
17 

Fault detection in embedded 

components 

A. Petrenko and N. Yevtushenko t 

CRIM, Centre de Recherche Informatique de Montreal, 

1801 Av. McGill College, Montreal, H3A 2N4, Canada, 
Phone: (514) 840-1234, Fax: (514) 840-1244, petrenko@crim.ca 

t Tomsk State University, 

36 Lenin str., Tomsk, 634050, Russia, 
yevtushenko. ifj@elefot.tsu.tomsk.su 

Abstract 

We address in this paper the problem of detecting faults located in a given 

component embedded within a composite system. The system is represented as two 

communicating FSMs, a component FSM inaccessible for testing and a context 

machine that models the remaining part of the system which is assumed to be 

correctly implemented. We elaborate a systematic approach for deriving external 

tests which can detect all predefined types of faults in the embedded component. 

.The approach. is based on the construction a proper characterization of the 

conforming behavior of the component in context, derivation of internal tests and 

translation into external tests. 
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1 INTRODUCTION 

The model of communicating state machines, see e.g., [Boch781, [BrZa831, is 

widely used for development of complex systems. It serves as an underlying model 
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for description techniques such as Statecharts, ROOM, ESTEREL, SDL. One of the 

important issue is test derivation from a formal specification in the form of 

communicating state machines. A straightforward solution is to construct a global 

composed machine from a reachability graph such that describes the behavior of a 

system at points accessible for testing and apply existing test derivation methods 

developed for FSMs. The behavior of a system even consisting of deterministic 

components may be nondeterministic and a test derivation method which can treat 

nondeterministic I/O FSMs should be used [LBP94]. This approach suffers from 

several drawbacks. First, even if each component of the system is given as an I/O 

FSM, the global I/O machine may not exist due for example, livelocks. A number of 

verification methods and tools could be used to check properties of the given 

system, so it is reasonable to assume that tests should be derived from a verified 

system of communicating state machines such that its composed machine exists. 

Second, the number of states in the composed machine (assuming that we are able 

to construct it) may easily trigger tests with a high fault coverage to explode. Two 

main approaches have been tried to alleviate the test explosion effect. 

According to the first approach, systematic test derivation with fault coverage is 

avoided, transition coverage of individual component machine is attempted instead. 

This could be achieved a partial exploration of the composed machine either by 

adopting a random walk [West86], see [LSKP96], by generating a certain part of the 

entire composed machine comprising transitions chosen for testing [HLS96] or a 

reduced composed machine [KoTa95]. The advantage of this approach is that the 

need for global machine construction is obviated. However, the fault detection 

ability of the approach is unknown. 

The second approach is driven by a divide-and-conquer strategy and is closely 

related to the problem of submodule construction, known also as redesign, plant

controller, or equation solving, where we are required to construct the specification 

of a submodule X when specifications of the overall system and of all submodules 

except X are given [MeB083], [QiLe91], [ABBD95], [LJK95], [HeBr95]. A given 

system of communicating FSMs is viewed in two parts, one part (an embedded 

component) is to be tested and the other (context of the component) is assumed to be 

error-free. The main issue here is how to systematically derive tests tuned for the 

embedded component (testing in context). The basic idea is to reduce testing in 

context to testing in isolation so that existing methods could become fully 

applicable. Once this problem is solved we may similarly proceed deriving tests for 

the remaining part of the system (the target component and context switch their 

roles). Since faults usually do not affect all the components of a system the resulting 

test suite would normally have a high fault coverage, while test explosion effect is 

alleviated. This approach has been elaborated in [PYLD93], [PYD94], [PYBD96] 

and [PYB96]. Here we continue that work for providing systematic methods for test 

derivation from communicating state machines. 

The rest of the paper is organized as follows. In Section 2, we briefly summarize 

the results of [PYBD96] and [PYB96] related to this work. The novel parts are 

presented in Section 3 and 4. Section 3 gives a method for constructing a so called 
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embedded equivalent of the component in context which explicitly characterizes all 

implementations conforming to a given specification in context and facilitates test 

derivation. Section 4 discusses the problem of translating internal tests derived from 

the embedded equivalent into external tests. Two approaches to solve the problem 

are proposed. We conclude in Section 5 with a discussion of future work. 

2 FRAMEWORK FOR TESTING IN CONTEXT 

2.1 Finite state machines 

A finite state machine (FSM) is a completely specified initialized (possibly 

nondeterministic) Mealy machine which can be formally defined as follows. A finite 

state machine A is a 5-tuple (S, X, Y, h, so), where S is a set of states with So as the 

initial state; X - a finite nonempty set of input symbols; Y - a finite nonempty set of 

output symbols; and h - a behavior function h: SxX -? P(SxY)\0, where p(SxY) is 

the powerset of SXY [Starn]. The machine A becomes deterministic when Ih(s, 

x)l=l for all (s, x)eSxX. 

