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SUMMARY

In this paper, the problem of fault detection for continuous-time switched systems under asynchronous 
switching is investigated. The designed fault detection filter is assumed to be asynchronous with the 
original systems. Attention is focused on designing a fault detection filter such that the estimation error 
between the residual and the fault is minimized in the sense of H1 norm. By employing piecewise 
Lyapunov function and average dwell time techniques, a sufficient condition for the existence of such a 
filter is exploited in terms of certain linear matrix inequalities. Finally, an example of a switched electrical 
circuit is provided to illustrate the effectiveness of the proposed approach. 
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1. INTRODUCTION

In recent years, the process of fault detection and isolation (FDI) for dynamic systems has been of 
considerable interest, and fruitful model-based fault detection results have been obtained in several 
excellent papers [1–9] and books [10, 11]. Among these model-based approaches of FDI, the basic
idea is to use state observer or filter to construct a residual signal and, on the basis of this, to 
determine a residual evaluation function to compare with a predefined threshold. When the residual
evaluation function has a value larger than the threshold, an alarm of faults is generated. On the 
other hand, it is well known that control inputs, unavoidable unknown inputs, and faults are coupled 
in many industrial systems, which are potential sources of false alarm. This means that FDI systems
have to be robust to control inputs and unknown inputs and at the same time enhance the sensitivity 
to the faults. Therefore, it is of great significance to design a model-based fault detection system. In 
reviewing the development of the theories and techniques for different FDI system designs, a 
number of results have been obtained in designing FDI system. For examples, in [12], an H1 fil-ter 
formulation of robust FDI has been considered for uncertain LTI systems. The issue of H1 fault 
detection filter design for linear discrete-time systems with multiple time delays is investigated in 
[5].
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On another research direction, switched systems have attracted increasing attention in the
literature of control problems due to their great significance in theory and practical applications.
Switched systems belong to hybrid systems, which consist of a class of subsystems and a switching
signal. The switching signal specifies which subsystem will be activated along the trajectory at
each instant of time. Presently, many achievements have been achieved on the control of switched
system [13–21]. Especially, in recent years, it is a hot topic to study the problem of fault diag-
nosis and fault tolerant control for switched systems. For examples, fault detection problem is
separately considered in [22–24] for discrete case and in [25] for continuous case. Fault diagno-
sis for continuous-time switched system was investigated in [26], whereas [27] studied fault tolerant
control problem for continuous-time switched systems. However, all the aforementioned literatures
assume that the observer or filter is synchronous with the original systems. Actually, it often takes
time to identify the system. Therefore, the phenomenon of asynchronous switching generally exists.
Moreover, the developed methods of fault detection for switched systems under synchronous switch-
ing are no longer suitable to solve asynchronous switching case. New technique should be contrived
to solve this issue. In [28], the maximum dwell time technique is used to deal with reliable con-
trol problem for switched nonlinear systems under asynchronous switching. A less conservative
approach is still under research. Until now, to the best of our knowledge, the problem of fault detec-
tion for continuous-time switched systems under asynchronous switching has not been considered
yet, which motivates us to study this interesting and practical issue.

In this paper, the problem of fault detection for continuous-time switched systems under asyn-
chronous switching is investigated. Firstly, by using piecewise Lyapunov function and average dwell
time technique, a sufficient condition for the H1 fault detection filter is exploited in the formation
of LMI. Then, based on the obtained condition, a desired fault detection filter is constructed. Finally,
to demonstrate the feasibility and effectiveness of the proposed method, a simulation example of a
switched electrical circuit is included.

The rest of this paper is organized as follows. In Section 2, system descriptions and problem
formulation are presented. A sufficient condition on the existence of a fault detection filter for
continuous-time switched systems is derived in terms of LMIs, and the parameters of the desired
filter are constructed by solving the corresponding LMIs in Section 3. To demonstrate the validity
of the proposed approach, an example is given in Section 4 that is followed by a conclusion
in Section 5.

