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This paper presents a fault detection methodology based on the Fisher discriminant analysis (FDA)
and individuals control charts (XmR control charts). As the first step, FDA is used to find the optimal
discriminant direction between the normal operation data and the fault data. In the next step, XmR
control charts on the discriminant direction are used to monitor the process. To reduce the amount of
false alarms, we also used a variable selection technique based on the contribution plot of FDA. The
performance of the proposed technique is demonstrated through application to the monitoring of the
Tennessee Eastman challenge process.

Introduction

We are all in agreement that the technique of
process monitoring plays an important role in the op-
eration of chemical processes. The work of monitor-
ing includes fault detection, fault identification and di-
agnosis. For successful monitoring of any process, it
is important to detect faults as early as possible. And
then one can make action to reconstruct or recover the
faulty process.

Data-driven techniques have become an active
research field for monitoring chemical processes, not
only because the process data are ready to be used in
many process systems, but also because the techniques
do not need any rigorous models. It is often difficult
or costly to obtain mathematical models for complex
chemical processes, which limits the application of
model-based techniques for the monitoring.

Among many data-driven techniques, statistical
process monitoring (SPM) methods have been widely
used. Conventional SPM methods assume that the
measured values are independent and normally distrib-
uted. Typical control charts, such as Shewhart control
charts (Shewhart, 1931), cumulative sum (CUSUM)
control charts (Page, 1954), and exponentially weighted
moving average (EWMA) control charts (Roberts,
1959), are well established for monitoring univariate
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systems. Originally the mean and the variance were
separately monitored on the two control charts. Inte-
gration of the mean and the variance on a control chart
was first proposed by Gan (1997). Recently several
similar control charts have been proposed, such as the
Max chart (Chen and Cheng, 1998), alternate variables
chart (Spiring and Cheng, 1998), Max-CUSUM chart,
SS-CUSUM chart (Thaga, 2003), SSEWMA chart (Xie,
1999), Max-EWMA chart (Chen et al., 2001) and
EMWA-SC chart (Chen et al., 2004). A review of sin-
gle variables control charts can be found in a recent
article (Cheng and Thaga, 2006).

These control charts are fast, accurate and intui-
tive to monitor univariate variation with control lim-
its. However, chemical processes have a large number
of variables, and the assumptions for the variables are
often invalid due to their dynamic, multivariate and
nonlinear natures. It is also difficult to choose the ap-
propriate variables for detection or identification of a
fault. As the result, the application of the conventional
univariate SPM methods on chemical processes is lim-
ited.

Multivariate control charts were developed to
overcome these inconvenience. The first multivariate
control chart is the Hotelling’s T2 statistic (Hotelling,
1947) which uses one common statistic to plot
multivariate observations by combining their disper-
sions and means. After this work, many multivariate
control charts have been proposed, such as the
multivariate CUSUM charts (Crosier, 1988; Pignatiello
and Runger, 1990), multivariate EWMA charts (Lowry
and Woodall, 1992), Alternate variables chart (Spiring
and Cheng, 1998), multivariate Max-CUSUM chart and
multivariate Max chart (Thaga, 2003). When the
number of variables in a process becomes large, a lot
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of redundant information among these variables eas-
ily makes these multivariate control charts impracti-
cal. Another approach to multivariate monitoring is
using T2 statistic and Q statistic based on principal com-
ponent analysis (PCA), which was originally proposed
by Kresta et al. (1991) and has been successfully ap-
plied to many processes. The T2 statistic measures the
variation of principal components, and the Q statistic
measures the variation of nonprincipal components.
Later on, many improvements have been studied, such
as the multiway PCA for batch processes (Nomikos
and MacGregor, 1994), dynamic PCA introducing dy-
namic behavior into the PCA model (Ku et al., 1995),
multiscale PCA based on wavelet analysis (Bakshi,
1998), recursive PCA (Li et al., 2000), dynamic PCA
for batch monitoring with time-lagged windows (Chen
and Liu, 2002), kernel PCA for nonlinear process moni-
toring (Cho et al., 2005; Lee et al., 2004; Schölkopf et
al., 1998), and Robust multiscale PCA (Wang and
Romagnoli, 2005). Qin (2003) reviewed several fault
detection indices associated with T2 statistic and Q sta-
tistic and compared the reconstruction-based approach
and the contribution-based approach with simulation
and industrial examples. Fisher discriminant analysis
(FDA) has been also used for process monitoring as a
dimensionality reduction technique. Different from the
PCA-based methods which use only the information
in the normal data, the FDA-based methods include
all the information by maximally separating fault data
from the normal data during the process monitoring.
Chiang et al. (2000) compared the miss-classification
rate of FDA, PCA and partial least squares (PLS) for
the Tennessee Eastman process, and showed that the
FDA was better than PLS and PCA. He et al. (2005)
compared the result of fault diagnosis by using the
contribution plots based on the FDA and PCA models,
and showed that the FDA was superior to the PCA.