We extend the behavior function to a function on the set X* of all input 

sequences containing the empty sequence e, i.e., h: SxX* -? P(SxY*)\0. Assume 

h(s, e) = {(s, e)} for all se S, and suppose that h(s, fJ) is already specified. Then h(s, 

fh) = { (s'. )y) 1 3s"eS [(s". n eh(s, fJ) 1\ (s', y) eh(s". x)] }. Given a sequence a 

over the alphabet XuY, we use ci to denote the X-projection of a that is obtained by 

deleting all symbols ye Y from the sequence a. 
The function hI is the next state function, while h2 is the output function of A, 

where hI is the first and h2 is the second projection of h, i.e., hl(s. a) = { s' 13 P e Y* 

[(s·. fJ) eh(s. a)] }, h2(s. a) = {P 13 s' eS [(s'. fJ) e h(s. a)] } for all aeX*. We use 

hp (s, a) to denote the set of states reached by the machine when it executes YO 

sequence alP starting from state s. Given two states s of the FSM A and r of the 

FSM B= (T, X. Y, H, to)' and a set V~*; state r is said to be a V-reduction of s, 

written r :5y s, if for all input sequence~ ae V the condition H2(r, a) ~ h2(s. a) holds; 

r is not a V-reduction of s, r 1. yS, if there exists an input sequence a e V such that 

H2(r, a)!k h2(s. a). States sand r are V-equivalent states, written s ==y r, iff s :5y r 

and r :5y s. On the class of deterministic machines, the above relations coincide. We 

denote :5 the V-reduction in the case where V=X*, similarly, == denotes the 

equivalence relation. Given two machines, A and B, B is a reduction of A, written 

B:5A, if the initial state of B is a reduction of the initial state of A. If B~ and B is 

deterministic then it is referred to as a D-reduction of A. Similarly, the equivalence 

relation between machines is defined. B=A, iff B:5A and A:5B. The equivalence and 

reduction relations serve as conformance relations between implementations and 

their FSM specifications for deriving test suites with guaranteed fault coverage 

[SiLe89], [PBD93], [YaLe95], [PYB96a]. 

A/ault model is a triple <A, -, S> [PYB96], where A is a reference specification, 

a set S is the fault domain that is a set of possible implementations defined over the 

same input alphabet as the specification, and - is a conformance relation. In this 



Fault detection in embedded components 275 

paper, we consider - e {:, :S}. A complete test suite w.r.t. the fault model is a finite 

set E of finite input sequences such that for all Be S, B + A implies B + E A. 

If the fault domain is an arbitrary finite set S of implementation machines then 

in order to derive a complete test suite w.r.t. the fault model a traditional method 

(mutant killing technique) could be used. For each FSM Be S, we derive an input 

sequence that distinguishes B from the reference specification A whenever they are 

not equivalent (or B is not a reduction of A). The union of input sequences over all 

machines Be S gives a desired test suite. Because of its complexity, such a solution 

is feasible for a small number of faults to be detected, for example for single output 

faults. At the same time, there are certain fault models for which there is no need to 

explicitly enumerate machines of the fault domain. For these fault models, a 

complete test suite is derived based on the properties of the specification machine A. 

As an example, we could mention a classical (black-box) fault model < A, :, S .. (X» 
where A is a completely specified and deterministic FSM, and S .. (X) is the set of all 

FSMs over the input alphabet X of A with at most m states. A number of competing 

methods exist, see e.g. , [SiLe89], [PBD93], [YaLe95]. As is shown in [PYB96], a 

similar approach can be taken to devise fault models and to derive complete tests for 

embedded components. In this paper, we propose new methods for testing in context 

such that allow to obviate an expensive mutant killing technique. 

2.2 Model of a system with the embedded component 

Many compound systems are typically specified as a collection of communicating 

FSMs. As noticed in [PYBD96] the system of two communicating FSMs (JUT and 

context), connected as shown in the upper part of Figure 1, is general enough to 

discuss problems related :~ t!:sti an embedE~ ~<!m'p~n ... ent. 

y 

Figure 1 Architecture for testing the embedded component (IUT). 

We assume that we are given an FSM Spec which represents the behavior of the 

component (lUT) embedded within the system that should be tested, while a 

machine C, called the context machine, is a composed machine of all components of 

the system, except the component of interest, that are assumed fault-free. As in 

[PYB96], we assume that the sets X, U, Z, and Y of actions are pairwise disjoint. 

Two (deterministic) FSMs are communicating asynchronously via bounded input 

queues where actions are stored. We assume that the system at hand has a single 

message in transit, i.e. a next external input x is submitted to the system only after it 

has produced an external output y to the previous input. Under these assumptions, 

the collective behavior of two communicating FSMs can be described by means of a 
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product machine and a composed machine. The product machine SpecxC is 

represented by a graph of global states, obtained by performing reachability 

computation [BrZa83]. It is in fact, a labeled transition system which represents the 

joint behavior of all components. If the product machine SpecxC has a cycle labeled 

only with internal actions from the alphabet UuZ then the system falls into livelock 

when an appropriate input sequence is applied, i.e. the system cannot produce an 

external output. In this case, the system's behavior cannot be described by an 110 

FSM and we conclude that the composed machine does not exist. Otherwise, a 

.composed machine RS = SpecoC can be obtained by hiding of all internal actions in 

the product machine, determinizing the obtained L TS and by pairing inputs with 

subsequent outputs [PYB96], [PYBD96]. 

Example. Consider the system [PYB96] of context and component machines, 

shown in Figure 2. The composed machine RS = SpecoC is shown in Figure 2(c). 

(a) 

~ ;;:'~-I>-""""" x2ly2 zVy I 

Figure 2 The context C (a), component Spec (b), and the composed machine RS (c). 

2.3 Explicit fault model for testing in context 

Testing in context is based on the test architecture shown in Figure 1. We assume 

that the tester executes test cases simultaneously against the system under test and 

its specification, called the reference system. The reference system is modeled by 

the composed machine RS = SpecoC. The embedded component (JUT) is the target 

of tests. The context does not need to be tested. Verdicts are produced by a part of 

the tester called a verdict machine. The verdict machine produces the verdict fail 

and enters a state FAIL when output actions of a system under test and reference 

system do not coincide or the system under test falls into livelock. No 

communication between the component and context can be observed or controlled. 