2. PROBLEM FORMULATION

Consider the following class of continuous-time switched systems:²
Px.t/D A�.t/x.t/CB1�.t/d.t/CD1�.t/f .t/

y.t/D C�.t/x.t/CB2�.t/d.t/CD2�.t/f .t/
(1)

where x.t/ 2 Rn is the output vector, y.t/ 2 Rm is the output vector, d.t/ 2 Rp is the unknown
input vector (including disturbance, noise, or structured model uncertainty), and f .t/ 2 Rq is the
fault. �.t/ W Œ0,C1/ �!  D ¹1, � � � ,N º is the switching signal that specifies which subsys-
tem will be activated, and N denotes the number of subsystems. In this paper, we assume that the
switching signal �.t/ is time-dependent, that is, �.t/ W ¹.t0, �.t0//, .t1, �.t1//, � � � º, where t0 denotes
the initial time, and tk denotes the kth switching instant. A�.t/, B1�.t/, B2�.t/, C�.t/, D1�.t/, and
D2�.t/ are constant matrices with appropriate dimensions for all �.t/ 2  . We denote the matrices
associated with �.t/ D i by A�.t/ D Ai , B1�.t/ D B1i , B2�.t/ D B2i , C�.t/ D Ci , D1�.t/ D D1i ,
and D2�.t/ DD2i .

Actually, there inevitably exists asynchronous switching between the filter and the original system
in actual operation. Therefore, we suppose the i th subsystem is activated at the switching instant
tk�1, the j th subsystem is activated at the switching instant tk , and the corresponding switch-
ing filter is activated at the switching instants tk�1 C �k�1 and tk C �k , respectively. Owing to
asynchronous switching, the switching instant of the fault detection filter corresponding to j th sub-
system is tk C�k , and then, there exists a matched period at time interval Œtk�1 C�k�1, tk/ and a



Figure 1. Diagram of asynchronous switching.

mismatched period at time interval Œtk , tk C�k/. The case that the switching instants of the filter
experience lags with respect to those of the system can be described by Figure 1.

For the purpose of residual generation, the following fault detection filter is constructed as a
residual generator. For convenience, there we use � 0.t/ to denote the switching signal of the fault
detection filter: ´

POx.t/D Af� 0.t/ Ox.t/CBf� 0.t/y.t/

r.t/D Cf� 0.t/ Ox.t/CDf� 0.t/y.t/
(2)

where Ox.t/ 2 Rn is the filter’s state and r.t/ 2 Rq is the residual signal. Af� 0.t/, Bf� 0.t/, Cf� 0.t/,
and Df� 0.t/ are filter parameters to be determined.

Denoting e.t/ D r.t/ � f .t/ and augmenting state vector Qx.t/ D
�
xT .t/ OxT .t/

�T
, !.t/ D�

dT .t/ f T .t/
�T

. When t 2 Œt0, t1/[Œtk�1C�k�1, tk/, k D 2, 3, 4, : : :, we obtain the augmented
system as follows:

† W

´
PQx.t/DeAi Qx.t/CeB i!.t/
e.t/D eC i Qx.t/C eDi!.t/

(3)

When t 2 Œtk , tk C�k/, k D 1, 2, 3, : : :, the augmented system is represented as follows:

†
0

W

´
PQx.t/DeAij Qx.t/CeB ij!.t/
e.t/D eC ij Qx.t/C eDij!.t/

(4)

where8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

eAi D � Ai 0

Bf iCi Af i

�
,eB i D � B1i D1i

Bf iB2i Bf iD2i

�
,eC i D � Df iCi Cf i

�
,

eDi D
�
Df iB2i Df iD2i � I

�
I

eAij D � Aj 0

Bf iCj Af i

�
,eB ij D � B1j D1j

Bf iB2j Bf iD2j

�
,eC ij D � Df iCj Cf i

�
,

eDij D
�
Df iB2j Df iD2j � I

�
.

(5)

Now, the problem of fault detection filter design can be formulated as an H1 filter problem: to
develop filter (2) for system (1) such that the augmented system †.or †

0

/ is stable when !.t/D 0
and under zero-initial condition, the minimum of � is made small in the feasibility of

sup
k!.t/k2¤0

²
ke.t/k2

k!.t/k2

³
< � , � > 0 (6)

After designing the residual generator, the last step to a successful fault detection is the residual
evaluation stage including an evaluation function and a threshold. In this paper, the threshold Jth

and residual evaluation function Jr.L/ are selected as

Jr.L/D kr.t/k2 D

 Z L

0

rT .&/r.&/d&

! 1
2

Jth D sup
d2l2,fD0

kr.t/k2



where L is the evaluation time steps. On the basis of this, the occurrence of faults can be detected
by comparing Jr.L/ and Jth according the following test:

Jr.L/ > Jth H) with faultsH) alarm (7)

Jr.L/6 Jth H) no faults (8)

Remark 1
The fault detection filter design for continuous-time switched systems with time-varying delay has
been exploited in [25]. However, the designed fault detection filter must be matched with the original
systems. In this note, the mismatched case is considered, and the obtained results can be directly
extended to delay case and parameter uncertain case.