In the present work, a new statistical process moni-
toring method based on the FDA and control charts is
proposed. The FDA is used to search the optimal one-
dimensional discriminant direction between the fault
data and the normal data. Individuals control charts
(XmR charts), one of the most popular control charts,
are used to monitor the fault data on the optimal dis-
criminant direction. Contribution plot based on the
optimal discriminant direction from FDA is also used
to improve its performance. The proposed method is
applied to the Tennessee Eastman (TE) process. The
proposed method is evaluated and compared with the
T2 and Q statistical methods based on the PCA in terms
of the average run length (ARL).

1. Method

In this section, the basics of the FDA, XmR and
key variable selection are shortly summarized at first.
And then a method for fault detection based on the FDA

and XmR charts is introduced.
1.1 Fisher Discriminant Analysis

Fisher discriminant analysis is a l inear
dimensionality reduction technique to find a direction
for which data classes are optimally separated. The
optimal discriminant direction is determined by maxi-
mizing the scatter between the classes while minimiz-
ing the scatter within classes. In this subsection, the
FDA is shortly summarized.

Given a set of n d-dimensional samples x1, x2, ···,
xn. Let’s divide the samples into two subsets,  and

, each of which has n1 and n2 samples (n1 + n2 = n).
The d-dimensional sample mean of each classes is de-
fined as

If there is a one-dimensional projection direction ,
the projection of the sample vector xj on  is given by

The corresponding set of n projections y1, y2, ···, yn are
divided into the subsets  and . The corresponding
means for the projections are given m̃1 and m̃2 .

The scatter for projected samples is defined as

Fisher discriminant analysis employs the projec-
tion direction  which maximises the following ob-
jective function

The separation of the projected means obeys

where Sb is the between-class scatter matrix defined as

Similarly, the scatters give
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where Sw is the within-class scatter matrix defined as

In terms of Sb and Sw, the Fisher criterion function
can be rewritten as

To maximise the function J(·), the direction  is iden-
tical to the eigenvector corresponding to the largest
eigenvalue of the generalized eigenvalue problem;

If Sw is nonsingular, Eq. (11) can be rewritten as the
conventional eigenvalue problem.

For the purpose of fault detection, two classes of data
sets are considered corresponding to the normal data
and the current data. In this study, the sequence of two
continuous samples in the current data are considered
as the current data. For only the two data samples, it is
not meaningful to calculate their scatter. So we sim-
plify the calculation of Sw as

where  denotes the normal subset.
1.2 Individuals control charts

Control charts have been used for many years
around the world, and it has greatly contributed to im-
prove the quality of many processes. The individual
and moving range chart, or XmR chart, is one of the
most popular control charts.

Given a set of n samples x1, x2, ···, xi, ···, xn, the
moving range is defined as the absolute difference be-
tween two successive samples,

which indicates possible shifts or changes in the
process between the samples.

Based on this moving range, two kinds of meth-
ods are well known in computing control-limits for

XmR charts. One is to use the average of the moving
range and set limits at a distance of multiplying the
average by a scaling factor 2.660 from the center line.
The other is to use the median of the moving range
and set the limits at a distance of multiplying the me-
dian by a scaling factor 3.145 from the center line. In
this work, the average of the moving range is used.

Let x  be the average of the samples and MR  be
the average of the moving range, then upper control
limit UCL and lower control limit LCL are defined as

where the XmR chart constant, 2.660, can be found in
Smith (2001) or any other basic SPC textbooks. If a
sample xi satisfies LCL ≤ xi ≤ UCL, the sample is con-
sidered within the normal range.
1.3 Variable selection

By using selected subset of variables, the classi-
fication result often becomes better than the result by
using all the variables. Many methods have been pro-
posed for variable selection, such as the contribution
plot of T2 or Q statistics (Miller et al., 1998), genetic
algorithm/Fisher discriminant analysis (Chiang and
Pell, 2004), and so on. In this work, contribution plots
based on the optimal discriminant direction  from
FDA is used to select key variables.