Based on the test architecture (Figure 1), we define a fault model for deriving 

complete test suites as in [PYB96]. Let fJ .. (U, Z) denote the set of all implementation 

FSMs Imp over alphabets U and Z with at most m states such that ImpoC exists. 

Then the triple <.RS, :, fJ .. (U, Z)oC» where fJm(U, Z)oC = {Imp I Impe fJ .. (U, Z)}, is 

called the explicit fault model for testing in context. In this paper, we attempt to 

elaborate a systematic method for deriving a test suite complete w.r.t. the explicit 

fault model. In [PYB96], we have considered a number of fault models relevant for 

testing in context, however this problem was left open. 

2.4 Approximation of the component's behavior 

To systematically derive tests for the embedded component we need a complete and 
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concise characterization of detectable and undetectable faults. This is what we call 

the approximation of component's behavior in the given context C [PYBD96], 

[PYB96] that completely describes the permissible behavior of the embedded 

component w.r.t. any external input sequence. Below we briefly summarize its 

construction. 

A trace of the embedded component is permissible if it is a valid trace of its 

specification Spec. If it is not in Spec then, depending on a particular external input 

sequence, it may be permissible or forbidden. The verdict machine producing the 

fail-verdict in response to the external input sequence indicates that the behavior of 

the component is forbidden. We formalize the notions of permissible and forbidden 

traces of the embedded component as follows. 

A trace {J/ye U*/Z* is forbidden w.r.t. an external input sequence aeX* if there 

exists a prefix {JI".{J/'X". r" of {J/y such that for an appropriate prefix ~".~ of the 

sequence a it holds that the U-projection of the output sequence of the context C to 

al 'X".~r" is equal to {J1".{Jk while its Y-projection is not equal to the output sequence 

of the reference system RS to al"'~' Trace {J/yis said to be permissible w.r.t. the 

external input sequence a otherwise. Trace {J/y is permissible if it is permissible 

w.r.t. all external input sequences. In other words, the trace {J/yis forbidden w.r.t. an 

external input sequence a if every system composed of a component that contains 

trace {Jly is not equivalent to the reference system RS w.r.t. a, i.e. a can be 

considered as an external test detecting any nonconforming implementation of Spec 

with trace {Jly. 
The idea of constructing the approximation is based on the test architecture 

presented in Figure 1. To capture all possible behavior of the embedded component 

we replace it with a chaos machine Ch over the alphabets U and Z that has just one 

state [PYB96]. The chaos machine is nondeterministic, it produces all possible 

outputs z in response to each input u. We construct the product machine 

ChxCxRSxVer as an LTS, hide all actions Yand verdicts in the obtained LTS and 

determinize it. The resulting LTS is transformed back to an FSM, denoted [[Spec]]c' 

in alphabets XvU and Zv{null,fail}. Any global state where the verdict machine is 

in a fail-state is a designated state FAIL of [[Spec11C' An external input x is coupled 

with the output fail and labels a transition to the state FAIL if all subsequent internal 

actions lead to the state FAIL; otherwise it is coupled with the output null. The 

remaining internal inputs u are paired with the internal outputs z. "Don't care" 

transitions of the obtained FSM are specified as transitions to another designated 

state TRAP. Specifically, if an external input x causes a "don't care" transition from 

a particular state then the machine has a transition to the state TRAP labeled x/null, 

for an input u a corresponding transition to the TRAP state is labeled with input u 

and each internal output zeZ. Intuitively, the TRAP state indicates that any behavior 

of the component machine when the FSM [[Spec11c trapped to this state, is 

permissible since it cannot be executed. Any behavior leading to the FAIL state is 

forbidden, since it results in a wrong external output. For more details on the 

construction of the approximation of the component in context the reader is referred 

to [PYBD96]. Figure 3 shows the approximation [[Spec11c for our example. The 
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FSM [[Spec11e captures the most essential for testing aspect of the behavior of the 

whole system shown in Figure 1. In particular, the verdict machine in response to a 

particular external input sequence produces the fail-verdict in a current global state 

of the system if and only if the FSM [[Spec]]e reaches the state FAIL. This property 

of the approximation is formally stated as follows. 

Proposition 2.1. Given the approximation [[Spec 11e = (S, XuU, ZU{fail, null}, h, so) 

and trace !3lye (U/Z)*, the trace !3lyis forbidden iff there exists an 110 sequence alo 
of [[Spec]]e with the (UuZ)-projection !3lythat takes [[Spec11e from the initial state 

to the state FAIL. 

Given a forbidden trace !31y, we denote af..f3/''IJ the input part of an 110 sequence 

of [[Spec11e that has the (UuZ)-projection !3lyand takes [[Spec11e from the initial 

state to the state FAIL. The trace !3lyis forbidden w.r.t. the X-projection of a. The 

approximation of the component in context characterizes the relationship between 

deviations in the behavior of the embedded component and external input sequences 

capable of revealing a fault through the context. However, its shortcoming is that 

existing test derivation methods cannot be directly applied to derive external tests. 

At the same time, as we are going to demonstrate in the subsequent section, it can be 

further transformed into another machine allowing for a direct use of these methods. 

Figure 3 The approximation of Spec in context. State TRAP as well as its incoming 

transitions are not shown, state F is the FAIL state. 

