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Abstract— In this paper we present an efficient approach
for the fault detection of discrete event systems using Petri
nets. We assume that some of the transitions of the net are
unobservable, including all those transitions that model faulty
behaviors. We prove that the set of all possible firing sequences
corresponding to a given observation can be described as
follows. First a set of basis markings corresponding to the
observation are computed together with the minimal set
of transitions firings that justify them. Any other marking
consistent with the observation must be reachable from a
basis marking by firing only unobservable transitions. For the
computation of the set of basis markings we propose a simple
tabular algorithm and use it to determine a basis reachability
tree that can be used as a diagnoser.

I. INTRODUCTION

The diagnosis of discrete event systems is a research
area that has received a lot of attention in the last years
and has been motivated by the practical need of ensuring
the correct and safe functioning of large complex systems.
Several original theoretical approaches have been proposed
[12], [6], [4], [14], [7], [9] to solve this problem.

Petri net models have often been used in this context:
the intrinsically distributed nature of Petri nets where the
notion of state (i.e., marking) and action (i.e., transition) is
local has often been an asset to reduce the computational
complexity involved in solving a diagnosis problem. Among
the different contributions in this area we recall the work
of Ushio et al. [13], Benveniste et al [1], [2], Jiroveanu and
Boel [3], [8]

In this paper we deal with the failure diagnosis of discrete
event systems modelled by place/transition nets. We assume
that faults are modelled by unobservable transitions, but
there may also exist other transitions that represent legal
behaviors that are unobservable as well. Thus we assume
that the set of transitions can be partitioned as T = To∪Tu

where To is the set of observable transitions, and Tu is the
set of unobservable transitions. The set of fault transitions
is denoted Tf and it holds Tf ⊆ Tu.

As an example consider the net in Fig. 1. The set of
observable transitions is To = {t1, t4, t7}. The set of
unobservable transition is Tu = {t2, t3, t5, t6} and, for
a better understanding, an unobservable transition ti is
labelled εi. The only fault transition is t6. This net models
a communication system: messages ready to be sent are
divided into two packets (transition t1) to be sent on two
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Fig. 1. A net describing a communication system.

separate channels (place p4 and p5). The two packets are
finally combined and an acknowledgement is sent to the
sender (transition t7). A fault occurs when a packet that
should be travelling on the second channel is erroneously
moved to the first channel (transition t6). As can be seen, the
fault transition t6 is not observable but there exist several
other unobservable transitions as well.

This paper builds on the results of [5] where an observer
for nets with unobservable transitions was designed. Under
two structural assumptions, namely that the unobservable
subnet was acyclic1 and backward conflict-free2, it was
possible to easily characterize the set C(w) of markings
consistent with an observed firing sequence w ∈ T ∗

o . This
characterization takes the following form: for each observed
sequence it is possible to determine a basis marking Mb,w

while the set of markings in which the system could actually
be is C(w) = {M ∈ Nm | Mb,w[σ〉M, σ ∈ T ∗

u}, i.e.,
it consists of all those markings reachable from the basis
marking firing a sequence of unobservable transitions.

The assumption that the net is backward conflict-free is
essential to ensure that the basis marking Mb,w correspond-
ing to a given observation w is unique. The assumption
that the unobservable subnet is acyclic allows us to use
the state equation to characterize the markings reachable
from the basis marking by firing a sequence of unobservable
transitions.

In this paper we extend the previous work as follows.
Firstly we relax the assumption that the unobservable net

be backward conflict-free. In this case the basis marking
associated to a given observation w ∈ T ∗

o is not necessarily

1In Fig. 1 the unobservable subnet is acyclic because there exists no
oriented cycle containing only unobservable transitions.

2A net is backward conflict-free if all transitions have no output common
place. In Fig. 1 the unobservable subnet is not backward conflict-free
because place p4 has in input two unobservable transitions, ε2 and ε6.
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unique any more, and we discuss how this set can be
described in terms of minimal explanations3 following also
the approach of Jiriveanu and Boel [3], [8]. A tabular
algorithm for the computation of minimal explanations is
also presented in the paper.

