the threshold

T 2
α ;

Step6. Compare the T 2 statistic at each moment and the

threshold T 2
α calculated with Eq. (23), and judge

whether the fault occurs or not according to Crite-

rion (27);

Step7. Determine Nfalse−alarm, Nfault−free, Nfault−detected and

Nfaulty, and calculate the FAR and the FDR according

to Eq. (28) and Eq. (29).

V. SIMULATIONS

In this section, we report results of our simulations that

verify the feasibility of the fault detection in the closed-loop

control system based on the parity space transformation. The

simulation cases include the numerical simulation model and

the Tennessee Eastman Process (TEP) based on the industrial

process simulation model.
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FIGURE 2. Simulation data set for the constant fault.

FIGURE 3. The detection residual by the parity space method.

A. CASE 1: NUMERICAL SIMULATION MODEL

1) EXAMPLE FOR DETECTING THE CONSTANT FAULT

The total amount of data is 2000 sets, in which the first

1000 sets of data are training data, the last 1000 sets of data

are test data, and the first 1500 sets of data are fault-free, and

the constant fault is added in the last 500 sets of data, and the

fault magnitude is 1.5.

The dimension for both the input vector and the output

vector is 2. The parameter matrices are A = 0.1I2×2, B =

0.9I2×2, C = I2×2, A
c = I2×2, B

c = 0, Cc = I2×2 and

Dc =

[

−0.01 −0.01

−0.01 −0.01

]

,

respectively. The state noise and the measurement noise

are independent with each other, and both obey the normal

distribution with zero mean and the standard deviation is 1.

The initial input values are set to 10 and 5, and the initial con-

trol values are also 10 and 5. Then the numerical simulation

data set is obtained, as shown in 2.

In Fig. 2, the blue line represents the collected data set,

and the part to the left side of the red line represents the

normal operation of the system, and the part to the right

indicates that the system fails, and the area between the two

green lines indicates the normal operation of the system. It is

obvious that when the constant fault occurs, the collected data

is almost in the internal of 3σ range, hence it is difficult

to effectively detect the constant fault using the traditional

principles. According to the fault detection method based

on the parity space in Section IV, the residuals are shown

in Fig. 3.
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FIGURE 4. The improved residuals by accumulating the data in the time window.

FIGURE 5. The T 2 statistics based on the parity space.

In Fig. 3, the green line represents the mean residual value

when the system operates normally, and the red line repre-

sents themean residual value of the system failure. According

to the fault detection method in Section IV-C, we set the

window width N0 = 20, and the improved residuals are

shown in Fig. 4.

According to Fig. 4, after the accumulation, the mean of

the fault residual data deviates significantly from the mean

of the normal residual data, in which the green solid line

indicates the mean of the normal residual data, the red solid

line indicates the mean value of the fault residual data, and the

green dotted line indicates the 3σ range of the normal residual

data. We can observe that there are more fault residuals

outside of the 3σ range of the normal residual data, which

can effectively improve the fault detection rate. According to

the T 2 statistic and its threshold in Section IV-D, the detection

result is shown in Fig. 5. According to Eq. (28) and Eq. (29),

the FAR and the FDR can be calculated as FAR = 0.0487,

FDR = 0.9459.

Using the same data, we computed the T 2 statistics based

on the time series model and the result is shown in Fig. 6.

The FAR and the FDR can be calculated as FAR = 0.0537,

FDR = 0.6593.

We processed the same data by the PLS method, and the

result is shown in Fig. 7. The FAR and the FDR can be

calculated as FAR = 0.0833, FDR = 0.6860.

The comparison of the fault detection results for dif-

ferent methods is given in Table 1. The FAR is related

to the significance level. From the table, we can see

that the fault detection method based on the parity space

transformation can significantly improve the fault detection

performance.
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FIGURE 6. The T 2 statistics based on the time series.

FIGURE 7. The T 2 statistics based on the PLS.

TABLE 1. The FAR and the FDR for different methods.

In order to increase the fault-to-noise ratio, we pro-

posed a new detection statistic by accumulating the resid-

ual sequence in the sliding window. We can see that

window width has significant impact on the fault detec-

tion, including the fault detection rate and the detection

delay. Table 2 shows the fault detection results obtained

by the parity space transformation under different window

widths.

As shown in Table 2, when the window width is 20,

the fault detection rate exceeds 80%, and the detection delay

is 18. Considering both the fault detection rate and the detec-

tion delay, it is acceptable to set the window width to 20 in

this case.

In practical applications, the optimization selection win-

dow width is determined based on both the fault detec-

tion rate and the detection delay. For the general systems,
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FIGURE 8. The T 2 statistics of the soft fault based on the parity space.