3 EMBEDDED EQUIVALENT OF A COMPONENT MACHINE 

In order to use regular methods for test derivation we now would like to transform 

the approximation [[Specl1e into an FSM such that all its 110 sequences in alphabets 

U and Z of Spec are permissible w.r.t. every possible external input sequence. 
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Equivalently, we define a machine by excluding from the set (U/Z)* all traces {JIr 
such that are forbidden w.r.t. some external input sequence in X*. Let Tr be the set 

of traces of a machine and [[Spec]]c = (S, XuU, Zu{fai/, null}, h, so), 

An FSM is said to be the embedded equivalent of the component Spec in context 

C, denoted EE = (P, U, ZU{fail}, H, Po) if its traces in Tr(EE) over the inputs U and 

outputs Z satisfy the conditions of Proposition 2.1, namely: 

'V {3lyc (U/Z) * ({3lris forbidden) ~ f3/'>E Tr(EE) v H; (Po,fJ) = {FAIL}. 

The idea of transforming the approximation [[Spec]]c into the embedded 

equivalent is to hide all external inputs X and to group its states into subsets such 

that all external inputs cause transitions in the FSM [[Spec]]c within the same subset, 

making sure that all forbidden traces are removed. The situation is somewhat similar 

to a classical problem of determinizing a nondeterministic finite automaton (the 

subset construction) [HoUl79], where all non-observable actions have to be 

removed while preserving all the traces of a given automaton. In fact, as in our case, 

all states reached from a given state through internal transitions (corresponding to 

external inputs) could be merged to form a single state of resulting machine. The 

essential difference is that in our case, we should retain only traces that are 

permissible w.r.t. all external input sequences, i.e. that are common for all states 

reached from the same state after non-observable actions. In other words, we should 

determine the intersection of such traces for each state instead of collapsing traces. 

As the intersection may sometimes become empty we use a designated output fail 

and state FAIL in the embedded equivalent to indicate that a certain common trace 

can no longer be extended, since there exists an external input sequence that 

"forbids" any extension. To formalize the procedure we need the following 

definition. 

Given the FSM [[Spec]]c = (S, XuU, Zu{fail, null}, h, so), a set B of states of 

[[Spec]]c is said to be closed (w.r.t. external inputs) if h\s, x) ~ B holds for every s 

E B and x E X. For a subset B ~ S, a minimal by inclusion closed set including B is 

called the closure of B. 

We present the procedure using our example (Figure 3). The closure ofthe initial 

state of [[Spec]]c is the set {l, 2, 7} which is the initial state of an FSM EE. In 

[[Spec]]c' inputs u1 and U2 cause transitions to the TRAP state from state 1. State 2 

has the following transitions: 2-u/zl ->3, 2-u/z2->4. State 7: 7- u/z l ->8, 7- u/~->9. 

Both states have transitions caused by input u2 to state TRAP. 

Consider input ul . We have nh2(s, ul) = {Zl' ~}. 
se{I,2,7} 

For the oiltput ZI' we find the union of states U ~ (s, ul) = {3, 8, TRAP}. The 
se{1,2,7} I 

closure of {3, 8, TRAP} is the set {3, 8, 12, 14, 18, TRAP}, since from state 8 there 

are transitions on external inputs leading to 12 and 14; as well as from 14 to 3 and 

18. This a new state in the FSM EE. As a result, the FSM EE has a transition 

{I, 2, 7}-u/z l ->{3, 8, 12, 14, 18, TRAP}. 

Consider now output~. U ~ (s, "I) = {4, 9, TRAP}. The closure of the set {4, 
se{I,2,7} 2 
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9} is the set {4, 9, 11, FAIL, TRAP} . The presence of state FAIL in the obtained set 

means that the 110 sequence u/z2 is forbidden. As a result, the FSM EE has no 

transition from the state { 1, 2, 7} labeled with u/z2• 

Take next input ur nh2(s, Uz} = {ZIt Z2}' We have U ~ (5, Uz) = 
se(I,2,7} se(I,2,7} I 

U ~ (5, Uz) = {TRAP} . Thus, there is a "don't care" transition in the FSM EE, 
se(I,2,7} 2 

namely, {I, 2, 7}-ulz"z2->{TRAP} . In a similar way we proceed with a newly 

obtained state {3, 8,12,14,18, TRAP}. The final result, i.e. the FSM EE, is shown 

in Figure 4. As the example shows, the procedure of constructing the embedded 

equivalent is quite straightforward and we do not elaborate it further to save space 

for other results. 

Figure 4 The embedded equivalent EE. 

The embedded equivalent of the component in context explicitly characterizes 

all implementations conforming to a given specification Spec in context C. 

Theorem 3.1. Given the specification Spec of the component, the context C, and an 

implementation FSM Imp over the same alphabets U and Z, as Spec, let ImpoC be 

the composed machine. Then ImpoC is equivalent to RS = SpecoC iff Imp::; EE. 

Proot: Let Imp be a reduction of EE. Suppose that the FSM ImpoC is not equivalent 

to the machine RS. Then there exists an external input sequence 8e X* such that 

ImpoC is not equivalent to RS w.r.t. this sequence, i.e. the pair [3lyof sequences [3 
and ythat are induced by 0 at the inputs of Imp and the context C is forbidden w.r.t. 

o. Thus, the trace [3lyof Imp is not an 110 sequence of EE; therefore Imp is not a 

reduction of EE. A contradiction. 