Suppose  = [ ] be the optimal dis-
criminant direction between the normal data set and
the fault data set calculated by FDA. The element 
determines the average contribution of the i-th vari-
able to the separation of the two data sets. Important
variables for the separation can be selected based on
the value | |. In this work, the variables whose con-
tribution is larger than 0.1  are selected. Where

 is the maximum value of the contribution.

1.4 Fault detection methodology
By combining FDA and XmR charts, the follow-

ing fault-detection methodology is proposed here. The
methodology includes two steps: preliminary detection
and verified detection. In the first step, FDA is applied
to normal data and each class of abnormal data to find
optimal separation direction and XmR is used to moni-
tor the result. In the next step, FDA is recalculated on
the reduced variables, which are selected based on the
contribution plots, and validate the detected faults.
1.4.1 Preliminary detection         In the first step, opti-
mal discriminant direction between current data and
normal data is computed based on the Fisher criteria.
On the calculated discriminant direction, control lim-
its LCL and UCL for XmR charts of the projected data
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are calculated. A fault is considered to be detected if
all the projections of the current data do not satisfy the
following condition;

where  is the projections of current data on .
If a fault is not detected in this step, the system is

considered within the normal operation and terminate
the detection procedure. To deal with several normal
operating conditions, normal data set must be prepared
for each normal operation.
1.4.2 Verifying detection        If a fault is detected in
the first step, the fault is verified in the second step. In
the second step, at first, key variables are selected by
using the contribution plot based on . By using only
the selected variables, optimal discriminant direction

 between the current data and the normal data is
computed based on the Fischer criteria. On this opti-
mal direction, control limits LCL2 and UCL2 for XmR
charts of the projected data are considered.

If the following condition is not satisfied, the
process is considered in an abnormal condition and the
detected fault in the first step is considered to be veri-
fied.

where  is the projection of the current sample of
the selected variable on . If this condition is satis-
fied, the detected fault is canceled in the verification

step.

2. Application

2.1 Target plant
The proposed method is applied to the Tennessee

Eastman (TE) plant (Downs and Vogel, 1993; McAvoy
and Ye, 1994). Figure 1 shows a schematic diagram of
the TE plant, which includes five major units: a reac-
tor, a product condenser, a vapor–liquid separator, a
recycle compressor and a product stripper. It converts
four source materials, A, C, D and E, into two prod-
ucts, G and H.

In this work, twenty two continuous measurement
variables listed in Table 1 are used for monitoring.
Variable names in right-side column show where and
what to be measured. For example, XMEAS(1)
measures the feed flowrate of the source material A.
Thirteen disturbances designed in the TE simulator are
listed in Table 2. In this table, the first 7 disturbances
are step changes, the next 5 are random changes, and
the last one is a slow drift. Five runs of simulated
process data were generated for each disturbance as
well as the normal case. Each run contains 100 normal
samples and 100 abnormal samples. The sampling in-
terval is 3 min.
2.2 Variable selection

Let’s consider a time series of normal operation
as an example. Among 100 samples, 98 samples are
used as normal data and the last two samples are used
as current data. Projections on discriminant directions

 and  are calculated with corresponding control

Fig. 1 The Tennessee Eastman process with base controllers
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limits. Figure 2 shows the XmR charts of these two
projections. Figure 2(a) is on the optimal discriminant
direction from all the 22 continuous measurements
where the last two samples are out of the control lim-
its. The contributions for three variables, XMEAS(1),
XMEAS(10) and XMEAS(21), exceeded to 0.1
and these variables were selected as the key variables.
Figure 2(b) shows the XmR chart on the optimal dis-
criminant direction from the selected three variables.
As shown in this figure, all the samples are within the
control limits. From this comparison, variable selec-
tion can increase the performance of fault detection.

2.3 Fault detection
Twenty five cases of time series data were gener-

ated for each faults by combining five runs of normal
and abnormal cases. Each case includes 100 normal
samples and 100 abnormal samples. For comparison,
conventional XmR control charts on original measure-
ment variables were calculated. Figure 3 shows sev-
eral examples of the charts for a data set including
IDV(3) fault. The corresponding control limits calcu-
lated by Eqs. (15) and (16) are also shown in the fig-
ure. Several variables like XMEAS(9) exceed the con-
trol limits but the delay of the detection was more than
20 samples. Most of the other measurement variables
can not detect the fault. Now, the proposed method was
applied to the same data set. By projecting these origi-
nal signals on the FDA direction, control chart of this
projected variable can be drawn as Figure 4. In this
chart the fault was easily detected.

