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Abstract – In this paper, we investigate the feasibility of a strategy of fault detection capable of controlling misclassification 

probabilities, i.e., balancing false and missed alarms. The novelty of the proposed strategy consists of i) a signal grouping technique 

and signal reconstruction modeling technique (one model for each subgroup), and ii) a statistical method for defining the fault alarm 

level. We consider a real case study concerning 46 signals of the Reactor Coolant Pump (RCP) of a typical Pressurized Water 

Reactor (PWR). In the application, the reconstructions are provided by a set of Auto-Associative Kernel Regression (AAKR) models, 

whose input signals have been selected by a hybrid approach based on Correlation Analysis (CA) and Genetic Algorithm (GA) for 

the identification of the groups. Sequential Probability Ratio Test (SPRT) is used to define the alarm level for a given expected 

classification performance. A practical guideline is provided for optimally setting the SPRT parameters‘ values. 

Index Terms – Condition monitoring, signal grouping, signal reconstruction, auto-associative kernel regression, sequential 

probability ratio test, nuclear reactor coolant pump.  
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Acronyms and Abbreviations   

ac  Abnormal conditions 

AAKR  Auto-Associative Kernel Regression 

ANN  Artificial Neural Network 

ASN  Average Sample Number 

CA  Correlation Analysis 

GA  Genetic Algorithm 

ICA  Independent Component Analysis 

nc  Normal conditions 

NPP  Nuclear Power Plant 

PCA  Principal Component Analysis 

PWR  Pressurized Water Reactor 

RCP  Reactor Coolant Pump 

SPRT  Sequential Probability Ratio Test 

SVM  Support Vector Machine 

Notations 

N   Number of signals  

ti   i-th measurement time 
obs

x


   Observed measurements of N signals at time ti 

ˆ nc
x


   Reconstructions of obs
x


 in normal conditions (nc) 

r


   Residuals between 
obs

x


and ˆ nc
x


 

i
r    Residual between the signal measurement and its reconstruction at time 

i
t  

α   False alarm rate 

β   Missed alarm rate 

XM   Number of historical patterns used to perform the hybrid signal grouping 

XV   Number of patterns belonging to the validation set 

H0   Null hypothesis of the SPRT test 

H1   Alternative hypothesis of the SPRT test 

μ0   Mean of the Gaussian distribution of H0 

σ2
   Variance of Gaussian distributions H0 and H1, i.e., noise of obs

x


 

μ1   Mean of the Gaussian distribution of H1 

ln(A)   Lower stopping boundary of the SPRT 

ln(B)   Upper stopping boundary of the SPRT 

Ln   Likelihood ratio for the positive mean test 

SPRT=ln(Ln)  Logarithm of the the likelihood ratio Ln 

Rn   Sequence of residuals values r1, r2,…, rn 

 1 2 0
, , ...,

n
P r r r H  Probability that the null hypothesis H0 given Rn 

 1 2 1
, , ...,

n
P r r r H  Probability of the alternative hypothesis H1 given Rn 

 ;E n   Number of measurements, i.e., time, necessary for the SPRT to choose among H0 

and H1 

d   Outcome of Durbin–Watson test 

4

obs

a
x    Signal measurements of signal 4a 

4
ˆ nc

a
x    Signal reconstructions of signal 4a 

Q(μ1) Operating characteristic function, i.e., the probability that H0 is accepted for different 

values of μ1 

P(μ1)    Power function, i.e., the probability that H1 is accepted, for different values of μ1 

 



 

 

1. Introduction 

We present a research work aimed at developing a fault detection strategy with the capability of controlling 

fault misclassification probabilities, i.e., balancing false and missed alarms, for improving Nuclear Power 

Plants‘ (NPPs‘) availability and safety. The novelty of the fault detection strategy lies in the combination of a 

signal grouping technique, a signal reconstruction modeling technique, and a statistical method for 

determining the signal deviation level for fault alarms. 

To set the problem, Fig. 1 shows a typical scheme of condition monitoring of a component for fault 

detection. Sensor measurements (signals) 
obs

x


 are sent in input to a model which reconstructs in output the 

same signals ˆ nc
x


 as if the component behaviour were in normal conditions (nc). Deviations between the 

actually measured (observed) signals 
obs

x


 and the reconstructed ones ˆ nc
x


 reveal the presence of faults [1]. In 

simple words, ˆobs nc
x x


 under normal conditions, whereas ˆobs nc

x x


 under abnormal conditions (ac). 