Suppose now that the FSM ImpoC is equivalent to RS but Imp is not a reduction 

of EE w.r.t. an appropriate input sequence [3, i.e. the output sequence yof Imp to [3 
is not in the set of output sequences of EE to [3. Then, by definition of EE, there 

exists a sequence 8eX* such that the trace [3lyis forbidden w.r.t. 0, i.e. the FSMs 

ImpoC and RS are not equivalent W.r.t. O. A contradiction. 0 

We know that a similar characterization of conforming implementations can be 

obtained based on the most general solution to the equation GoC == SpecoC with G 

being a free variable [PYB96]. As discussed in [PYB96], based on the solution G 

"local" tests to test the component in isolation can be derived, however, these tests 

are not easy to translate into external tests. Unlike the general solution G, the 

embedded equivalent gives an effective answer to the problem of test translation, as 

we are about to demonstrate. 
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Let EE = (P, U, ZUlfail}, H, Po). By the definition of the embedded equivalent, 

each trace in Tr(EE) = U H2(pO,/J) is permissible w.r.t. any external input 
!3EU* 

sequence while for any other trace f3ly E (U/2)*\Tr(EE) there exists a sequence 

a(f3IYJ such that f3ly is forbidden w.r.t. a(f3IYJ. Consider an arbitrary sequence f3 E 
2 

U*. If the set H (Po,f3) contains all possible output sequences of the same length as f3, 

no sequence a(f3IYJ exists. We use iii to denote the set of all sequences in Z* which 

have the length of f3. Then for each sequence y E iii \ d (Po,f3), a sequence a(f3IYJ 

exists. Its X-projection is the external test a(f3ll that can detect an erroneous 

behavior of the embedded component with the trace f31y. If now we find at least one 

sequence a(f3IYJ for each yE iii \ d (Po,f3) and derive the X-projection we have an 

external test suite which detects all faults internally revealed by the sequence f3 (in 

the following section we elaborate a proper method for finding sequences a(f3IYJX). 

At the first sight, the price of this solution seems high since the number of 

sequences in the set iii \ d(Po,{3) is exponential. The following observation helps us 

to drastically reduce it. Any extension of a forbidden trace (f3IYJ is forbidden as well, 

therefore if we have already found a sequence a'(f3'lf) for a prefix f3' of the 

sequence f3 there is no need to consider any extension of f3'ly'. The question comes 

now how we could choose input sequences f3 E u* based on the given embedded 

equivalent. 

Consider the fault model F = <EE, ::;, 3m(U, 2», where 3m(U, 2) is the set of all 

possible implementations with up to m states over the alphabets U and Z, where m ;::; 

n, the number of states in the given specification of the embedded component Spec. 

There exists a method for deriving a test suite complete w.r.t. this fault model 

[PYB96a]. We have the following result. 

Theorem 3.2. Given an FSM EE = (P, U, ZU{fail}, H, Po)' let T be a complete test 

suite w.r.t. the fault model <EE, ::;, 3m(U, 2». Then the set 

E = {a(f3IYJx I f3E T & yE iii \ d(po, (3)} 

is a complete test suite w.r.t. the explicit fault model <.RS, :, 3m(U, 2)oC». 

Consider our working example. The specification of the embedded component 

Spec has three states (Figure 2). We assume that no fault in the component increases 

the number of states, i.e. m = 3. The method of [PYB96a] applied to the FSM EE 

(Figure 4) produces the following test suite: 

T={ u,u,u,u,u2; u,u,u,Uzu,u2; u,u,u2u,Uz; u,u,u2UZUZ; u,u2u,u,UZ; u,u2u,uzuJ 

It is complete w.r.t. the fault model <EE, ::;, 3]( u, 2» and once translated into 

external sequences (see next section) it is complete w.r.t. the explicit fault model 

<.RS, :, 3]( U, 2)oC». 

In practical situations, we are often ready to sacrifice complete coverage of all 

output and transition faults for shorter tests. We may consider, for example, the fault 

model <EE, ::;, 3 sp,,>' where 3 spec denotes the set of all FSMs that are mutants of the 

FSM Spec with output faults. In our example, we construct a transition tour of the 

FSM EE: u,u,u,uzu,uz (there is no need to cover any transition to the TRAP state 
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since they are not executable in context). It is just one of the six sequences in the test 

suite T. Note that this sequence does not cover all the transitions of the original 

specification of the component Spec (Figure 2b). At the same time, not each 

transition tour of the latter covers all the transitions of the former. 

4 TRANS LA TION OF INTERNAL TESTS INTO EXTERNAL TESTS 

Once the embedded equivalent of a given component in context is constructed, an 

internal test suite could be produced based on a chosen fault model (e.g. output or 

transition faults). Tests are internal and should be translated into external tests which 

could be applied to the context. Theorem 3.2 suggests how this could be done. Let 

f3e u* be an internal input sequence, i.e. internal test. Applied to the FSM EE = (P, 

U, Zu{fail}, H, Po) the sequence /3 produces the set of output sequences Ii(po' fj). 

Each trace f316 such that 6 e Ii(po' fj) is permissible w.r.t. any external input 

sequence. At the same time for any trace f3lrsuch that re i tJ \ Ii(po' fj), there exists 

a sequence af..f3ln such that the trace /3lris forbidden w.r.t. af..f3lnx. Once found, the 

sequence af..f3lnx is an external test which forces the context to execute the internal 

test f3 provided that an IUT executes the trace {3Ir. If we find a sequence af..f3lnx for 

all r e i tJ \ Ii (Po' fj) then we have a set of external tests corresponding to a single 

internal test /3. To execute the internal test /3 against a particular implementation of 

the component one external test suffices, but since we do not know much about an 

IUT we should use all of them. 