Definition 1 ([29])
For any switching signal �.t/ and any t2 > t1 > 0, let N� .� , t / denote the number of switchings of
�.t/ on an interval .t1, t2/. If

N� .� , t /6N0C
t2 � t1

�a

holds for a given N0 > 0 and �a > 0, then the constant �a is called the average dwell time and N0
the chattering bound.

Lemma 1 ([30])
If there exist functions �.t/ and �.t/ satisfying

P�.t/6 ���.t/C 	�.t/
then

�.t/6 e��.t�t0/�.t0/C 	
Z t�t0

0

e����.t � �/d�

3. FAULT DETECTION FILTER DESIGN

3.1. H1 performance analysis

Theorem 1
Given constants ˛ > 0, ˇ > 0, 
1 > 1, and 
2 > 1, if there exist matrices Pi > 0, Pij > 0, for
i ¤ j , i , j 2N , such that

Pj 6 
1Pij , Pij 6 
2Pi I (9)264
eATi Pi CPieAi C ˛Pi PieB i eC Ti

� ��2I eDT
i

� � �I

375< 0 (10)

264
eATijPij CPijeAij � ˇPij PijeB ij eC Tij

� ��2I eDT
ij

� � �I

375< 0 (11)

then the system†.or †
0

/ is asymptotically stable withH1 performance � for any switching signal
with average dwell time satisfying

�a > �
�
a D

ln.
1
2/

��
,

T �.t0, t /

TC.t0, t /
> ˇC �

�

˛ � ��
, 0 < �� < ˛ (12)

where T �.t0, t / or TC.t0, t / denotes the total matched or mismatched period during Œt0, t �.



Proof
We first establish the stability of the the system †.or †

0

/. To this end, assume that !.t/D 0. When
t 2 Œt0, t1/ [ Œtk�1 C �k�1, tk/, k D 2, 3, 4, : : :, the augmented system can be written as in (3).
Consider the following Lyapunov function:

Vi .t/D Qx
T .t/Pi Qx.t/ (13)

Then, along the trajectory of system (3), we have

PVi .t/C ˛Vi .t/D PQx
T .t/Pi Qx.t/C Qx

T .t/Pi PQx.t/C ˛ Qx
T .t/Pi Qx.t/ (14)

D QxT .t/
�eATi Pi CPieAi C ˛Pi � Qx.t/ (15)

then, by (10), we obtain

PVi .t/C ˛Vi .t/6 0 (16)

it follows that

PVi .t/6 �˛Vi .t/ (17)

then, during the matched period, Vi .t/ satisfy

Vi .t/6
´
Vi .t0/e

�˛.t�t0/, t0 6 t < t1
Vi .tk�1C�k�1/e

�˛.t�tk�1��k�1/, tk�1C�k�1 6 t < tk , k D 2, 3, : : :
(18)

When t 2 Œtk , tkC�k/, k D 1, 2, 3, : : :, the augmented system can be written as in (4). Consider the
following Lyapunov function:

Vij .t/D Qx
T .t/Pij Qx.t/ (19)

Then, along the trajectory of system (4), we have

PVij .t/� ˇVij .t/D PQx
T .t/Pij Qx.t/C Qx

T .t/Pij PQx.t/� ˇ Qx
T .t/Pij Qx.t/ (20)

D QxT .t/
�eATijPij CPijeAij � ˇPij � Qx.t/ (21)

then, by (10), we obtain

PVij .t/� ˇVij .t/6 0 (22)

it follows that

PVij .t/6 ˇVi .t/ (23)

then, during the unmatched period, Vij .t/ satisfy

Vij .t/6 Vij .tk/eˇ.t�tk/, tk 6 t < tk C�k , k D 1, 2, 3, : : : (24)

Let t1, t2, : : : , tk , : : : denote the switching instant of �.t/ over the interval Œt0, t �. Consider the
following piecewise Lyaounov functional candidate for system † in (3) and (4):

V.t/D

´
Vi .t/D Qx

T .t/Pi Qx.t/, t 2 Œt0, t1/[ Œtk�1C�k�1, tk/, k D 2, 3, 4, : : :