The algorithm of fault detection was applied to
these 25 cases for each faults. Figure 5 shows an ex-
ample of the set of the FDA-XmR chart for monitor-
ing IDV(3). Current data in Figure 5(a) is the first two
samples just after the occurrence of the fault. Current
data in Figure 5(b) are the second and the third sam-
ples after the occurrence of the fault. Because the dis-
criminant direction changes dynamically, shape and
control limits of the chart change dynamically. In this
time series, the fault is detected in Figure 5(b), where
both of the two successive samples exceed the control
limits. Table 3 summarises the result in terms of the
average run length (ARL). Run length (RL) is the
number of samples between the occurrence and the
detection of a fault and the ARL is the average of the

XMEAS(1) A feed flowrate
XMEAS(2) D feed flowrate
XMEAS(3) E feed flowrate
XMEAS(4) A and C feed flowrate
XMEAS(5) Recycle flowrate
XMEAS(6) Reactor feed rate
XMEAS(7) Reactor pressure
XMEAS(8) Reactor level
XMEAS(9) Reactor temperature
XMEAS(10) Purge rate
XMEAS(11) Product separator temperature
XMEAS(12) Product separator level
XMEAS(13) Product separator pressure
XMEAS(14) Product separator underflow
XMEAS(15) Stripper level
XMEAS(16) Stripper pressure
XMEAS(17) Stripper underflow
XMEAS(18) Stripper temperature
XMEAS(19) Stripper steam flow
XMEAS(20) Compressor work
XMEAS(21) Reactor CW outlet temperature
XMEAS(22) Condenser CW outlet temperature

Table 1 Continuous process measurements

Number Process variable Type

IDV(1) A/C feed ratio Step
IDV(2) B composition Step
IDV(3) D feed temperature Step
IDV(4) Reactor cooling water inlet temperature Step
IDV(5) Condenser cooling water inlet

temperature
Step

IDV(6) A feed loss Step
IDV(7) C header pressure loss Step
IDV(8) A,B,C feed composition Random
IDV(9) D feed temperature Random
IDV(10) C feed temperature Random
IDV(11) Reactor cooling water inlet temperature Random
IDV(12) Condenser cooling water inlet

temperature
Random

IDV(13) Reaction kinetics Slow drift

Table 2 Faults

Fig. 2 Examples of XmR chart on FDA direction

(a) Using all the variables

(b) Using selected variables
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RL of 25 detections. Smaller value of the ARL indi-
cates that the fault can be detected within a short de-
lay. Numbers in the second column on the table are the
ARLs by the proposed FDA-XmR method. All the step
types of faults show smaller ARLs than the other faults,
it means that these faults were detected faster than the
others. Slow drift shows the largest ARL, it means that
this type of faults is most difficult to detect.

To compare the performance of the proposed
method, two other conventional methods using
PCAbased T2 statistics and PCA-based Q statistics were
applied to the same data sets (Figure 6). Table 3 also
includes these results, where the first two principal
components were used in these calculations. These two
methods detected most step types of faults almost as

Fig. 3 Several examples of control chart on the original
signals

IDV No. FDA-XmR PCA-Q PCA-T2

IDV(1) 1 1 1.92
IDV(2) 2 2.8 3.96
IDV(3) 4.16 17.6 23.92
IDV(4) 1 1 1.12
IDV(5) 1.04 1.04 1.36
IDV(6) 1 1 1
IDV(7) 1 1 1
IDV(8) 10.36 10.2 11.16
IDV(9) 14.56 23.12 32.32
IDV(10) 12.32 15.04 17.24
IDV(11) 6.56 7.28 8.4
IDV(12) 6.04 6.72 7.08
IDV(13) 19.68 23.68 25.72

Table 3 Comparison of the ARL

Fig. 4 Control chart on FDA direction

(a) Just after the occurrence of the fault

(b) At the next sample

Fig. 5 Control charts for IDV(3) by FDA-XmR

fast as the FDA-XmR, but they can not detect other
faults faster than the FDA-XmR method. The results
show the advantage of the FDA-XmR method over
PCA-Q and PCA-T2 methods. Among them, drastic
advantage of the proposed method was shown in step
faults IDV(3) and random fault IDV(9).

Conclusions

A new statistical process control method has been
proposed by combining the classification performance
of FDA with the quality control advantage of control
charts. The contribution plot based on the optimal dis-
criminant direction was also included in the method-
ology to reduce the number of variables and improve
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Fig. 6 Control charts for IDV(3) by PCA

the detection performance. The method was applied to
the Tennessee Eastman process and compared with
conventional PCA methods based on Q and T2 statis-
tics. The results showed that the fault detection per-
formance of the proposed method was the best among
these three methods.
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