The key issue is then to find for a given test /3e u* all (or at least one) sequences 

aX../3ln for every trace f31y, where re i tJ \ Ii(po' {3). This could actually be solved by 

constructing a synchronous product of the approximation and an FSM representing 

all the forbidden traces {3Ir. The approach is very similar to that of finding from a 

specification a test covering a given test purpose for testing an isolated 

implementation, see for example, [FJN96]. In that approach, test derivation is 

based on a depth-first traversal of the product. In our case, a f~rbidden trace serves 

as a test purpose and the approximation [[Spec]]c with twb distinct types of 

alphabets X and U plays the role of a specification. The procedure is thus slightly 

more involved: 

1. We construct an FSM, called a test machine A(fj), such that has a distinct state 

for each trace aJ6, where a is a proper prefix of /3 and 6 e Ii(po' a), as well as two 

designated states FAIL and TRAP. Transitions are defined in the following way. For 

each trace (XlJ1&' such that (XlJ is a prefix of /3 and &. e: Ii(po' (XlJ), we define a 

transition from a corresponding state to the FAIL state labeled with ulz. The FAIL 

state has looping transitions labeled with all pairs ulz, ue U and zeZ. All traces /316, 

where 6 e Ii (Po' {3), take the test machine to the TRAP state. Since each state of the 

test machine accepts at most one input u of the sequence /3, we define transitions to 

the TRAP state for all the remaining internal inputs in U and all internal outputs in 

Z. Once the TRAP state is reached, no forbidden trace can be found for the internal 
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test p. To synchronize the test machine with the approximation we should also 

equalize their alphabets. In particular, we augment the test machine with the external 

inputs in X, they cause looping transitions at each state with the null output. 

2. Given the two FSMs, A(f3) = (Q, XuU, Zu{null}, g, %) and ([Spec]]c = (S, 

XuU, ZU{fail, null}, h, so) we are interested in input sequences that simultaneously 

lead them to the FAIL states. In the former machine such a sequence causes a 

forbidden trace, while in the latter, its x-projection is the external test for this 

forbidden trace. We construct the synchronous product of A(P) and ([Spec]]c as an 

FSM A(P) x ([Spec]]c = (Q x S, XuU, Zu{fail, null}, g x h, qoSo)' where g x h(qs, a) 

I hI b 2 2 • 2 2 0 = { [( qb (q, a), ''b (s, a)), b] lEg (q, a) n h (s, a) } If g (q, a) n h (s, a) :# and g 

x h(qs, a) = {(FAIL, FAIL), fail} if l(q, a) n h2(S, a) = 0. By definition of A(P), 

l(q, a) n h2(S, a) = 0 implies aEX, l(q, a) = {null}, and h2(S, a) = {fail}. 

3. We find all traces of the synchronous product A(P) x ([Spec]]c from the initial 

global state to the global state (FAIL, FAIL). To shorten the length of a trace we 

could skip looping transitions finding shortest paths from the initial state. 

4. For a particular forbidden trace Plrdifferent sequences a(PliJ may be found, it 

is sufficient to choose one of them for each forbidden trace. In other words, for each 

forbidden trace Ply, we find one trace alP with the (UuZ)-projection plrthat takes 

the FSM from its initial state to the state (FAIL, FAIL). Alternatively, we could 

optimize the number of external tests by solving a set cover problem [John74]. 

Finally, we find the x-projection of the obtained sequences. 

We illustrate the construction using our example. Consider, as an example, the 

internal test UIUI• Figure 5 shows the test machine constructed for this test. There are 

two forbidden traces, u/z2 and u/ZIU/Z2' the test machine enters the FAIL state after 

these traces. 

Figure 5 The test machine derived from the input sequence UIUI• 

Figure 6 A fragment of the machine A(P) x [[Specllc for P = UIUI• 

A fragment of the product of the test machine and approximation (Figure 3) 

which contains the necessary traces is shown in Figure 6. For the forbidden trace 

u/~ we have a single sequence X2UIX2, and for U/ZIU/~ we have two sequences 

XIUIUIX2 and X2UIXzX2UIX2 reaching the state (FAIL, FAIL). Accordingly, there are two 

possible solutions {XzX2' XIX2} and {XzX2' XzXzXzX2} = {XzXzXzX2}. To execute the internal 
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test U1U 1 we may use a single external test xzXzXzXz or two tests xzXz and x1XZ. 

: x2 : x2 : x2. x2· x I . xl 
1,2,7 :7 -+- 1 : 7 -+- I : 7 ~ I: 7 -+- I: 1-.2 :1--+-7 

ul/zl JUI/ZI ~ IUllz1 ~ IUI/ZI ~ IUI/ZI ~ ul/zi I ~ ullz2 I 

_--_. x2 xl .• x2 xl .• x2 xl :. x2 xl: +. x2 + 
8121418 T' 8-.14-.18: 8-'14+ 18: 8 + 14 -+i8: 8 +14~18: 3: F+-9 

" , , , ullzl ~~ ul/zl ~ j ullzl ~~ Ullzl~~ ullz2 ~~ 

7: 7 7: 7 ~F~6 ~ 

0\/'\ ~: 01/,\ ~ : 01/,\ f Olh2f 
xl ' xl. I' x2 

12~8: 12-+-8 :12 ~8: F-+-9: 

~U2lZ2 ~ I u2Iz2 

+ x2 

14-+3: 

ul/zl f. 
. 1O~5: 

1,2,5,7,10, : t : 
: u2lz2 : 

I u2lzl: x2: 

+ : 6 -+F: 

I u2lz2 

+ x2 

14 -+3: 

ul/z2 ~~ 
F~6: 

. . 
Figure 7 Translating the internal test UIUIUIUZUIUZ into external tests. 