Vij .t/D Qx
T .t/Pij Qx.t/, t 2 Œtk , tk C�k/, k D 1, 2, 3, : : :

(25)



When t 2 Œtk , tk C�k/, k D 1, 2, 3, : : :, and with the condition in (9), (18) and (24), we have

V.t/D V� 0.tk�1C�k�1/�.tk/.t/6 V� 0.tk�1C�k�1/�.tk/.tk/e
ˇ.t�tk/

6 
2V�.tk�1/.t
�
k /e

ˇ.t�tk/

6 
2V�.tk�1/.tk�1C�k�1/e
ˇ.t�tk/�˛.t�tk�1��k�1/

6 
2.
1V� 0.tk�2C�k�2/�.tk�1/Œ.tk�1C�k�1/
��/eˇ.t�tk/�˛.t�tk�1��k�1/

D 

N�.t/.tk�1,t/
2 


N�0.t/.tk�2C�k�2/,t/
1 V� 0.tk�2C�k�2/�.tk�1/.tk�1/e

ˇ.t�tk/�˛.t�tk�1��k�1/

6 � � � � � � � � � � � � � � � � � � � � � � � �

6 
N�.t/.t0,t/
2 


N�0.t/.t0,t/
1 V�.t0/.t0/e

�˛.t1�t0/eˇ.t�tkC�k�1C���C�1/

� e�˛Œ.tk�tk�1��k�1/C.tk�1�tk�2��k�2/C���C.t2�t1��1/�

D 

N�.t/.t0,t/
2 


N�.t/.t0,t/�1
1 V�.t0/.t0/e

ˇ.t�tkC�k�1C���C�1/

� e�˛Œ.tk�tk�1��k�1/C.tk�1�tk�2��k�2/C���C.t2�t1��1/C.t1�t0/� (26)

By (12), we have

ˇTC.t0, t /� ˛T �.t0, t /6 ���.t � t0/ (27)

then (26) and (27) imply that

V.t/6 .
1
2/N�.t/.t0,t/
�11 V�.t0/.t0/e
ˇTC.t0,t/�˛T�.t0,t/

6 .
1
2/N0C
t�t0
�a 
�11 V�.t0/.t0/e

���.t�t0/

D 
�11 V�.t0/.t0/e
N0 ln.�1�2/e

�
�
���

ln.�1�2/
�a

	
.t�t0/ (28)

Therefore, if the average dwell time satisfies (12), we conclude V.t/ converges to zero as t �!1.
Then, the stability of system †.or †

0

/ can be deduced.
For any nonzero !.t/ 2 L2Œ0,1/ and zero initial condition Qx.0/D 0. When t 2 Œt0, t1/[ Œtk�1C

�k�1, tk/, k D 2, 3, 4, : : :, the augmented system can be written as in (3). Consider the Lyapunov
function as in (13) and set �.t/D�eT .t/e.t/C �2!T .t/!.t/, one has

PVi .t/C ˛Vi .t/� �.t/D 
T .t/‚i.t/ (29)

where .t/D
�
QxT .t/ !T .t/

�T
, ‚i D

" eATi Pi CPieAi C ˛Pi C eC Ti eC i PieB i C eC Ti eDieBTi Pi C eDT
i
eC i ��2I C eDT

i
eDi

#
.

By (10), it follows that

PVi .t/ < �˛Vi .t/C �.t/ (30)

From Lemma 1, one has

Vi .t/6

8̂̂̂̂
<̂
ˆ̂̂:
e�˛.t�t0/Vi .t0/C

R t
t0
e�˛.t�s/�T .s/�.s/ds, t0 6 t < t1

e�˛.t�tk�1��k�1/Vi .tk�1C�k�1/

C
R t
tk�1C�k�1

e�˛.t�s/�T .s/�.s/ds, tk�1C�k�1 6 t < tk ,

k D 2, 3, : : :

(31)



When t 2 Œtk , tkC�k/, k D 1, 2, 3, : : :, the augmented system can be written as in (4). Consider the
Lyapunov function as in (19), one has

PVi .t/� ˇVi .t/� �.t/D 
T .t/‚ij .t/ (32)

where ‚ij D

" eATijPij CPijeAij � ˇPij C eC TijeC ij PijeB ij C eC Tij eDijeBTijPij C eDT
ij
eC ij ��2I C eDT

ij
eDij

#
.

By (11), it follows that

PVij .t/ < ˇVij .t/C �.t/ (33)