Different empirical models have been developed for signal reconstruction. Typical examples include 

Artificial Neural Networks (ANNs) and Recurrent ANNs [2]-[9], Principal Component Analysis (PCA) and 

Independent Component Analysis (ICA) [10]-[12], Multivariate State Estimation Technique (MSET) [13]-

[14], and Support Vector Machines (SVMs) [15]-[16]. The model considered in this work for reconstructing 

the component behavior in normal conditions is based on the Auto-Associative Kernel Regression 

(AAKR) method [17]-[20]. 

 

 

Fig. 1. Condition monitoring scheme for fault detection. 

In practice, when a large number of signals is available, a phenomenon called fault propagation effect may 

occur when reconstructing the component behavior in normal conditions; if one or more signals are degraded 

by the fault, they may affect the values of other signals, and therefore these latter signals may be incorrectly 

reconstructed, resulting in a large number of false alarms [21]. 

To alleviate this problem, one can resort to grouping signals into subgroups, and developing a reconstruction 

model for each subgroup [21]. Two different types of grouping strategies have been proposed in literature: 

with overlapping, i.e., the same signal can belong to more than one group [12], [22]-[25], and without 

overlapping [26]-[28]. In practical applications, the latter strategy tends to be preferred because it allows for 

a smaller number of models to be developed, at a lower computational effort [28]. Two different approaches 

to grouping can be implemented: filter, and wrapper. The former bases the grouping on characteristics a 
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priori judged to be favorable for condition monitoring, e.g., physical and functional homogeneity (i.e., 

groups are made only by temperature signals, or only by pressure signals), irrespective of the signal 

reconstruction modeling technique used [24], [27]. The latter uses a search algorithm, e.g., Genetic 

Algorithms (GAs) [29], Differential Evolution [30], etc., as a wrapper around the signal reconstruction 

model [31]. In this paper, we use a hybrid approach, i.e., filter and wrapper, based on non-overlapping 

grouping given by Correlation Analysis (CA) and GA [29] (Fig. 2, bottom left). The motivation of the choice 

is that the GA-based wrapper approach allows finding better performing groups for the specific 

reconstruction model used, while the contribution of CA leverages the computational burden of the GA (for 

further details, the interested reader should refer to [29]). 

 

 

 

 

 

 

 

 

 
 

Fig. 2. The condition monitoring scheme for fault detection adopted in this work. 

 

To balance false and missed alarms in the fault detection, it is possible to perform an analysis of the residuals 

ˆobs nc
r x x 

 
 to declare whether a component fault has occurred (Fig. 2, top right). Conventional fault 
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detection systems are based on deterministic rules, i.e., simple tests that compare observed signal values to 

given thresholds. This way of proceeding may suffer from either large false alarm rates α (if thresholds are 

set too small), or high missed (or delayed) alarm rates β (if the thresholds are set too large), and they can fail 

dramatically, especially in situations where noisy data are present, or only slight drifts are observed prior to 

catastrophic faults [32]. On the other side, stochastic approaches regard residuals as random variables 

described by a probability law. Abnormal conditions are assumed to result in a modification of the residual 

probability law (for example, transition from a normal distribution with a given mean and variance to another 

normal distribution with different mean and variance). In the present work, the identification of the 

modification of the probability law describing the residuals is based on the Sequential Probability Ratio Test 

(SPRT) [33], [17], a statistical method for triggering an alarm with a controlled balance between false and 

missed alarms. 

This framework of analysis is applied to a real case study concerning N=46 signals used to monitor the 

Reactor Coolant Pumps (RCPs) of a typical Pressurized Water Reactor (PWR); the monitoring scheme of 

Fig. 2 is applied in normal and abnormal conditions, and the occurring faults are detected. A practical 

guideline is provided for setting the SPRT parameter values for balancing false and missed alarms. 

The rest of the paper is organized as follows. Section 2 illustrates the case study and the data available. 

Section 3 presents the hybrid approach for signal grouping based on CA and GA, embedding the AAKR 

method for signal reconstruction. In Section 4, the definition of alarm levels for detection of abnormal 

conditions using the SPRT method is given with respect to the case study of Section 2. Finally, Section 5 

concludes the paper with some considerations. 

2. The case study 

The case study considers N=46 signals used to monitor the RCPs of a typical PWR. The signal values have 

been measured every hour for a period of 11 consecutive months on four RCPs, each one on a different line 

of the primary circuit of the NPP. A dataset has been provided, containing patterns (46-dimensional time 

series) corresponding to normal conditions, and cleared from outliers. The 46-dimensional patterns (5798) 

have been divided into a set XM of 2798 patterns used to perform the hybrid signal grouping (Section 3), and 

a validation set XV of 3000 patterns used to validate the condition monitoring and fault detection scheme 

(Section 4). 