Secondly, we present an original technique to design an
observer for bounded nets. We define for each observation
w a set M(w) composed of pairs (M,y) where M is a
basis marking corresponding to w and y, that we call its
justification, is the firing vector of unobservable transitions
that must have fired to reach it. We also present an algorithm
for constructing a basis reachability tree (BRT); this is a
deterministic automaton whose edges are labelled by the
observable transitions, while a node reachable from the root
with a firing sequence w is labelled with the set M(w).

The important feature of this approach is that the BRT
provides an efficient characterization of the reachability set
and of the language of the original net: the set of markings
consistent with an observation w can be determined com-
puting the markings reachable on the unobservable subnet
starting from any of the basis markings in M(w). If we
assume that the unobservable subnet is acyclic, this can be
done solving the state equation while in the construction of
the BRT we only need to enumerate the smaller subset of
basis markings.

Finally, we apply the BRT to the problem of failure
diagnosis. In particular we use it on-line to associate a
diagnosis to each observation. It may also be possible to
use the BRT off-line to study the different properties of
diagnosability and determine whether in a given system the
occurrence of a failure is recognizable. This issue is not
addressed in the paper.

Our work has several points of contacts with the work of
Jiriveanu and Boel [3], [8]. The main difference is the tab-
ular algorithm for the computation of minimal explanations
and the characterization of the reachability set in terms of
basis markings that we propose.

II. BACKGROUND ON PETRI NETS

In this section we recall the formalism used in the paper.
For more details on Petri nets we address to [11].

A Place/Transition net (P/T net) is a structure N =
(P, T, Pre, Post), where P is a set of m places; T is a set
of n transitions; Pre : P×T → N and Post : P×T → N
are the pre– and post– incidence functions that specify the
arcs; C = Post − Pre is the incidence matrix.

A marking is a vector M : P → N that assigns to each
place of a P/T net a non–negative integer number of tokens,
represented by black dots. We denote M(p) the marking of
place p. A P/T system or net system 〈N, M0〉 is a net N
with an initial marking M0.

3The term minimal explanation is used in [3], [8] to denote the smallest
sequence of unobservable transitions that must have fired to explain an
observation. As an example, consider in the net in Fig. 1 an initial marking
that assigns to places p2 and p3 a token while all other places are empty. If
the firing of t4 is observed then the token required to enable this transition
may have been put in p4 by the firing of either ε2 or ε3ε6.

A transition t is enabled at M iff M ≥ Pre(· , t) and
may fire yielding the marking M ′ = M + C(· , t). We
write M [σ〉 to denote that the sequence of transitions
σ = tj1 · · · tjk

is enabled at M , and we write M [σ〉 M ′ to
denote that the firing of σ yields M ′.

Given a sequence σ ∈ T ∗, we call π : T ∗ → Nn the
function that associates to σ a vector y ∈ Nn, named the
firing vector of σ. In particular, y = π(σ) is such that
y(t) = k if the transition t is contained k times in σ.

A marking M is reachable in 〈N, M0〉 iff there exists
a firing sequence σ such that M0 [σ〉 M . The set of all
markings reachable from M0 defines the reachability set
of 〈N, M0〉 and is denoted R(N,M0). Finally, we denote
PR(N, M0) the potentially reachable set, i.e., the set of
all markings M ∈ Nm for which there exists a vector y ∈
Nn that satisfies the state equation M = M0 + C · y, i.e.,
PR(N, M0) = {M ∈ Nm | ∃ y ∈ Nn : M = M0+C ·y}.
It holds that R(N, M0) ⊆ PR(N,M0).

A Petri net having no directed circuits is called acyclic.
For this subclass the following result holds.

Theorem 2.1: [5] Let N be an acyclic Petri net.
(i) If the vector y ∈ Nn satisfies the equation M0+C ·y ≥

0 there exists a firing sequence σ firable from M0 and such
that the firing vector associated to σ is equal to y.

(ii) A marking M is reachable from M0 iff there exists a
non negative integer solution y satisfying the state equation
M = M0 + C · y, i.e., R(N, M0) = PR(N, M0).

A net system 〈N,M0〉 is bounded if there exists a positive
constant k such that, for M ∈ R(N, M0), M(p) ≤ k. A
net is said structurally bounded it is bounded for any initial
marking.

A labeling function L : T → E ∪ {ε} assigns to each
transition t ∈ T either a symbol from a given alphabet E
or the empty string ε.

We denote as Tu the set of transitions whose label is ε,
i.e., Tu = {t ∈ T | L(t) = ε}. Transitions in Tu are called
unobservable or silent.

