
17

Fault detection in embedded

components

A. Petrenko and N. Yevtushenko t

CRIM, Centre de Recherche Informatique de Montreal,

1801 Av. McGill College, Montreal, H3A 2N4, Canada,
Phone: (514) 840-1234, Fax: (514) 840-1244, petrenko@crim.ca

t Tomsk State University,

36 Lenin str., Tomsk, 634050, Russia,
yevtushenko. ifj@elefot.tsu.tomsk.su

Abstract

We address in this paper the problem of detecting faults located in a given

component embedded within a composite system. The system is represented as two

communicating FSMs, a component FSM inaccessible for testing and a context

machine that models the remaining part of the system which is assumed to be

correctly implemented. We elaborate a systematic approach for deriving external

tests which can detect all predefined types of faults in the embedded component.

.The approach. is based on the construction a proper characterization of the

conforming behavior of the component in context, derivation of internal tests and

translation into external tests.

Keywords

Communicating FSMs, fault models, conformance testing, embedded testing, test

derivation

1 INTRODUCTION

The model of communicating state machines, see e.g., [Boch781, [BrZa831, is

widely used for development of complex systems. It serves as an underlying model

Testing of Communicating Systems, M. Kim, S. Kang & K. Hong (Eds)

Published by Otapman & Hall © 19971F1P

Fault detection in embedded components 273

for description techniques such as Statecharts, ROOM, ESTEREL, SDL. One of the

important issue is test derivation from a formal specification in the form of

communicating state machines. A straightforward solution is to construct a global

composed machine from a reachability graph such that describes the behavior of a

system at points accessible for testing and apply existing test derivation methods

developed for FSMs. The behavior of a system even consisting of deterministic

components may be nondeterministic and a test derivation method which can treat

nondeterministic I/O FSMs should be used [LBP94]. This approach suffers from

several drawbacks. First, even if each component of the system is given as an I/O

FSM, the global I/O machine may not exist due for example, livelocks. A number of

verification methods and tools could be used to check properties of the given

system, so it is reasonable to assume that tests should be derived from a verified

system of communicating state machines such that its composed machine exists.

Second, the number of states in the composed machine (assuming that we are able

to construct it) may easily trigger tests with a high fault coverage to explode. Two

main approaches have been tried to alleviate the test explosion effect.

According to the first approach, systematic test derivation with fault coverage is

avoided, transition coverage of individual component machine is attempted instead.

This could be achieved a partial exploration of the composed machine either by

adopting a random walk [West86], see [LSKP96], by generating a certain part of the

entire composed machine comprising transitions chosen for testing [HLS96] or a

reduced composed machine [KoTa95]. The advantage of this approach is that the

need for global machine construction is obviated. However, the fault detection

ability of the approach is unknown.

The second approach is driven by a divide-and-conquer strategy and is closely

related to the problem of submodule construction, known also as redesign, plant

controller, or equation solving, where we are required to construct the specification

of a submodule X when specifications of the overall system and of all submodules

except X are given [MeB083], [QiLe91], [ABBD95], [LJK95], [HeBr95]. A given

system of communicating FSMs is viewed in two parts, one part (an embedded

component) is to be tested and the other (context of the component) is assumed to be

error-free. The main issue here is how to systematically derive tests tuned for the

embedded component (testing in context). The basic idea is to reduce testing in

context to testing in isolation so that existing methods could become fully

applicable. Once this problem is solved we may similarly proceed deriving tests for

the remaining part of the system (the target component and context switch their

roles). Since faults usually do not affect all the components of a system the resulting

test suite would normally have a high fault coverage, while test explosion effect is

alleviated. This approach has been elaborated in [PYLD93], [PYD94], [PYBD96]

and [PYB96]. Here we continue that work for providing systematic methods for test

derivation from communicating state machines.

The rest of the paper is organized as follows. In Section 2, we briefly summarize

the results of [PYBD96] and [PYB96] related to this work. The novel parts are

presented in Section 3 and 4. Section 3 gives a method for constructing a so called

274 Part Seven Test Generation/or Communicating State Machine

embedded equivalent of the component in context which explicitly characterizes all

implementations conforming to a given specification in context and facilitates test

derivation. Section 4 discusses the problem of translating internal tests derived from

the embedded equivalent into external tests. Two approaches to solve the problem

are proposed. We conclude in Section 5 with a discussion of future work.

2 FRAMEWORK FOR TESTING IN CONTEXT

2.1 Finite state machines

A finite state machine (FSM) is a completely specified initialized (possibly

nondeterministic) Mealy machine which can be formally defined as follows. A finite

state machine A is a 5-tuple (S, X, Y, h, so), where S is a set of states with So as the

initial state; X - a finite nonempty set of input symbols; Y - a finite nonempty set of

output symbols; and h - a behavior function h: SxX -? P(SxY)\0, where p(SxY) is

the powerset of SXY [Starn]. The machine A becomes deterministic when Ih(s,

x)l=l for all (s, x)eSxX.