From Lemma 1, one has

Vij .t/6 eˇ.t�tk/Vij .tk/C
Z t

tk

eˇ.t�s/�T .s/�.s/ds, tk 6 t < tk C�k (34)

Consider the piecewise Lyapunov function as in (25), when t 2 Œtk , tk C �k/, k D 1, 2, 3, : : :, it
follows from (31) and (34) that

V.t/6 V� 0.tk�1C�k�1/�.tk/.tk/e
ˇTC.tk ,t/�˛T�.tk ,t/C

Z t

tk

eˇT
C.s,t/�˛T�.s,t/�T .s/�.s/ds

6 
2V�.tk�1/.t
�
k /e

ˇTC.tk ,t/�˛T�.tk ,t/C

Z t

tk

eˇT
C.s,t/�˛T�.s,t/�T .s/�.s/ds

6 
2V�.tk�1/.tk�1C�k�1/e
ˇTC.tk�1C�k�1,t/�˛T�.tk�1C�k�1,t/

C
2

Z t

tk�1C�k�1

eˇT
C.s,t/�˛T�.s,t/�T .s/�.s/dsC

Z t

tk

eˇT
C.s,t/�˛T�.s,t/�T .s/�.s/ds

6 
2
1V� 0.tk�2C�k�2/�.tk�1/.tk�1/e
ˇTC.tk�1,t/�˛T�.tk�1,t/

C
2
1

Z tk�1C�k�1

tk�1

eˇT
C.s,t/�˛T�.s,t/�T .s/�.s/ds

C
2

Z tk

tk�1C�k�1

eˇT
C.s,t/�˛T�.s,t/�T .s/�.s/dsC

Z t

tk

eˇT
C.s,t/�˛T�.s,t/�T .s/�.s/ds

6 � � � � � � � � � � � � � � �

6 
N�.t/.t0,t/
2 


N�0.t/.t0,t/
1 V�.t0/.t0/e

ˇTC.t0,t/�˛T�.t0,t/

C

N�.t/.t0,t/
2 


N�0.t/.t0,t/
1

Z t1

t0

eˇT
C.s,t/�˛T�.s,t/�T .s/�.s/dsC � � �

C

N�.t/.tk�1,t/
2 


N�0.t/.tk�1C�k�1,t/
1

Z t

tk�1C�k�1

eˇT
C.s,t/�˛T�.s,t/�T .s/�.s/ds

C

N�.t/.tk ,t/
2 


N�0.t/.tk�1C�k�1,t/
1

Z t

tk

eˇT
C.s,t/�˛T�.s,t/�T .s/�.s/ds

D 

N�.t/.t0,t/
2 


N�0.t/.t0,t/
1 V�.t0/.t0/e

ˇTC.t0,t/�˛T�.t0,t/

C

Z t

t0



N�.t/.s,t/
2 


N�0.t/.s,t/
1 eˇT

C.s,t/�˛T�.s,t/�T .s/�.s/ds

Under the initial condition x.t0/D 0, we obtain

V.t/6
Z t

t0



N�.t/.s,t/
2 


N�0.t/.s,t/
1 eˇT

C.s,t/�˛T�.s,t/�T .s/�.s/ds

D

Z t

t0

eN�.t/.s,t/ ln�2CN�0.t/.s,t/ ln�1eˇT
C.s,t/�˛T�.s,t/�T .s/�.s/ds (35)



Multiplying both sides of (35) by e�ŒN�.t/.t0,t/ ln�2CN�0.t/.t0,t/ ln�1� yields

e�ŒN�.t/.t0,t/ ln�2CN�0.t/.t0,t/ ln�1�V.t/

6
Z t

t0

eN�.t/.t0,s/ ln�2CN�0.t/.t0,s/ ln�1eˇT
C.s,t/�˛T�.s,t/�T .s/�.s/ds (36)

When t 2 Œtk , tk C�k/, k D 1, 2, 3, : : :, by the condition in (12), we have

�ŒN�.t/.t0, t / ln
2CN� 0.t/.t0, t / ln
1�D�ŒN�.t/.t0, t /.ln
2C ln
1/� ln
1�

> �
�
t � t0

��a
ln.
1
2/� ln
1

�
D���.t � t0/C ln
1 (37)

By (27), (36), and (37), we have

e��
�.t�t0/Cln�1V.t/6 e�ŒN�.t/.t0,t/ ln�2CN�0.t/.t0,t/ ln�1�V.t/

6
Z t

t0

eN�.t/.t0,s/ ln�2CN�0.t/.t0,s/ ln�1e��
�.t�s/�T .s/�.s/ds

6
Z t

t0

�T .s/�.s/ds (38)

which means Z t

t0

eT .s/e.s/ds 6 �2
Z t

t0

!T .s/!.s/ds (39)

when t !1, then the proof is completed.