In this paper we assume that the same label e ∈ E cannot
be associated to more than one transition. Thus, being the
labeling function restricted to To = T \Tu an isomorphism,
with no loss of generality we assume E = To. Transitions
in To are called observable.

In the following we denote as Cu (Co) the restriction of
the incidence matrix to Tu (To).

We denote as w the word of events associated to the
sequence σ, i.e., w = L(σ). Note that the length of a
sequence σ (denoted |σ|) is always greater or equal than
the length of the corresponding word w (denoted |w|). In
fact, if σ contains k′ transitions labeled ε then |σ| = k′+|w|.

Moreover, we denote as σ0 the sequence of null length
and ε the empty word. We use the notation wi � w to
denote the generic prefix of w of length i ≤ k, where k is
the length of w.

Definition 2.2: Given a net N = (P, T, Pre, Post), and
a subset T ′ ⊆ T of its transitions, we define the T ′−induced
subnet of N as the new net N ′ = (P, T ′, P re′, Post′)
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where Pre′, Post′ are the restriction of Pre, Post to T ′.
The net N ′ can be thought as obtained from N removing
all transitions in T \ T ′. We also write N ′ ≺T ′ N . �

III. MINIMAL EXPLANATIONS

In this section we provide some basic definitions that will
be useful in the following.

Definition 3.1: Given a marking M and an observable
transition t ∈ To, we define

Σ(M, t) = {σ ∈ T ∗
u | M [σ〉M ′, M ′ ≥ Pre(·, t)}

the set of explanations of t at M , and we denote

Y (M, t) = {y ∈ Nn | ∃σ ∈ Σ(M, t) : π(σ) = y}
the corresponding set of firing vectors. �

Thus Σ(M, t) is the set of unobservable sequences whose
firing at M is necessary to enable t.

Among the above sequences we want to select those
whose firing vector is minimal, that we call minimal ex-
planations.

Definition 3.2: Given a marking M and a transition t ∈
To, we define

Σmin(M, t) = {σ ∈ Σ(M, t) | y = π(σ),
� σ′ ∈ Σ(M, t) : π(σ′) � y}

the set of minimal explanations of t at M , and we denote

Ymin(M, t) = {y ∈ Nn | ∃σ ∈ Σmin(M, t) : π(σ) = y}
the corresponding set of firing vectors. �

Similar definitions have also been given in [3], [8].
Example 3.3: Let us consider the net in Fig. 1.
Let M0 be the marking shown in figure. Then

Σ(M0, t1) = {ε}, namely the empty word, and
Ymin(M0, t1) = {�0}. In fact, t1 is enabled at M0 and no
unobservable transition is necessary to fire to enable t1.

If we consider transition t7, then Σ(M0, t7) = ∅, thus
also Ymin(M0, t7) = ∅. In fact, t7 is not enabled at M0,
and no sequence of unobservable transitions may enable it.

Now, let M1 = [0 1 0 0 0 0 0]T . Then Σ(M1, t4) =
Σmin(M1, t4) = {ε2}.

Then, let M2 = [0 1 1 0 0 0 0]T . Then Σ(M2, t4) =
Σmin(M2, t4) = {ε2, ε3ε6}.

Finally, let M3 = [0 1 1 0 1 0 0]T . Then Σ(M3, t4) =
{ε2, ε6, ε3ε6}, while Σmin(M3, t4) = {ε2, ε6}. �

In [5] we proved the following important result.
Theorem 3.4: [5] Let N = (P, T, Pre, Post) be a Petri

net with T = To ∪ Tu. If the Tu-induced subnet is acyclic
and backward conflict-free, then |Ymin(M, t)| = 1.

Different approaches can be used to compute Ymin(t,M),
e.g., see [3], [8].

In this paper we suggest an approach that terminates
finding all vectors in Ymin(M, t) if applied to nets whose
Tu-induced subnet is acyclic. It simply requires algebraic
manipulations, and is inspired by the procedure proposed
by Martinez and Silva [10] for the computation of minimal

P-invariants. It can be briefly summarized by the following
algorithm.

Note that the proposed approach can also be applied
to Tu-induced subnets that are not acyclic. However, in
this case the algorithm may enter a loop: to guarantee to
terminate in a finite number of steps we need to add suitable
termination criteria.