We extend the behavior function to a function on the set X* of all input

sequences containing the empty sequence e, i.e., h: SxX* -? P(SxY*)\0. Assume

h(s, e) = {(s, e)} for all se S, and suppose that h(s, fJ) is already specified. Then h(s,

fh) = { (s'.)y) 1 3s"eS [(s". n eh(s, fJ) 1\ (s', y) eh(s". x)] }. Given a sequence a

over the alphabet XuY, we use ci to denote the X-projection of a that is obtained by

deleting all symbols ye Y from the sequence a.
The function hI is the next state function, while h2 is the output function of A,

where hI is the first and h2 is the second projection of h, i.e., hl(s. a) = { s' 13 P e Y*

[(s·. fJ) eh(s. a)] }, h2(s. a) = {P 13 s' eS [(s'. fJ) e h(s. a)] } for all aeX*. We use

hp (s, a) to denote the set of states reached by the machine when it executes YO

sequence alP starting from state s. Given two states s of the FSM A and r of the

FSM B= (T, X. Y, H, to)' and a set V~*; state r is said to be a V-reduction of s,

written r :5y s, if for all input sequence~ ae V the condition H2(r, a) ~ h2(s. a) holds;

r is not a V-reduction of s, r 1. yS, if there exists an input sequence a e V such that

H2(r, a)!k h2(s. a). States sand r are V-equivalent states, written s ==y r, iff s :5y r

and r :5y s. On the class of deterministic machines, the above relations coincide. We

denote :5 the V-reduction in the case where V=X*, similarly, == denotes the

equivalence relation. Given two machines, A and B, B is a reduction of A, written

B:5A, if the initial state of B is a reduction of the initial state of A. If B~ and B is

deterministic then it is referred to as a D-reduction of A. Similarly, the equivalence

relation between machines is defined. B=A, iff B:5A and A:5B. The equivalence and

reduction relations serve as conformance relations between implementations and

their FSM specifications for deriving test suites with guaranteed fault coverage

[SiLe89], [PBD93], [YaLe95], [PYB96a].

A/ault model is a triple <A, -, S> [PYB96], where A is a reference specification,

a set S is the fault domain that is a set of possible implementations defined over the

same input alphabet as the specification, and - is a conformance relation. In this

Fault detection in embedded components 275

paper, we consider - e {:, :S}. A complete test suite w.r.t. the fault model is a finite

set E of finite input sequences such that for all Be S, B + A implies B + E A.

If the fault domain is an arbitrary finite set S of implementation machines then

in order to derive a complete test suite w.r.t. the fault model a traditional method

(mutant killing technique) could be used. For each FSM Be S, we derive an input

sequence that distinguishes B from the reference specification A whenever they are

not equivalent (or B is not a reduction of A). The union of input sequences over all

machines Be S gives a desired test suite. Because of its complexity, such a solution

is feasible for a small number of faults to be detected, for example for single output

faults. At the same time, there are certain fault models for which there is no need to

explicitly enumerate machines of the fault domain. For these fault models, a

complete test suite is derived based on the properties of the specification machine A.

As an example, we could mention a classical (black-box) fault model < A, :, S .. (X»
where A is a completely specified and deterministic FSM, and S .. (X) is the set of all

FSMs over the input alphabet X of A with at most m states. A number of competing

methods exist, see e.g. , [SiLe89], [PBD93], [YaLe95]. As is shown in [PYB96], a

similar approach can be taken to devise fault models and to derive complete tests for

embedded components. In this paper, we propose new methods for testing in context

such that allow to obviate an expensive mutant killing technique.

2.2 Model of a system with the embedded component

Many compound systems are typically specified as a collection of communicating

FSMs. As noticed in [PYBD96] the system of two communicating FSMs (JUT and

context), connected as shown in the upper part of Figure 1, is general enough to

discuss problems related :~ t!:sti an embedE~ ~<!m'p~n ... ent.

y

Figure 1 Architecture for testing the embedded component (IUT).

We assume that we are given an FSM Spec which represents the behavior of the

component (lUT) embedded within the system that should be tested, while a

machine C, called the context machine, is a composed machine of all components of

the system, except the component of interest, that are assumed fault-free. As in

[PYB96], we assume that the sets X, U, Z, and Y of actions are pairwise disjoint.

Two (deterministic) FSMs are communicating asynchronously via bounded input

queues where actions are stored. We assume that the system at hand has a single

message in transit, i.e. a next external input x is submitted to the system only after it

has produced an external output y to the previous input. Under these assumptions,

the collective behavior of two communicating FSMs can be described by means of a

276 Pan Seven Test Generationfor Communicating State Machine

product machine and a composed machine. The product machine SpecxC is

represented by a graph of global states, obtained by performing reachability

computation [BrZa83]. It is in fact, a labeled transition system which represents the

joint behavior of all components. If the product machine SpecxC has a cycle labeled

only with internal actions from the alphabet UuZ then the system falls into livelock

when an appropriate input sequence is applied, i.e. the system cannot produce an

external output. In this case, the system's behavior cannot be described by an 110

FSM and we conclude that the composed machine does not exist. Otherwise, a

.composed machine RS = SpecoC can be obtained by hiding of all internal actions in

the product machine, determinizing the obtained L TS and by pairing inputs with

subsequent outputs [PYB96], [PYBD96].

Example. Consider the system [PYB96] of context and component machines,

shown in Figure 2. The composed machine RS = SpecoC is shown in Figure 2(c).

(a)

~ ;;:'~-I>-""""" x2ly2 zVy I

Figure 2 The context C (a), component Spec (b), and the composed machine RS (c).