3. The hybrid approach for signal grouping, with AAKR modelling for signal reconstruction 

The AAKR model is used to reconstruct the signal values in normal conditions of operation, ˆ ,
nc

x


 from the 

observed measurements,     1 , ...,
obs obs obs

x x x N


. The reconstruction is done by a weighted sum of the 



 

 

observations (see the Appendix for further details on the AAKR). The model is applied to the signals of each 

of the subgroups in which the signals are partitioned by a hybrid wrapper approach based on CA and GA. 

In [29], it has been shown that this hybrid method leads to reconstructions that are more tolerant to the fault 

propagation problem (that has been mentioned in the Introduction) than proceeding with the reconstruction 

based on the single group of all signals [19], [27], or on groups of signals defined by a filter CA approach 

only [19], [25], or by a wrapper GA-based approach only [28]. 

The hybrid approach consists of using CA to identify groups of highly correlated signals, and GA to define 

the group assignment of the remaining signals [29]. Application to the case study of interest leads to CA 

identifying 5 groups, with one formed by 24 highly correlated signals, and GA searching chromosomes of 22 

elements, each one corresponding to one of the 22 signals not assigned to a group by CA. In this way, the 

dimension of the GA search space is reduced from 5
46 

(≈10
32

) possible group combinations to 5
22

 (≈10
15

). In 

the end, the hybrid approach identifies 5 groups so formed [29]: 

- Group 1 has 30 signals related to the different temperatures measured in different parts of the RCP 

(e.g., seals, and hydraulic and engine components), 

- Group 2 has 4 signals measuring the rotating speed of the engine components of the RCP, 

- Group 3 has 3 signals measuring the water mass flow rate inside the RCP, 

- Group 4 has 5 signals measuring the water mass flow rate coming from the first seal of the RCP, and 

- Group 5 has 4 signals measuring the water mass flow rate flowing to the first seal of the RCP. 

4. Fault detection 

After grouping of the signals into 5 subgroups, 5 AAKR reconstruction models are developed (one for each 

subgroup), and a strategy of fault detection is implemented based on SPRT to keep under control the 

misclassification probabilities α, and β, i.e., the false, and missed alarm probabilities, respectively. 

4.1. The SPRT method 

Let ri represent the value of one signal at the generic i-th measurement time ti, and let us assume that a 

sequence of values {Rn} = r1, r2,…, rn is available. The SPRT is a binary stochastic hypothesis test which 

sequentially analyzes the process observations {Rn} and decides whether they are consistent with a null 

hypothesis H0 represented by a given probability law, or rather with an alternative hypothesis H1  represented 

by a different probability law [32]. The test is driven by user-specified misclassification probabilities α and 

β. 

In our context of fault detection, ri is the residual between the signal measurement and its reconstruction at 

time 
i

t ,    ˆobs obs

i i i
r x t x t  . The null hypothesis H0 corresponds to the statistical behavior of the 

residuals when the component is under normal conditions, and the alternative hypothesis H1 corresponds to 

that case of abnormal conditions.  

Without loss of generality, here we illustrate the test considering as the null hypothesis H0 of a Gaussian 

distribution with mean μ0=0, and variance σ2
; and as the alternative hypothesis H1 of a Gaussian distribution 



 

 

with mean μ1>0, and same variance σ2
. This test is usually referred to as test for positive mean, and can be 

used for the identification of positive offsets of amplitude μ1. However, SPRT can be also applied for the 

identification of negative offsets, with increased or reduced variance [34]. When the assumption of Gaussian 

distributions might impose potentially misleading behavior on extreme values of the residuals, i.e., tails of 

the distributions, extreme value statistics can integrate into SPRT for dealing with the difficulty of fault 

detection [35]. Furthermore, SPRT can be successfully applied to any other distribution, if needed; as an 

example, in [36] it has been shown that SPRT overtakes other statistical methods when dealing with a 

Bernoulli distribution of residuals. 