Algorithm 3.5: [Computation of Ymin(M, t)]

1. Let Γ :=
CT

u Inu×nu

AT B

where AT := M − Pre(·, t), B := �0 T
nu

.
2. If A ≥ 0, goto 8, else goto 3.
3. Choose an element A(i∗, j∗) < 0.
4. Let I+ = {i | CT

u (i, j∗) > 0}.
5. If I+ = ∅, remove the row [A(i∗, ·) | B(i∗, ·)]

from the table and goto 2.
6. For all i ∈ I+, add to [A | B] a new row

[A(i∗, ·) + kCT
u (i, ·) | B(i∗, ·) + k�e T

i ]
where �ei is the i-th canonical basis vector and
k is the minimum integer such that
A(i∗, j∗) + kCT

u (i, j∗) ≥ �0T .
7. Remove the row [A(i∗, ·) | B(i∗, ·)] from the table

and goto 2.
8. Remove from B any row that covers other rows.
9. Each row of B is a vector in Ymin(M, t). �

Example 3.6: Let us consider again the net in Fig. 1.
Let M = [0 1 1 0 1 0 0]T and t = t4. Being

Cu =

ε2 ε3 ε5 ε6⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
−1 0 0 0

0 −1 0 0
1 0 0 1
0 1 −1 −1
0 0 0 0
0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, P re(·, t4) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

we first assume

Γ :=

0 −1 0 1 0 0 0
0 0 −1 0 1 0 0
0 0 0 0 −1 0 1
0 0 0 1 −1 0 0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0 1 1 −1 1 0 0 0 0 0 0

thus there is only one element of A, namely A(1, 4), that
is negative. Moreover, I+ = {1, 4}. Using Algorithm 3.5
we add the following two new rows to Γ:

0 0 1 0 1 0 0 1 0 0 0 and

0 1 1 0 0 0 0 0 0 0 1

obtained from the first row of A by adding the first and the
fourth row of Γ, respectively. Finally, we remove the row
Γ(5, ·) from the table and we stop because all elements of
A are non negative.

Because no line covers the other, we conclude that both
rows of B, namely∣∣ 1 0 0 0

∣∣ and
∣∣ 0 0 0 1

∣∣
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are elements of Ymin(M, t).
This result is in accordance with the previous Exam-

ple 3.3, being Σmin(M, t) = {ε2, ε6}. �

IV. BASIS MARKING

In [5] we introduced the notion of basis marking.
Definition 4.1: [5] Let 〈N,M0〉 be a net system whose

unobservable subnet is backward conflict-free. Given an
observation w, the basis marking Mb,w is the marking
reached from M0 by firing w and all those unobservable
transitions that are strictly necessary to enable w. �

The backward conflict-free assumption ensures the
uniqueness of Mb,w, for any initial marking M0 and any
observation w [5].

If the backward conflict-free assumption is relaxed, the
basis marking may be not unique. This trivially follows
from the simple observation that, given a marking M and
an observable transition t, the set of minimal explanations
of t at M is generally not a singleton.

Now, in order to generalize the notion of basis marking,
we introduce the following recursive definition.

Definition 4.2: Let 〈N, M0〉 be a net system where N =
(P, T, Pre, Post) and T = To ∪ Tu.

Let M(ε) = {(M0,�0)} and ∀ w ∈ T ∗
o , ∀ t ∈ To, let

M̃(wt) = {(M,y) ∈ Nm × Nnu |
∃ (M ′, y′) ∈ M(w),
∃ y′′ ∈ Ymin(M ′, t) :
y = y′ + y′′, M = M0 + C(·, t) + Cuy}.

Finally, ∀ w ∈ T ∗
o , let M(w) ⊆ M̃(w) such that

M(w) = {(M, y) ∈ M̃(w) |
� (M ′, y′) ∈ M̃(w) : y′ � y}.

All markings M such that (M,y) ∈ M(w) are called
basis marking and the vectors y are the corresponding
justifications. �

Therefore, for any observation w, (M, y) ∈ M(w) is
a couple (marking, firing vector) such that M can be
reached from M0 firing a sequence σ such that L(σ) = w
and π(σ) = π(w) + y. Clearly, when no observation has
occurred (i.e., w = ε), M(w) is a singleton and M = M0,
y = �0.