The above procedure allows us to find not only a sequence a({3lr/ for each 

forbidden trace {3ly but also to translate a given internal test {3 into a number of 

external tests by deriving them for each forbidden trace which an IUT can execute 

when the test {3 is internally applied. It facilitates the optimization of the number of 

external tests since it can deliver the set of all minimal external tests for each 

internal· test. However, the approach relies on the product of the approximation and 

test machine which may have too many states to be even constructed. To reduce the 

complexity of test translation we need a simpler method for finding a single 

sequence a({3I"/) for a given trace {3lyand not all of them. 

The idea of such a method is based on the fact that states of the embedded 

equivalent constructed as subsets of states of the approximation allow us to 

backtrack a sequence a({3I"/) for a given trace {3lystarting from the final state FAIL 

in the approximation. The backtracking procedure is illustrated in Figure 7 for the 

transition tour UIUIUIUZUIUZ of the embedded equivalent (Figure 4). The transition 

graph presents transitions in the embedded equivalent caused by this internal test. 

The columns correspond to all forbidden traces the test can cause in an IUT. A 

forbidden part ulz of each trace leading eventually the FAIL state (F) is depicted in 

bold. Consider the longest forbidden trace u/zlu/zlu/zlujzzu/zlujzr The suffix ujzz 
is executed in the approximation from one of the states {1,2,5,7,1O, TRAP}. By 

direct inspection of Figure 3 we find that it is state 10. FAIL state is reached from 

state 10 with u/zzXz through state 6. Backtracking continues until the initial state 1 is 
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reached. The x-projection gives the test xzXzXIXIXzXIX2 for the considered forbidden 

trace. 

As a result, to execute a single internal test, a transition tour of the FSM EE 

UIUIUIU2UIU2' the following external input sequences are required: 

{XIX2; XzXzX1X2' XzXzX1XIXzX2; xzXzXIXIXzXIX2}· 

Four sequences of the total length of 19 external test events are needed to detect all 

output faults in the embedded component. 

Next we apply the backtracking procedure to the internal test suite T complete 

w.r.t. the fault model <EE, ~, 31(U, Z» (see Section 4) and obtain the following 

external test suite complete w.r.t. the explicit fault model <RS, =, 3 1(U, Z)oC»: 

{XIXIXIXIXIX2; X1X1X1X2; X1X1XzXzXIX2; X1X1XzXzX2; x 1XzXIXIX2; X1XzXIX2; XzXzXIXIXzXIX2; 

XzXzX1XIXzX2; XzXIXIXIX2; XzXIXIX2; XzXIXzXIXIX2; XzXlXzXzX2; XzXzXIX2}· 

The total length is 67, as is indicated in [PYB96], where such a test suite was 

obtained by an ad hoc procedure. Note that in this particular example, translation of 

a complete internal test suite into an external one almost doubles the length of tests. 

The increase depends, of course, on how "transparent" is the context to signals 

from/to the embedded component. 

5 CONCLUSION 

In this paper, we have considered the problem of test derivation aimed at detecting 

faults in a component embedded within a given system modeled by communicating 

state machines assuming that the rest of the system has no faults. The presented 

results are based on a general framework for testing in context elaborated in the 

previous work [PYBD96], [PYB96], [PYD94], [PYLD93]. We have demonstrated 

that tests which detect all predefined (transition or output) faults can be 

systematically derived through the following steps. First, we construct a so called 

approximation of the component in context, which characterizes the behavior of any 

implementation of the component. This step was elaborated in our previous papers. 

New procedures proposed in this paper are as follows. The approximation is 

transformed into an embedded equivalent of the component. The latter contains the 

behavior of any conforming implementation and is used to derive internal tests 

complete with respect to a chosen fault model. An existing method for deriving tests 

from a nondeterministic FSM and reduction relation between an implementation and 

its specification can be applied at this point. Since we assume that no access is 

possible to the embedded component internal tests have to be translated into external 

tests applied at available test access points. Two approaches have been elaborated to 

solve the last problem. Compared to the published results, we have elaborated a 

systematic approach which leads to better results, i.e. shorter tests with the same 

fault coverage guarantee. 

Possible future work is related to generalization of this approach to 

nondeterministic communicating state machines and extended finite state machines. 

It would also be interesting to see whether the constructions used in our approach 

could be further simplified to treat real-size specifications. More research is required 
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to merge the two approaches, the one elaborated in this work and the other based on 

a partial exploration of a composed machine while preserving their advantages. 

Acknowledgments. This work was partially supported by the NSERC grants 

OGP0194381 and STRGP200. 

6 REFERENCES 

[ABBD95] Aziz, A., Balarin, F., Brayton, R. K., DiBenedetto M. D., and Saldanha, 

A. (1995) Supervisory control of finite state machines, Proceedings of the 7th 

International Conference CA V'95, pp. 279-292. 

[Boch78] Bochmann, G. v. (1978) Finite state descriptions of communication 

protocols, Computer Networks, 2. 

[BrZa83] Brand, D., and Zafiropulo, P. (1983) On communicating finite state 

machines. Journal of ACM, 30, 2, 323-42. 