2.3 Explicit fault model for testing in context

Testing in context is based on the test architecture shown in Figure 1. We assume

that the tester executes test cases simultaneously against the system under test and

its specification, called the reference system. The reference system is modeled by

the composed machine RS = SpecoC. The embedded component (JUT) is the target

of tests. The context does not need to be tested. Verdicts are produced by a part of

the tester called a verdict machine. The verdict machine produces the verdict fail

and enters a state FAIL when output actions of a system under test and reference

system do not coincide or the system under test falls into livelock. No

communication between the component and context can be observed or controlled.

Based on the test architecture (Figure 1), we define a fault model for deriving

complete test suites as in [PYB96]. Let fJ .. (U, Z) denote the set of all implementation

FSMs Imp over alphabets U and Z with at most m states such that ImpoC exists.

Then the triple <.RS, :, fJ .. (U, Z)oC» where fJm(U, Z)oC = {Imp I Impe fJ .. (U, Z)}, is

called the explicit fault model for testing in context. In this paper, we attempt to

elaborate a systematic method for deriving a test suite complete w.r.t. the explicit

fault model. In [PYB96], we have considered a number of fault models relevant for

testing in context, however this problem was left open.

2.4 Approximation of the component's behavior

To systematically derive tests for the embedded component we need a complete and

Fault detection in embedded components 277

concise characterization of detectable and undetectable faults. This is what we call

the approximation of component's behavior in the given context C [PYBD96],

[PYB96] that completely describes the permissible behavior of the embedded

component w.r.t. any external input sequence. Below we briefly summarize its

construction.

A trace of the embedded component is permissible if it is a valid trace of its

specification Spec. If it is not in Spec then, depending on a particular external input

sequence, it may be permissible or forbidden. The verdict machine producing the

fail-verdict in response to the external input sequence indicates that the behavior of

the component is forbidden. We formalize the notions of permissible and forbidden

traces of the embedded component as follows.

A trace {J/ye U*/Z* is forbidden w.r.t. an external input sequence aeX* if there

exists a prefix {JI".{J/'X". r" of {J/y such that for an appropriate prefix ~".~ of the

sequence a it holds that the U-projection of the output sequence of the context C to

al 'X".~r" is equal to {J1".{Jk while its Y-projection is not equal to the output sequence

of the reference system RS to al"'~' Trace {J/yis said to be permissible w.r.t. the

external input sequence a otherwise. Trace {J/y is permissible if it is permissible

w.r.t. all external input sequences. In other words, the trace {J/yis forbidden w.r.t. an

external input sequence a if every system composed of a component that contains

trace {Jly is not equivalent to the reference system RS w.r.t. a, i.e. a can be

considered as an external test detecting any nonconforming implementation of Spec

with trace {Jly.
The idea of constructing the approximation is based on the test architecture

presented in Figure 1. To capture all possible behavior of the embedded component

we replace it with a chaos machine Ch over the alphabets U and Z that has just one

state [PYB96]. The chaos machine is nondeterministic, it produces all possible

outputs z in response to each input u. We construct the product machine

ChxCxRSxVer as an LTS, hide all actions Yand verdicts in the obtained LTS and

determinize it. The resulting LTS is transformed back to an FSM, denoted [[Spec]]c'

in alphabets XvU and Zv{null,fail}. Any global state where the verdict machine is

in a fail-state is a designated state FAIL of [[Spec11C' An external input x is coupled

with the output fail and labels a transition to the state FAIL if all subsequent internal

actions lead to the state FAIL; otherwise it is coupled with the output null. The

remaining internal inputs u are paired with the internal outputs z. "Don't care"

transitions of the obtained FSM are specified as transitions to another designated

state TRAP. Specifically, if an external input x causes a "don't care" transition from

a particular state then the machine has a transition to the state TRAP labeled x/null,

for an input u a corresponding transition to the TRAP state is labeled with input u

and each internal output zeZ. Intuitively, the TRAP state indicates that any behavior

of the component machine when the FSM [[Spec11c trapped to this state, is

permissible since it cannot be executed. Any behavior leading to the FAIL state is

forbidden, since it results in a wrong external output. For more details on the

construction of the approximation of the component in context the reader is referred

to [PYBD96]. Figure 3 shows the approximation [[Spec11c for our example. The

278 Pan Seven Test Generation/or Communicating State Machine

FSM [[Spec11e captures the most essential for testing aspect of the behavior of the

whole system shown in Figure 1. In particular, the verdict machine in response to a

particular external input sequence produces the fail-verdict in a current global state

of the system if and only if the FSM [[Spec]]e reaches the state FAIL. This property

of the approximation is formally stated as follows.

Proposition 2.1. Given the approximation [[Spec 11e = (S, XuU, ZU{fail, null}, h, so)

and trace !3lye (U/Z)*, the trace !3lyis forbidden iff there exists an 110 sequence alo
of [[Spec]]e with the (UuZ)-projection !3lythat takes [[Spec11e from the initial state

to the state FAIL.

Given a forbidden trace !31y, we denote af..f3/''IJ the input part of an 110 sequence

of [[Spec11e that has the (UuZ)-projection !3lyand takes [[Spec11e from the initial

state to the state FAIL. The trace !3lyis forbidden w.r.t. the X-projection of a. The

approximation of the component in context characterizes the relationship between

deviations in the behavior of the embedded component and external input sequences

capable of revealing a fault through the context. However, its shortcoming is that

existing test derivation methods cannot be directly applied to derive external tests.

At the same time, as we are going to demonstrate in the subsequent section, it can be

further transformed into another machine allowing for a direct use of these methods.