Note that each set M(w) only contains couples (M, y)
whose justifications are minimal because M(w) is obtained
by M̃(w) removing all couples whose justifications are not
minimal.

Example 4.3: Let us consider the net in Fig. 1. Assume
that the initial marking is that shown in figure.

Let w = t1. Being Ymin(t1,M0) = {�0}, if we denote as

M1 = M0 + Coπ(t1)
=

[
0 1 1 0 0 0 0

]T
,

then M(t1) = M̃(t1) = {(M1,�0)}, and the null vector is
the only justification of w = t1 at the initial marking.

Now, assume that t4 is observed, thus w = t1t4. In such
a case Ymin(M1, t4) = {y1, y2} where y1 = π(ε2) and
y2 = π(ε3ε6). Now, if we denote

M2 = M1 + Coπ(t4) + Cuy1 = M0 + Coπ(w) + Cuy1

=
[

0 0 1 0 0 1 0
]T

,

M3 = M1 + Coπ(t4) + Cuy2 = M0 + Coπ(w) + Cuy2

=
[

0 1 0 0 0 1 0
]T

,

then

M(t1t4) = M̃(t1t4) = {(M2, y1), (M3, y2)}.
Finally, assume that t7 fires, thus w = t1t4t7. It holds that
Ymin(M2, t7) = {π(ε3ε5)} and Ymin(M3, t7) = ∅. In fact,
the firing of ε3ε5 enables t7 at M2, while t7 is not enabled
at M3 and no sequence of unobservable transitions may
enable it. Therefore,

M(t1t4t7) = M̃(t1t4t7) = {(M4, y1 + y3)},
where

M4 = M2 + Coπ(t7) + Cuy3

= M0 + Coπ(w) + Cu(y1 + y3)
=

[
1 0 0 0 0 0 0

]T = M0.

�
The following theorem proves that our approach based

on basis markings is able to characterize completely the
reachability set under partial observation.

Theorem 4.4: Let us consider a net system 〈N, M0〉
whose unobservable subnet is acyclic. The following two
assertions are equivalent.

1) There exists σ̃ ∈ T ∗ such that M0[σ̃〉M̃ with L(σ̃) =
w and π(σ̃) = ỹ.

2) There exists (M,y) ∈ M(w) and σ′′ ∈ T ∗
u such that

M [σ′′〉M̃ with ỹ = π(w) + y + π(σ′′).
Proof: We prove this result by induction on the length

of the observed string w.
(Basis step) For w = ε the results obviously holds.
(Inductive step) Assume the result holds for w. We prove

it holds for w = vt.
Firstly, we prove 1) ⇒ 2). In fact, if 1) holds then there

exist sequences σ′ and σ′′ such that

M0[σ′〉M ′[t〉M ′′[σ′′〉M̃
where L(σ′) = v, and σ′′ ∈ T ∗

u . By induction, there exists
(M,y) ∈ M(v) such that

M0[σ′
a〉M [σ′

b〉M ′[t〉M ′′[σ′′〉M̃
where L(σ′

a) = v, π(σ′
a) = π(v) + y and σ′

b ∈ T ∗
u . Now

there exists a minimal explanation σ′
c ∈ Σ(M, t) such that

π(σ′
c) ≤ π(σ′

b) and, being the Tu-induced subnet acyclic,

M0[σ′
a〉M [σ′

c〉M ′
c[t〉M ′

d[σ
′
d〉M ′′[σ′′〉M̃

where π(σ′
c)+π(σ′

d) = π(σ′
b) and (M ′

c, π(σ′
c)) ∈ M(vt) =

M(w). This proves the result.
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Secondly, we prove 2) ⇒ 1). In fact if 2) holds then there
exists σ′ ∈ T ∗ such that M0[σ′〉M [σ′′〉M̃ with L(σ′) =
vt = w and hence M0[σ〉M̃ with σ = σ′σ′′.

Note that this implication still holds even if the unob-
servable subnet is not acyclic. �

V. OBSERVER DESIGN BASED ON THE BASIS

REACHABILITY TREE

In this section we focus our attention on bounded Petri
nets and propose an original technique to design an observer
to be used in the context of failure diagnosis.

The proposed approach consists in the design of a deter-
ministic graph, that we call basis reachability tree (BRT).