FIGURE 9. The T 2 statistics based on the parity space.

TABLE 2. Comparison of fault detection performance under different
window widths.

the fault detection rate can be improved by increasing the

detection delay. While for high-risk complex systems with

much stronger real-time requirement, the detection delaymay

be more concerned, and the delay needs to be appropriately

reduced. In any case, our method provides a good way to

adjust the performance.

2) EXAMPLE FOR DETECTING THE SOFT FAULT

If the fault mode is changed to the soft fault, that is, the data

fault magnitude in the sample time range from 1501 to 1540 is

slowly increased from 0 to 2, and the data fault magnitude in

the sample time range from 2541 to 2000 is 2. Let the window

width be N0 = 20, based on the parity space transformation,

the result is shown in Fig. 8:

The FAR and the FDR can be calculated as FAR = 0.0541,

FDR = 0.9218. The FAR and the FDR obtained by different

methods are shown in Table 3.

It can be seen from Table 1 and Table 3 that whether it is a

constant fault or a soft fault, the proposed detection method
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FIGURE 10. The T 2 statistics based on the time series.

FIGURE 11. The T 2 statistics based on the PLS.

TABLE 3. The FAR and the FDR of different methods for the soft fault
detection.

based on the parity space outperforms traditional methods

with a higher fault detection rate.

B. CASE 2: TEP SIMULATION MODEL

The Tennessee-Eastman Process (TEP) system is based on

an industrial process simulation model that was created by an

American company named Eastman in 1993, which can pro-

vide a realistic and usable industrial process for evaluating the

process monitoring and control methods [30], [31]. The TEP

system consists of five parts: reactor, condenser, compressor,

steam/liquid separator and stripper. The equipment is oper-

ated under a closed-loop controller. A total of 41 variables

are collected, of which the first 22 variables are the input data

include feed, pressure, temperature, etc. The last 19 variables

are the output data. In this experiment, the simulation time

was set to 50 hours, the sampling period was 0.01 hours.

Hence, in total, 5001 sets of data were sampled. The first

variable was changed from the 30th hour to the end to set

the fault. This data was used for the simulation experiment,

and the first 2000 sets of data were used as the training data

sets, and finally the false alarm rate and the fault detection

rate were reported.

For this simulation, the result based on the parity space is

shown Fig. 9. The FAR and the FDR can be calculated as

FAR = 0.0487, FDR = 0.9459.

Similarly, the result based on the time series is shown

in Fig. 10. The FAR and the FDR can be calculated as

FAR = 0.0537, FDR = 0.6593.

Similarly, the result based on the PLS is shown in Fig. 11.

The FAR and the FDR can be calculated as FAR = 0.0833,

FDR = 0.6860.
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TABLE 4. The FAR and the FDR with different methods.

The comparison of the detection results with different

methods can be seen in Table 4. It is obvious that the fault

detection based on the parity space outperforms both the

time series method and the PLS method in the TEP system

simulation.

C. SIMULATION SUMMARY

From the above two experiments, we can conclude that

the fault detection rate for the closed-loop control system

using the proposed parity space transformation method is

significantly higher than the time series method and the PLS

method. There are two main reasons for this:

a) The parity space method can calculate the residual not

in the original space, which can avoid the inaccurate fault

detections caused by inaccurate estimation of the state vector;

b) A closed control loop system has strong robustness, and

the original fault magnitude is partially offset. The time series

method and the PLS method are used to obtain the residual

by making the difference between the measured value and the

predicted value, which will reduce the fault-to-noise ratio and

the fault detection rate. However, the proposed parity space

transformation method does not have such issues.

VI. CONCLUSION

This paper has proposed a novel method based on parity

space transformation for fault detection in closed-loop control

systems. To achieve this, the characteristics of the closed-loop

control system are analyzed, and the principle of the parity

space is introduced. Then a straightforward fault detection

method based on the parity space is designed, on top of

which an improved method based on stable kernel matrix

is further designed. In order to increase fault-to-noise ratios

and improve fault detection rates, we have also proposed to

accumulate residual sequence in a sliding window. Finally,

the feasibility of the proposed method is verified by two

simulation cases, which clearly confirms its superiority over

traditional methods.

Our plans of future work include: (1) While our method

in this work has focused on closed-loop control systems with

linear control, actual complex systems tend to have strong

nonlinear characteristics. Hence, we plan to address fault

detection for closed-loop control systems with strong non-

linearity in the near future. (2) Inside a closed-loop control

system, a fault will generally propagate inside the system,

which increases the difficulty for fault identification. We are

also interested in addressing such issue in our future research.
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