3.2. Fault detection filter design

Theorem 2
Given constants ˛ > 0, ˇ > 0, 
1 > 1, and 
2 > 1, if there exist positive-definite matrices Xi , Ri ,
P22i , P11ij , P22ij , and any matrices P12i , P12ij , Af i , Bf i , C f i , and Df i , for i ¤ j , i , j 2 N ,
such that "

P11ij P12ij

P T12ij P22ij

#
> 0,

"
Xi P12i

P T12i P22i

#
> 0 (40)

"
Xj P12j

P T12j P22j

#
6 
1

"
P11ij P12ij

P T12ij P22ij

#
,

"
P11ij P12ij

P T12ij P22ij

#
6 
2

"
Xi P12i

P T12i P22i

#
(41)

26666666664

'11 '12 RiB1i RiD1i C Ti D
T

f i CC
T

f i

� '22 XiB1i CBf iB2i XiD1i CBf iD2i C Ti D
T

f i

� � ��2I 0 BT2iD
T

f i

� � � ��2I DT
2iD

T

f i � I

� � � � �I

37777777775
< 0 (42)

2666666664

�11 �12 �13 �14 C Tj D
T
f i

� �22 �23 �24 C T
f i

� � ��2I 0 BT2jD
T
f i

� � � ��2I DT
2jD

T
f i
� I

� � � � �I

3777777775
< 0 (43)



where

'11 DRiAi CA
T
i Ri C ˛Ri I

'12 DRiAi CA
T
i Xi CC

T
i B

T

f i CA
T

f i C ˛Ri I

'22 DXiAi CA
T
i Xi CBf iCi CC

T
i B

T

f i C ˛Xi I

�11 D P11ijAj CP12ijBf iCj CA
T
j P11ij CC

T
j B

T
f iP

T
12ij � ˇP11ij I

�12 D P12ijAf i CA
T
j P12ij CC

T
j B

T
f iP

T
22ij � ˇP12ij I

�13 D P11ijB1j CP12ijBf iB2j I

�14 D P11ijD1j CP12ijBf iD2j I

�22 D P22ijAf i CA
T
f iP22ij � ˇP22ij I

�23 D P
T
12ijB1j CP22ijBf iB2j I

�24 D P
T
12ijD1j CP22ijBf iD2j .

then there exits a fault detection filter in the form of (2), such that the residual error system†.or †
0

/

is asymptotically stable with H1 performance � for any switching signal with average dwell time
satisfying (12). Moreover, the desired fault detection filter realization is given by

Af i D P
�1
12iA

T

f iR
�1
i S�T12i , Bf i D P

�1
12iBf i , Cf i D C

T

f iR
�1
i S�T12i , Df i DDf i . (44)

where the matrices P12i and S12i satisfy XiR�1i CP12iS
T
12i D I , P T12iR

�1
i CP22iS

T
12i D 0.

Proof
Let the positive-definite matrices Pi and P�1i be partitioned as

Pi D

"
P11i P12i

P T12i P22i

#
, P�1i D

"
S11i S12i

ST12i S22i

#
(45)

By PiP�1i D I , one can have that

XiR
�1
i CP12iS

T
12i D I , P T12iR

�1
i CP22iS

T
12i D 0 (46)

Define the following matrix

Ji D

"
S11i I

ST12i 0

#
(47)

then pre-multiply and post-multiply diag¹J T , I , I º to (10), one obtains266664
.1,1/ .1,2/ B1i D1i S11iC

T
i D

T
f i CS12iC

T
f i

� .2,2/ P11iB1i CP12iBf iB2i P11iD1i CP12iBf iD2i C T
i D

T
f i

� � ��2I 0 BT2jD
T
f i

� � � ��2I DT
2jD

T
f i � I

� � � � �I

377775< 0
(48)

Pre-multiply and post-multiply diag
®
S�111i , I , I , I , I

¯
to (48), and let S�111i D Ri , P11i D Xi .