Figure 3 The approximation of Spec in context. State TRAP as well as its incoming

transitions are not shown, state F is the FAIL state.

3 EMBEDDED EQUIVALENT OF A COMPONENT MACHINE

In order to use regular methods for test derivation we now would like to transform

the approximation [[Specl1e into an FSM such that all its 110 sequences in alphabets

U and Z of Spec are permissible w.r.t. every possible external input sequence.

Fault detection in embedded components 279

Equivalently, we define a machine by excluding from the set (U/Z)* all traces {JIr
such that are forbidden w.r.t. some external input sequence in X*. Let Tr be the set

of traces of a machine and [[Spec]]c = (S, XuU, Zu{fai/, null}, h, so),

An FSM is said to be the embedded equivalent of the component Spec in context

C, denoted EE = (P, U, ZU{fail}, H, Po) if its traces in Tr(EE) over the inputs U and

outputs Z satisfy the conditions of Proposition 2.1, namely:

'V {3lyc (U/Z) * ({3lris forbidden) ~ f3/'>E Tr(EE) v H; (Po,fJ) = {FAIL}.

The idea of transforming the approximation [[Spec]]c into the embedded

equivalent is to hide all external inputs X and to group its states into subsets such

that all external inputs cause transitions in the FSM [[Spec]]c within the same subset,

making sure that all forbidden traces are removed. The situation is somewhat similar

to a classical problem of determinizing a nondeterministic finite automaton (the

subset construction) [HoUl79], where all non-observable actions have to be

removed while preserving all the traces of a given automaton. In fact, as in our case,

all states reached from a given state through internal transitions (corresponding to

external inputs) could be merged to form a single state of resulting machine. The

essential difference is that in our case, we should retain only traces that are

permissible w.r.t. all external input sequences, i.e. that are common for all states

reached from the same state after non-observable actions. In other words, we should

determine the intersection of such traces for each state instead of collapsing traces.

As the intersection may sometimes become empty we use a designated output fail

and state FAIL in the embedded equivalent to indicate that a certain common trace

can no longer be extended, since there exists an external input sequence that

"forbids" any extension. To formalize the procedure we need the following

definition.

Given the FSM [[Spec]]c = (S, XuU, Zu{fail, null}, h, so), a set B of states of

[[Spec]]c is said to be closed (w.r.t. external inputs) if h\s, x) ~ B holds for every s

E B and x E X. For a subset B ~ S, a minimal by inclusion closed set including B is

called the closure of B.

We present the procedure using our example (Figure 3). The closure ofthe initial

state of [[Spec]]c is the set {l, 2, 7} which is the initial state of an FSM EE. In

[[Spec]]c' inputs u1 and U2 cause transitions to the TRAP state from state 1. State 2

has the following transitions: 2-u/zl ->3, 2-u/z2->4. State 7: 7- u/z l ->8, 7- u/~->9.

Both states have transitions caused by input u2 to state TRAP.

Consider input ul . We have nh2(s, ul) = {Zl' ~}.
se{I,2,7}

For the oiltput ZI' we find the union of states U ~ (s, ul) = {3, 8, TRAP}. The
se{1,2,7} I

closure of {3, 8, TRAP} is the set {3, 8, 12, 14, 18, TRAP}, since from state 8 there

are transitions on external inputs leading to 12 and 14; as well as from 14 to 3 and

18. This a new state in the FSM EE. As a result, the FSM EE has a transition

{I, 2, 7}-u/z l ->{3, 8, 12, 14, 18, TRAP}.

Consider now output~. U ~ (s, "I) = {4, 9, TRAP}. The closure of the set {4,
se{I,2,7} 2

280 Part Seven Test Generation/or Communicating State Machine

9} is the set {4, 9, 11, FAIL, TRAP} . The presence of state FAIL in the obtained set

means that the 110 sequence u/z2 is forbidden. As a result, the FSM EE has no

transition from the state { 1, 2, 7} labeled with u/z2•

Take next input ur nh2(s, Uz} = {ZIt Z2}' We have U ~ (5, Uz) =
se(I,2,7} se(I,2,7} I

U ~ (5, Uz) = {TRAP} . Thus, there is a "don't care" transition in the FSM EE,
se(I,2,7} 2

namely, {I, 2, 7}-ulz"z2->{TRAP} . In a similar way we proceed with a newly

obtained state {3, 8,12,14,18, TRAP}. The final result, i.e. the FSM EE, is shown

in Figure 4. As the example shows, the procedure of constructing the embedded

equivalent is quite straightforward and we do not elaborate it further to save space

for other results.

Figure 4 The embedded equivalent EE.

The embedded equivalent of the component in context explicitly characterizes

all implementations conforming to a given specification Spec in context C.

Theorem 3.1. Given the specification Spec of the component, the context C, and an

implementation FSM Imp over the same alphabets U and Z, as Spec, let ImpoC be

the composed machine. Then ImpoC is equivalent to RS = SpecoC iff Imp::; EE.

Proot: Let Imp be a reduction of EE. Suppose that the FSM ImpoC is not equivalent

to the machine RS. Then there exists an external input sequence 8e X* such that

ImpoC is not equivalent to RS w.r.t. this sequence, i.e. the pair [3lyof sequences [3
and ythat are induced by 0 at the inputs of Imp and the context C is forbidden w.r.t.

o. Thus, the trace [3lyof Imp is not an 110 sequence of EE; therefore Imp is not a

reduction of EE. A contradiction.