[FJN96] Fernandez, J. C., Jard, C., Jeron, T., and Viso, G. (1996) Using on-the-fly 

verification techniques for the generation of test suites, Proceedings of the 8th 

International Conference CA V'96. 

[HeBr95] Heerink, L. and Brinksma, E. (1995) Validation in context, Proceedings 

of the 15th IFIP International Symposium on Protocol Specification, Testing, 

and Verification, Chapman & Hall. 

[HLS96] Huang, S., Lee, D., and Staskauskas, M. (1996) Validation-based test 

sequence generation for networks of extended finite state machines, the 

Proceedings of the IFIP 1st Joint International Conference FORTEIPSTV, 

Chapman & Hall, pp. 403-418. 

[HoUl79] Hopcroft, J. E., and Ullman J. D. (1979) Introduction to automata theory, 

languages, and computation, Addison-Wesley, New York. 

[John74] Johnson, D.S. (1974) Approximation algorithms for combinatorial 

problems. Journal Comput. Syst. Sci., 9, pp. 256-78. 

[KoTa95] Koppol, P. V., Tai, K. C. (1995) Conformance testing of protocols 

specified as labeled transition systems, Proceedings of the 8th International 

Workshop on Protocol Test Systems (IWPTS'95), pp. 143-158. 

[LBP94] Luo, G., Bochmann, G. v., and Petrenko, A. (1994) Test selection based 

on communicating nondeterministic finite state machines using a generalized 

Wp-method. IEEE Trans. on Soft. Eng., SE-20, 2, 149-62. 

[LJK95] Lin, B., de Jong G., and Kolks, T. (1995) Hierarchical optimization of 

asynchronous circuits, Proceedings of the 32nd DAC, pp. 712-717. 

[LSKP96] Lee, D., Sabnani, K. K., Kristol, D. M., and Paul S. (1996) Conformance 

testing of protocols specified as communicating finite state machines - a guided 

random walk based approach, IEEE Trans. on Communication, vol. 44, 5. 

[MeBo83] Merlin, P., and Bochmann, G. v. (1983) On the construction of 

submodule specifications and communication protocols, ACM Trans. on 

Programming Languages and Systems, Vol. 5, No.1, pp. 1-25. 

[PBD93] Petrenko, A., Bochmann, G. v., and Dssouli, R. (1993) Conformance 

relations and test derivation, Invited Paper, Proceedings of the 6th International 

Workshop on Protocol Test Systems (IWPTS'93), pp.157-178. 



Fault detection in embedded componentE 287 

[PYBD96] Petrenko, A., Yevtushenko, N., Bochmann, G. v., and Dssouli, R. (1996) 

Testing in context: framework and test derivation, Computer Communications 

Journal, Special issue on Protocol Engineering, 19, pp.l236-1249. 

[PYB96] Petrenko, A, Yevtushenko, N., and Bochmann, G. v. (1996) Fault models 

for testing in context, Proceedings of the IFIP 1st Joint International Conference 

FORTEIPSTV, Chapman & Hall, pp. 163-178. 

[PYB96a] Petrenko, A., Yevtushenko, N., and Bochmann, G. v. (1996) Testing 

deterministic implementations from nondeterministic fsm specifications, 

Proceedings of the 9th IWTCS'96, Chapman & Hall, pp.125-140. 

[PYD94] Petrenko, A, Yevtushenko, N., and Dssouli, R. (1994) Testing strategies 

for communicating fsms, Proceedings of the 7th IWTCS'94, pp. 193-208. 

[PYLD93] Petrenko, A., Yevtushenko, N., Lebedev, A, and Das, A. (1993) 

Nondeterministic state machines in protocol conformance testing, Proceedings 

of the 6th IWPTS, pp. 363-378. 

[QiLe91] Qin, H., and Lewis, P.(1991) Factorization of finite state machines under 

strong and observational equivalencies, Journal of Formal Aspects of 

Computing, Vol. 3, pp. 284-307. 

[Star72] Starke, P.H. (1972) Abstract automata. North-Holland/American Elsevier. 

[SiLe89] Sidhu, D. P., and Leung, T. K. (1989) Formal methods for protocol 

testing: a detailed study, IEEE Trans. on Soft. Eng., SE-15, 4, pp.413-426. 

[West86] West, C. (1986) Protocol validation by random state exploration, 

Proceedings of the 6th ISPS1V. 

[YaLe95] Yannakakis, M., and Lee, D. (1995) Testing finite state machines: fault 

detection, Journal of Computer and System Sciences, 50, pp. 209-227. 

7 BIOGRAPHY 

Alexandre Petrenko received the Diploma degree in electrical and computer 

engineering from Riga Polytechnic Institute and the Ph.D. in computer science from 

the Institute of Electronics and Computer Science, Riga, USSR. In 1996, he has 

joined CRIM, Centre de Recherche Informatique de Montreal, Canada. He is also an 

adjunct professor of the Universite· de Montreal, wli~re he was a visiting 

professor/researcher from 1992 to 1996. From 1982 to 1992, he was the head of a 

research department of the Institute of Electronics and Computer Science in Riga. 

From 1979 to 1982, he was with the Networking Task Force of the International 

Institute for Applied Systems Analysis (IIASA), Vienna, Austria. His current 

research interests include high-speed networks, communication software 

engineering, formal methods, conformance testing, and testability. 

Nina Yevtushenko received the Diploma degree in radio-physics in 1971 and Ph.D. 

in computer science in 1983, both from the Tomsk State University, Russia. She is 

currently a Professor at that University. Her research interests include the automata 

and FSM theory and testing problems. 