Combined with the condition in (44), one can have that (48) is equivalent to (42).
Similarly, the matrix Pij is also partitioned as

Pij D

"
P11ij P12ij

P T12ij P22ij

#
(49)

Substituting (5) and (49) to (11), one can obtain (40) and (43). Then, the proof is completed.



Remark 2
Noting that the conditions in (40)–(44) are mutually dependent. Therefore, we can first solve (42)
and (44) to obtain matrices Af i , Bf i , Cf i , and Df i . Then, the feasible solutions of P11ij , P12ij ,
and P22ij can be found by solving(40), (41), and (43).

Remark 3
In practical operation, the condition in (12) is usually difficult to justify. We can assume that the
maximum value of the lag�max between the fault detection filter and the original system is a known
constant, then (12) can be reduced to the following condition

�a > �
�
a Dmax

²
ln.
1
2/

��
,



ˇC ��

˛ � ��
C 1

�
�max

³
(50)

Remark 4
In this note, average dwell time approach is utilized to deal with fault detection problem. Compared
with arbitrary switching and dwell time switching, average dwell time switching approach is less
conservative.

4. EXAMPLE

Switched system is commonly used in practical engineering application. For example, the switched
electrical circuit shown in Figure 2 is described with two switching modes [31]. In mode 1, the
so-called ’on’ time, Sw1 is closed and Sw2 is open. In mode 2, the so-called ’off’ time, Sw1 is open
and Sw2 is closed. In this system, Sw1 is often a bipolar transistor and Sw2 is a diode. Vc is used to
denote the capacitor voltage equal to the output volt age delivered to the load R1, and I1 denotes the
inductor current. During the ’on’ time, the inductor current is also equal to the input source current.
During the ’off’ time, the input source current is zero.

Therefore, in this example, the mode number of system (1) isN D 2, and the state–space matrices
are as follows:

A1 D

�
�2 0

0 0.5

�
,A2 D

�
0.5 0

0 �1

�
,B11 D

�
2

1

�
,B12 D

�
2

1

�
,B21 D 1,B22 D 0.5,

C1 D
�
1 2

�
,C2 D

�
1 0.5

�
,D11 D 1,D12 D 2,D21 D

�
0.5 �1

�
,D22 D

�
�2 1

�
.

The aim is to design a switched fault detection filter such that the augmented system † (or †0)
is asymptotically stable and the performance defined in (6) is guaranteed. Set ˛ D 0.7, ˇ D 5.2,

1 D 1.4, and 
2 D 2. By solving the conditions in Theorem 2, we can obtain a set of solutions of

Figure 2. A switched electrical circuit.



the fault detection filter parameters as follows:

Af1 D

�
5.9745 �2.5489
0.2474 15.5439

�
, Bf1 D

�
�7.1749
0.3307

�
,

Cf1 D
�
�19.0932 �0.2363

�
, Df1 D 3.4573

Af 2 D

�
11.9462 0.1354
6.0133 2.6065

�
, Bf 2 D

�
0.1671
0.3191

�
,

Cf 2 D
�
14.8903 �2.7095

�
, Df 2 D 5.8041.

and the guaranteed performance defined in (6) is � D 1.8.
To demonstrate the effectiveness of the designed method, the disturbance d.t/ is assumed to be

uniform random number, and the fault is set up as

f .t/D

²
10, 506 t 6 200
0, others

,

Once the fault occurs, the residual response r.t/ is depicted in Figure 3. Figure 4 presents the
evolution of the residual evaluation function Jr.t/ for both the faulty case (solid line) and fault-free
case (dashed line). With a selected threshold Jth D 0.5982 for t D 200, the simulation results show
that Jr.t/ D 0.6078 > Jth for t D 70, which means that the fault f .t/ can be successfully detected
about 20 time steps after its occurrence.
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Figure 3. The residual response of r.t/.
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Figure 4. Evolution of residual evaluation function.



5. CONCLUSION

In this paper, the problem of fault detection for continuous-time switched systems under
asynchronous switching has been considered. The filter is assumed to be unmatched with the original
system. An efficient condition has been given to construct the filter under the switching signal with
average dwell time. Finally, an example has been provided to illustrate the proposed methods. On the
basis of the obtained results in this note, fault estimation and accommodation for switched systems
under asynchronous switching will be considered in the future work.
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