Suppose now that the FSM ImpoC is equivalent to RS but Imp is not a reduction

of EE w.r.t. an appropriate input sequence [3, i.e. the output sequence yof Imp to [3
is not in the set of output sequences of EE to [3. Then, by definition of EE, there

exists a sequence 8eX* such that the trace [3lyis forbidden w.r.t. 0, i.e. the FSMs

ImpoC and RS are not equivalent W.r.t. O. A contradiction. 0

We know that a similar characterization of conforming implementations can be

obtained based on the most general solution to the equation GoC == SpecoC with G

being a free variable [PYB96]. As discussed in [PYB96], based on the solution G

"local" tests to test the component in isolation can be derived, however, these tests

are not easy to translate into external tests. Unlike the general solution G, the

embedded equivalent gives an effective answer to the problem of test translation, as

we are about to demonstrate.

Fault detection in embedded components 281

Let EE = (P, U, ZUlfail}, H, Po). By the definition of the embedded equivalent,

each trace in Tr(EE) = U H2(pO,/J) is permissible w.r.t. any external input
!3EU*

sequence while for any other trace f3ly E (U/2)*\Tr(EE) there exists a sequence

a(f3IYJ such that f3ly is forbidden w.r.t. a(f3IYJ. Consider an arbitrary sequence f3 E
2

U*. If the set H (Po,f3) contains all possible output sequences of the same length as f3,

no sequence a(f3IYJ exists. We use iii to denote the set of all sequences in Z* which

have the length of f3. Then for each sequence y E iii \ d (Po,f3), a sequence a(f3IYJ

exists. Its X-projection is the external test a(f3ll that can detect an erroneous

behavior of the embedded component with the trace f31y. If now we find at least one

sequence a(f3IYJ for each yE iii \ d (Po,f3) and derive the X-projection we have an

external test suite which detects all faults internally revealed by the sequence f3 (in

the following section we elaborate a proper method for finding sequences a(f3IYJX).

At the first sight, the price of this solution seems high since the number of

sequences in the set iii \ d(Po,{3) is exponential. The following observation helps us

to drastically reduce it. Any extension of a forbidden trace (f3IYJ is forbidden as well,

therefore if we have already found a sequence a'(f3'lf) for a prefix f3' of the

sequence f3 there is no need to consider any extension of f3'ly'. The question comes

now how we could choose input sequences f3 E u* based on the given embedded

equivalent.

Consider the fault model F = <EE, ::;, 3m(U, 2», where 3m(U, 2) is the set of all

possible implementations with up to m states over the alphabets U and Z, where m ;::;

n, the number of states in the given specification of the embedded component Spec.

There exists a method for deriving a test suite complete w.r.t. this fault model

[PYB96a]. We have the following result.

Theorem 3.2. Given an FSM EE = (P, U, ZU{fail}, H, Po)' let T be a complete test

suite w.r.t. the fault model <EE, ::;, 3m(U, 2». Then the set

E = {a(f3IYJx I f3E T & yE iii \ d(po, (3)}

is a complete test suite w.r.t. the explicit fault model <.RS, :, 3m(U, 2)oC».

Consider our working example. The specification of the embedded component

Spec has three states (Figure 2). We assume that no fault in the component increases

the number of states, i.e. m = 3. The method of [PYB96a] applied to the FSM EE

(Figure 4) produces the following test suite:

T={ u,u,u,u,u2; u,u,u,Uzu,u2; u,u,u2u,Uz; u,u,u2UZUZ; u,u2u,u,UZ; u,u2u,uzuJ

It is complete w.r.t. the fault model <EE, ::;, 3](u, 2» and once translated into

external sequences (see next section) it is complete w.r.t. the explicit fault model

<.RS, :, 3](U, 2)oC».

In practical situations, we are often ready to sacrifice complete coverage of all

output and transition faults for shorter tests. We may consider, for example, the fault

model <EE, ::;, 3 sp,,>' where 3 spec denotes the set of all FSMs that are mutants of the

FSM Spec with output faults. In our example, we construct a transition tour of the

FSM EE: u,u,u,uzu,uz (there is no need to cover any transition to the TRAP state

282 Part Seven Test Generation/or Communicating State Machine

since they are not executable in context). It is just one of the six sequences in the test

suite T. Note that this sequence does not cover all the transitions of the original

specification of the component Spec (Figure 2b). At the same time, not each

transition tour of the latter covers all the transitions of the former.

4 TRANS LA TION OF INTERNAL TESTS INTO EXTERNAL TESTS

Once the embedded equivalent of a given component in context is constructed, an

internal test suite could be produced based on a chosen fault model (e.g. output or

transition faults). Tests are internal and should be translated into external tests which

could be applied to the context. Theorem 3.2 suggests how this could be done. Let

f3e u* be an internal input sequence, i.e. internal test. Applied to the FSM EE = (P,

U, Zu{fail}, H, Po) the sequence /3 produces the set of output sequences Ii(po' fj).

Each trace f316 such that 6 e Ii(po' fj) is permissible w.r.t. any external input

sequence. At the same time for any trace f3lrsuch that re i tJ \ Ii(po' fj), there exists

a sequence af..f3ln such that the trace /3lris forbidden w.r.t. af..f3lnx. Once found, the

sequence af..f3lnx is an external test which forces the context to execute the internal

test f3 provided that an IUT executes the trace {3Ir. If we find a sequence af..f3lnx for

all r e i tJ \ Ii (Po' fj) then we have a set of external tests corresponding to a single

internal test /3. To execute the internal test /3 against a particular implementation of

the component one external test suffices, but since we do not know much about an

IUT we should use all of them.