Let us first introduce the following definitions. Let

Mb(w) = {M ∈ Nm | ∃y ∈ Nnu : (M, y) ∈ M(w)}
be the set of basis markings at w. Then, let

O(N,M0) = {w ∈ T ∗
o | ∃σ ∈ T ∗, M0[σ〉, L(σ) = w}

be the set of observable words of 〈N, M0〉.
We denote

Omin(N, M0) = {w ∈ O(N, M0) | � w′ ∈ O(N, M0) :
w′ ≺ w, Mb(w) = Mb(w′)}

the set of observable words of minimal length to which it
correspond a different set of basis markings.

The BRT has as many nodes as the cardinality of
Omin(N, M0). Each node coincides with a different set
M(w) and each arc is labeled with an observable transition.
More precisely, the BRT is an automaton on the alphabet To

whose initial state is M0 = M(ε), and if δ is its transition
function, it holds δ(M0, w) = M(w) for any word w ∈
Omin(N, M0). In other words, if w ∈ Omin(N,M0), then
there exists an oriented path labeled w from the root node
M0 to the node M(w).

The BRT of a bounded net system 〈N, M0〉 can be
constructed using the following algorithm where we denote
as Mb (resp., M′

b, M̃b, M̄b) the set of basis markings
relative to the set M (resp., M′, M̃, M̄).

Algorithm 5.1: [Basis reachability tree]
1. Label the initial node M0 = M(ε) as

the root and assign no tag to it.
2. If nodes with no tag exist,

select a node M with no tag and:
2.1 if ∀ M ∈ Mb and ∀ t ∈ To, Ymin(M, t) = ∅,

tag M “dead” and go to step 2.
2.2 ∀ t ∈ To : {M ∈ Mb | Ymin(M, t) �= ∅} �= ∅

2.2.1 let M̃ = ∅
2.2.2 for all (M,y) ∈ M

2.2.2.1 for all ỹ ∈ Ymin(M, t)
2.2.2.2 compute M ′ = M + Coπ(t) + Cuỹ,

y′ = y + ỹ

2.2.2.3 let M̃ = M̃ ∪ {(M ′, y′)}
2.3 let M′ = {(M,y) ∈ M̃ |

�(M ′, y′) ∈ M̃ : y′ � y}
2.4 add a new node M′ to the graph and

t1
[10 0 0 0 0 0],0[0 1 1 0 0 0 0],0

t4 [0 0 1 0 0 1 0],y1

t4

t7

dup

dead

[0 1 0 0 0 1 0],y2

[0 0 0 0 0 2 0],y1+ y2

[1 0 0 0 0 0 0],y1+ y3

y1 = π (ε2)
y2 = π (ε3ε6)
y3 = π (ε3ε5)

Fig. 2. The basis reachability tree of the net in Fig. 1.

an arc t from M to M′

2.5 if already ∃ a node M̄ in the graph such that
M̄b = M′

b, tag the new node “dup”. �
Example 5.2: The BRT of the net in Fig. 1 is reported

in Fig. 2. By looking at this graph we find out all the results
already discussed in the Example 4.3. �

One final remark about the BRT. In the standard construc-
tion of a PN reachability/coverability graph, after a tree has
been constructed, by merging identical nodes one obtains a
graph that may also contain cycles. In the case of the BRT
the construction of a graph is not meaningful because two
nodes may correspond to the same set of basis marking but
have different justifications.

Consider as an example, the net in Fig. 1 and its BRT in
Fig. 2. The words ε, t1t4t7, (t1t4t7)2, . . ., all correspond to
the same basis marking M0 = [ 1 0 0 0 0 0 ]T but they have
different justifications �0, y1+y3, 2y1+2y3, . . . In fact, each
time the cycle M0[t1t4t7〉M0 the justification increases of
the quantity y1 + y3.

Thus we keep the tree as it is, but to compute the set
M(w) for a word w of arbitrary length we need to keep in
mind that whenever a leaf is reached, we need to continue
the production from the ancestor node corresponding to the
same set of basis marking while adding, each time the cycle
is repeated, the corresponding justification.

VI. DIAGNOSIS

The formalism described in the previous sections for
marking estimation can be used to design a diagnoser. Let
us first define

L(w) = {σ ∈ T ∗ | M0[σ〉, L(σ) = w},
the set of firing sequences consistent with w ∈ T ∗

o .
Definition 6.1: A diagnoser is a function ∆ : T ∗

o ×Tf →
{0, 1, 2, 3} that associates to each observation w and to each
fault transition tf ∈ Tf a diagnosis state.