The key issue is then to find for a given test /3e u* all (or at least one) sequences

aX../3ln for every trace f31y, where re i tJ \ Ii(po' {3). This could actually be solved by

constructing a synchronous product of the approximation and an FSM representing

all the forbidden traces {3Ir. The approach is very similar to that of finding from a

specification a test covering a given test purpose for testing an isolated

implementation, see for example, [FJN96]. In that approach, test derivation is

based on a depth-first traversal of the product. In our case, a f~rbidden trace serves

as a test purpose and the approximation [[Spec]]c with twb distinct types of

alphabets X and U plays the role of a specification. The procedure is thus slightly

more involved:

1. We construct an FSM, called a test machine A(fj), such that has a distinct state

for each trace aJ6, where a is a proper prefix of /3 and 6 e Ii(po' a), as well as two

designated states FAIL and TRAP. Transitions are defined in the following way. For

each trace (XlJ1&' such that (XlJ is a prefix of /3 and &. e: Ii(po' (XlJ), we define a

transition from a corresponding state to the FAIL state labeled with ulz. The FAIL

state has looping transitions labeled with all pairs ulz, ue U and zeZ. All traces /316,

where 6 e Ii (Po' {3), take the test machine to the TRAP state. Since each state of the

test machine accepts at most one input u of the sequence /3, we define transitions to

the TRAP state for all the remaining internal inputs in U and all internal outputs in

Z. Once the TRAP state is reached, no forbidden trace can be found for the internal

Fault detection in embedded components 283

test p. To synchronize the test machine with the approximation we should also

equalize their alphabets. In particular, we augment the test machine with the external

inputs in X, they cause looping transitions at each state with the null output.

2. Given the two FSMs, A(f3) = (Q, XuU, Zu{null}, g, %) and ([Spec]]c = (S,

XuU, ZU{fail, null}, h, so) we are interested in input sequences that simultaneously

lead them to the FAIL states. In the former machine such a sequence causes a

forbidden trace, while in the latter, its x-projection is the external test for this

forbidden trace. We construct the synchronous product of A(P) and ([Spec]]c as an

FSM A(P) x ([Spec]]c = (Q x S, XuU, Zu{fail, null}, g x h, qoSo)' where g x h(qs, a)

I hI b 2 2 • 2 2 0 = { [(qb (q, a), ''b (s, a)), b] lEg (q, a) n h (s, a) } If g (q, a) n h (s, a) :# and g

x h(qs, a) = {(FAIL, FAIL), fail} if l(q, a) n h2(S, a) = 0. By definition of A(P),

l(q, a) n h2(S, a) = 0 implies aEX, l(q, a) = {null}, and h2(S, a) = {fail}.

3. We find all traces of the synchronous product A(P) x ([Spec]]c from the initial

global state to the global state (FAIL, FAIL). To shorten the length of a trace we

could skip looping transitions finding shortest paths from the initial state.

4. For a particular forbidden trace Plrdifferent sequences a(PliJ may be found, it

is sufficient to choose one of them for each forbidden trace. In other words, for each

forbidden trace Ply, we find one trace alP with the (UuZ)-projection plrthat takes

the FSM from its initial state to the state (FAIL, FAIL). Alternatively, we could

optimize the number of external tests by solving a set cover problem [John74].

Finally, we find the x-projection of the obtained sequences.

We illustrate the construction using our example. Consider, as an example, the

internal test UIUI• Figure 5 shows the test machine constructed for this test. There are

two forbidden traces, u/z2 and u/ZIU/Z2' the test machine enters the FAIL state after

these traces.

Figure 5 The test machine derived from the input sequence UIUI•

Figure 6 A fragment of the machine A(P) x [[Specllc for P = UIUI•

A fragment of the product of the test machine and approximation (Figure 3)

which contains the necessary traces is shown in Figure 6. For the forbidden trace

u/~ we have a single sequence X2UIX2, and for U/ZIU/~ we have two sequences

XIUIUIX2 and X2UIXzX2UIX2 reaching the state (FAIL, FAIL). Accordingly, there are two

possible solutions {XzX2' XIX2} and {XzX2' XzXzXzX2} = {XzXzXzX2}. To execute the internal

284 Pan Seven Test Generation/or Communicating State Machine

test U1U 1 we may use a single external test xzXzXzXz or two tests xzXz and x1XZ.

: x2 : x2 : x2. x2· x I . xl
1,2,7 :7 -+- 1 : 7 -+- I : 7 ~ I: 7 -+- I: 1-.2 :1--+-7

ul/zl JUI/ZI ~ IUllz1 ~ IUI/ZI ~ IUI/ZI ~ ul/zi I ~ ullz2 I

--. x2 xl .• x2 xl .• x2 xl :. x2 xl: +. x2 +
8121418 T' 8-.14-.18: 8-'14+ 18: 8 + 14 -+i8: 8 +14~18: 3: F+-9

" , , , ullzl ~~ ul/zl ~ j ullzl ~~ Ullzl~~ ullz2 ~~

7: 7 7: 7 ~F~6 ~

0\/'\ ~: 01/,\ ~ : 01/,\ f Olh2f
xl ' xl. I' x2

12~8: 12-+-8 :12 ~8: F-+-9:

~U2lZ2 ~ I u2Iz2

+ x2

14-+3:

ul/zl f.
. 1O~5:

1,2,5,7,10, : t :
: u2lz2 :

I u2lzl: x2:

+ : 6 -+F:

I u2lz2

+ x2

14 -+3:

ul/z2 ~~
F~6:

. .
Figure 7 Translating the internal test UIUIUIUZUIUZ into external tests.