∆(w, tf ) = 0 if for all σ ∈ L(w) it holds that tf �∈ σ. In
such a case the fault cannot have occurred because
there exist no firable sequence containing tf and
consistent with the observation.
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∆(w, tf ) = 1 if there exists a σ ∈ L(w) such that tf ∈ σ
but for all pairs (M,y) ∈ M(w) it holds that
the justification y of the basis marking M is such
that y(tf ) = 0. In such a case the fault may have
occurred but not while reaching a basis marking.

∆(w, tf ) = 2 if there exists a pair (M, y) ∈ M(w) such
that y(tf ) > 0. In such a case the fault may have
occurred while reaching a basis marking.

∆(w, tf ) = 3 if for all σ ∈ L(w) it holds that tf ∈ σ. In
such a case the fault must have occurred because
all firable sequence consistent with the observation
contain tf . �

The diagnosis states 1 and 2 correspond both to cases in
which the fault may have occurred but has not necessarily
occurred. The main reason to distinguish between them is
the following. In the state 1 the observed behavior does not
suggest a fault has occurred, while in the state 2 at least
one of the justications for the observed behavior implies
that the fault has occurred.

The diagnosis state associated to an observation w can
be easily computed using the BRT. We present a series of
results whose proofs are rather elementary and are not given
here for sake of brevity.

Let us recall that the BRT is an automaton on the alphabet
To. The initial state is M0 = {(M0,�0)}, and if δ is its
transition function, it holds δ(M0, w) = M(w).

Proposition 6.2: Consider an observed word w ∈ T ∗
o .

∆(w, tf ) ∈ {0, 1}iff ∀ (M, y) ∈ M(w) it holds y(tf ) =
0.

∆(w, tf ) = 2 iff ∃ (M, y) ∈ M(w) and (M ′, y′) ∈
M(w) such that y(tf ) = 0 and y′(tf ) > 0.

∆(w, tf ) = 3 iff ∀ (M,y) ∈ M(w) it holds y(tf ) > 0.

�
The BRT contains all the information required to assign

to an observed sequence a diagnosis state 2 or 3. However,
it does not allow one to distinguish immediately between
state 0 and 1. Further analysis is necessary, as explained in
the following proposition.

Proposition 6.3: Consider an observed word w ∈ T ∗
o

such that for all (M, y) ∈ M(w) it holds y(tf ) = 0.

∆(w, tf ) = 0 if ∀ (M, y) ∈ M(w) there does not exists
a sequence σ ∈ T ∗

u such that M [σ〉 and tf ∈ σ.
∆(w, tf ) = 1 if ∃ at least one (M, y) ∈ M(w) and a

sequence σ ∈ T ∗
u such that M [σ〉 and tf ∈ σ. �

If the uncontrollable subnet is acyclic the reachability of
the uncontrollable subnet can be characterized by the state
equation and there exists a sequence containing transition tf
firable from M on the uncontrollable subnet if and only if
the following integer constraint set (ICS) admits a solution:

M + Cuz ≥ �0, z(tf ) > 0, z ∈ Nnu . (1)

Thus we have the following result.
Proposition 6.4: For a Petri net whose uncontrollable

subnet is acyclic, let w ∈ T ∗
o be an observed word such

that for all (M,y) ∈ M(w) it holds y(tf ) = 0.

∆(w, tf ) = 0 if ∀ (M, y) ∈ M(w) ICS (1) does not
admit a solution:

∆(w, tf ) = 1 if ∃ a (M,y) ∈ M(w) such that (1) admits
a solution. �

VII. CONCLUSIONS

In this paper we dealt with the problem of fault detec-
tion for discrete event systems. An original approach is
presented using Petri nets with unobservable transitions. In
particular, faults are modeled as unobservable transitions,
and legal behaviours as well may be modeled as unob-
servable transitions. We first provide a characterization of
the firing sequences corresponding to a given observation
based on the notion of basis markings and justifications.
For the computation of the set of basis markings we
propose a simple tabular algorithm and use it to determine
a deterministic automaton, that we call basis reachability
tree, that can be used as a diagnoser.
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