The above procedure allows us to find not only a sequence a({3lr/ for each

forbidden trace {3ly but also to translate a given internal test {3 into a number of

external tests by deriving them for each forbidden trace which an IUT can execute

when the test {3 is internally applied. It facilitates the optimization of the number of

external tests since it can deliver the set of all minimal external tests for each

internal· test. However, the approach relies on the product of the approximation and

test machine which may have too many states to be even constructed. To reduce the

complexity of test translation we need a simpler method for finding a single

sequence a({3I"/) for a given trace {3lyand not all of them.

The idea of such a method is based on the fact that states of the embedded

equivalent constructed as subsets of states of the approximation allow us to

backtrack a sequence a({3I"/) for a given trace {3lystarting from the final state FAIL

in the approximation. The backtracking procedure is illustrated in Figure 7 for the

transition tour UIUIUIUZUIUZ of the embedded equivalent (Figure 4). The transition

graph presents transitions in the embedded equivalent caused by this internal test.

The columns correspond to all forbidden traces the test can cause in an IUT. A

forbidden part ulz of each trace leading eventually the FAIL state (F) is depicted in

bold. Consider the longest forbidden trace u/zlu/zlu/zlujzzu/zlujzr The suffix ujzz
is executed in the approximation from one of the states {1,2,5,7,1O, TRAP}. By

direct inspection of Figure 3 we find that it is state 10. FAIL state is reached from

state 10 with u/zzXz through state 6. Backtracking continues until the initial state 1 is

Fault detection in embedded components 285

reached. The x-projection gives the test xzXzXIXIXzXIX2 for the considered forbidden

trace.

As a result, to execute a single internal test, a transition tour of the FSM EE

UIUIUIU2UIU2' the following external input sequences are required:

{XIX2; XzXzX1X2' XzXzX1XIXzX2; xzXzXIXIXzXIX2}·

Four sequences of the total length of 19 external test events are needed to detect all

output faults in the embedded component.

Next we apply the backtracking procedure to the internal test suite T complete

w.r.t. the fault model <EE, ~, 31(U, Z» (see Section 4) and obtain the following

external test suite complete w.r.t. the explicit fault model <RS, =, 3 1(U, Z)oC»:

{XIXIXIXIXIX2; X1X1X1X2; X1X1XzXzXIX2; X1X1XzXzX2; x 1XzXIXIX2; X1XzXIX2; XzXzXIXIXzXIX2;

XzXzX1XIXzX2; XzXIXIXIX2; XzXIXIX2; XzXIXzXIXIX2; XzXlXzXzX2; XzXzXIX2}·

The total length is 67, as is indicated in [PYB96], where such a test suite was

obtained by an ad hoc procedure. Note that in this particular example, translation of

a complete internal test suite into an external one almost doubles the length of tests.

The increase depends, of course, on how "transparent" is the context to signals

from/to the embedded component.

5 CONCLUSION

In this paper, we have considered the problem of test derivation aimed at detecting

faults in a component embedded within a given system modeled by communicating

state machines assuming that the rest of the system has no faults. The presented

results are based on a general framework for testing in context elaborated in the

previous work [PYBD96], [PYB96], [PYD94], [PYLD93]. We have demonstrated

that tests which detect all predefined (transition or output) faults can be

systematically derived through the following steps. First, we construct a so called

approximation of the component in context, which characterizes the behavior of any

implementation of the component. This step was elaborated in our previous papers.

New procedures proposed in this paper are as follows. The approximation is

transformed into an embedded equivalent of the component. The latter contains the

behavior of any conforming implementation and is used to derive internal tests

complete with respect to a chosen fault model. An existing method for deriving tests

from a nondeterministic FSM and reduction relation between an implementation and

its specification can be applied at this point. Since we assume that no access is

possible to the embedded component internal tests have to be translated into external

tests applied at available test access points. Two approaches have been elaborated to

solve the last problem. Compared to the published results, we have elaborated a

systematic approach which leads to better results, i.e. shorter tests with the same

fault coverage guarantee.

Possible future work is related to generalization of this approach to

nondeterministic communicating state machines and extended finite state machines.

It would also be interesting to see whether the constructions used in our approach

could be further simplified to treat real-size specifications. More research is required

286 Pan Seven Test Generationfor Communicating State Machine

to merge the two approaches, the one elaborated in this work and the other based on

a partial exploration of a composed machine while preserving their advantages.

Acknowledgments. This work was partially supported by the NSERC grants

OGP0194381 and STRGP200.

6 REFERENCES

[ABBD95] Aziz, A., Balarin, F., Brayton, R. K., DiBenedetto M. D., and Saldanha,

A. (1995) Supervisory control of finite state machines, Proceedings of the 7th

International Conference CA V'95, pp. 279-292.

[Boch78] Bochmann, G. v. (1978) Finite state descriptions of communication

protocols, Computer Networks, 2.

[BrZa83] Brand, D., and Zafiropulo, P. (1983) On communicating finite state

machines. Journal of ACM, 30, 2, 323-42.

[FJN96] Fernandez, J. C., Jard, C., Jeron, T., and Viso, G. (1996) Using on-the-fly

verification techniques for the generation of test suites, Proceedings of the 8th

International Conference CA V'96.

[HeBr95] Heerink, L. and Brinksma, E. (1995) Validation in context, Proceedings

of the 15th IFIP International Symposium on Protocol Specification, Testing,

and Verification, Chapman & Hall.

[HLS96] Huang, S., Lee, D., and Staskauskas, M. (1996) Validation-based test

sequence generation for networks of extended finite state machines, the

Proceedings of the IFIP 1st Joint International Conference FORTEIPSTV,

Chapman & Hall, pp. 403-418.

[HoUl79] Hopcroft, J. E., and Ullman J. D. (1979) Introduction to automata theory,

languages, and computation, Addison-Wesley, New York.

[John74] Johnson, D.S. (1974) Approximation algorithms for combinatorial

problems. Journal Comput. Syst. Sci., 9, pp. 256-78.

[KoTa95] Koppol, P. V., Tai, K. C. (1995) Conformance testing of protocols

specified as labeled transition systems, Proceedings of the 8th International

Workshop on Protocol Test Systems (IWPTS'95), pp. 143-158.

[LBP94] Luo, G., Bochmann, G. v., and Petrenko, A. (1994) Test selection based

on communicating nondeterministic finite state machines using a generalized

Wp-method. IEEE Trans. on Soft. Eng., SE-20, 2, 149-62.

[LJK95] Lin, B., de Jong G., and Kolks, T. (1995) Hierarchical optimization of

asynchronous circuits, Proceedings of the 32nd DAC, pp. 712-717.

[LSKP96] Lee, D., Sabnani, K. K., Kristol, D. M., and Paul S. (1996) Conformance

testing of protocols specified as communicating finite state machines - a guided

random walk based approach, IEEE Trans. on Communication, vol. 44, 5.

[MeBo83] Merlin, P., and Bochmann, G. v. (1983) On the construction of

submodule specifications and communication protocols, ACM Trans. on

Programming Languages and Systems, Vol. 5, No.1, pp. 1-25.

[PBD93] Petrenko, A., Bochmann, G. v., and Dssouli, R. (1993) Conformance

relations and test derivation, Invited Paper, Proceedings of the 6th International

Workshop on Protocol Test Systems (IWPTS'93), pp.157-178.

Fault detection in embedded componentE 287

[PYBD96] Petrenko, A., Yevtushenko, N., Bochmann, G. v., and Dssouli, R. (1996)

Testing in context: framework and test derivation, Computer Communications

Journal, Special issue on Protocol Engineering, 19, pp.l236-1249.

[PYB96] Petrenko, A, Yevtushenko, N., and Bochmann, G. v. (1996) Fault models

for testing in context, Proceedings of the IFIP 1st Joint International Conference

FORTEIPSTV, Chapman & Hall, pp. 163-178.

[PYB96a] Petrenko, A., Yevtushenko, N., and Bochmann, G. v. (1996) Testing

deterministic implementations from nondeterministic fsm specifications,

Proceedings of the 9th IWTCS'96, Chapman & Hall, pp.125-140.

[PYD94] Petrenko, A, Yevtushenko, N., and Dssouli, R. (1994) Testing strategies

for communicating fsms, Proceedings of the 7th IWTCS'94, pp. 193-208.

[PYLD93] Petrenko, A., Yevtushenko, N., Lebedev, A, and Das, A. (1993)

Nondeterministic state machines in protocol conformance testing, Proceedings

of the 6th IWPTS, pp. 363-378.

[QiLe91] Qin, H., and Lewis, P.(1991) Factorization of finite state machines under

strong and observational equivalencies, Journal of Formal Aspects of

Computing, Vol. 3, pp. 284-307.

[Star72] Starke, P.H. (1972) Abstract automata. North-Holland/American Elsevier.

[SiLe89] Sidhu, D. P., and Leung, T. K. (1989) Formal methods for protocol

testing: a detailed study, IEEE Trans. on Soft. Eng., SE-15, 4, pp.413-426.

[West86] West, C. (1986) Protocol validation by random state exploration,

Proceedings of the 6th ISPS1V.

[YaLe95] Yannakakis, M., and Lee, D. (1995) Testing finite state machines: fault

detection, Journal of Computer and System Sciences, 50, pp. 209-227.

7 BIOGRAPHY

Alexandre Petrenko received the Diploma degree in electrical and computer

engineering from Riga Polytechnic Institute and the Ph.D. in computer science from

the Institute of Electronics and Computer Science, Riga, USSR. In 1996, he has

joined CRIM, Centre de Recherche Informatique de Montreal, Canada. He is also an

adjunct professor of the Universite· de Montreal, wli~re he was a visiting

professor/researcher from 1992 to 1996. From 1982 to 1992, he was the head of a

research department of the Institute of Electronics and Computer Science in Riga.

From 1979 to 1982, he was with the Networking Task Force of the International

Institute for Applied Systems Analysis (IIASA), Vienna, Austria. His current

research interests include high-speed networks, communication software

engineering, formal methods, conformance testing, and testability.

Nina Yevtushenko received the Diploma degree in radio-physics in 1971 and Ph.D.

in computer science in 1983, both from the Tomsk State University, Russia. She is

currently a Professor at that University. Her research interests include the automata

and FSM theory and testing problems.