The SPRT operates as follows [37]. Every time a new value 
i

r  becomes available, a test index is calculated 

and compared to two stopping boundaries  ln A  (lower threshold), and  ln B  (upper upper threshold), 

with    ln lnA B , that are related to the misclassification probabilities α and β by the expressions 

 ln ln
1

A



 

  
 

 (1) 

 
1

ln lnB




 
  

 
 (2) 

The test index is equal to the natural log of a likelihood ratio (Ln), which is the ratio between the probabilities 

that the alternative hypothesis H1 and the null hypothesis H0 are true: 

 
 

1

0

n

n

n

probability of observed sequence R given H true
L

probability of observed sequence R given H true
  (3) 

Three different cases may arise:  

- if the logarithm of the likelihood ratio (3) is greater than or equal to the logarithm of the upper 

threshold (i.e., ln(Ln) ≥ ln(B)), then it can be concluded that the alternative hypothesis H1 is true; 

- if the logarithm of the likelihood ratio is less than or equal to the logarithm of the lower threshold 

limit (i.e., ln(Ln) ≤ ln(A)), then it can be concluded that the null hypothesis H0 is true; 

- if the logarithm of the likelihood ratio falls between the two limits (i.e., ln(A) < ln(Ln) < ln(B)), then 

there is not enough information to discriminate (and, incidentally, no other statistical test could reach 

a decision with the same given probabilities α and β [32]). 

Given the sequence of signal values {Rn} = r1, r2,…, rn, the probability that the null hypothesis H0 (i.e., 

Gaussian distribution with mean 0 and variance σ2
) is true is given by [37]  

 
 

2

2

1

1

2

1 2 0 2
2

1
, , ...,

2

n

i

i

r

n n
P r r r H e







 
 
  


  (4) 

Similarly, the probability of the alternative hypothesis H1 (i.e., mean μ1>0 and variance σ2
) is  



 

 

 
 

2 2

1 12

1 1 1

1
2

2

1 2 1 2
2

1
, , ...,

2

n n n

i i

i i i

r r

n n
P r r r H e

 




  

  
    

    
  

  (5) 

The ratio of the probabilities in (4) and (5) gives the likelihood ratio Ln for the positive mean test 

 1 12

1

1
2

2

n

i

i

r

n
L e

 
 

  
   

    


  (6) 

The SPRT index for the positive mean test is finally obtained by taking the logarithm of the foregoing 

likelihood ratio: 

    1 1

1 12 2

1 1

1
ln 2

2 2

n n

n i i

i i

SPRT L r r
 

 
  

   
       

  
   (7) 

See that (1)-(7) are defined according to the hypothesis of a Gaussian distribution of the residuals {Rn} = r1, 

r2,…, rn. Obtaining the stopping boundaries and the SPRT index for any other probability distribution P is 

straightforward [36]. 

In any case, the application of the SPRT requests the setting of four parameters: 

 the residual variance in normal conditions (σ2
), 

 the expected offset amplitude (μ1), 

 the false alarm probability (α), and 

 the missed alarm probability (β). 

The values of these parameters influence the time necessary to deliver a decision, i.e., the time necessary for 

the SPRT to choose among H0 and H1. Assuming again for H0 a Gaussian pdf with mean μ0=0 and variance 

σ2
, and for H1 a Gaussian pdf with mean μ1>0 and the same variance σ2

, the expected sample number, 

hereafter called Average Sample Number (ASN), for a decision when the residuals {Rn} are distributed 

according to a Gaussian distribution with mean value μ and variance σ2
, is given by [38]  

 
 

2

1 1

1 1 1
2 ln ln

1
;

2

h h

h h h h

A B

A B A B
E n

 


 


  

   
 

   


 (8) 

where 

1

1

2
h

 




  (9) 

Notice that the approximate theoretical ASN  

1. is directly proportional to σ2
, meaning the larger σ2

, the noisier are the observed values and the 

more difficult a decision is; and  



 

 

2. is inversely proportional to 
1

  meaning it is easier for the SPRT to select a hypothesis when μ1, 

the mean value of H1, is far away from μ0=0, the mean value of the null hypothesis. 

With respect to σ2
, if the signal reconstruction model has been applied to past measurements in normal 

conditions, it can be easily estimated considering the variance of the past values of the residuals. The other 

three parameters have to be fixed by the analyst according to his or her experience, and needs. In Section 4.3, 

a practical guideline is provided for this setting. 

As a final remark, it is worth noticing that SPRT has been shown to be optimum, in the sense of minimizing 

ASN under the hypotheses H0, and H1 for fixed values of false and missing alarms probabilities, α  and β, 

respectively, if the signal values {Rn} = r1, r2,…, rn, are i.i.d [34]. In the case of non-i.i.d measurements, as in 

our case study, no optimality has been established, although the detection performance is still good in terms 

of false and missed alarm probabilities, as it is shown in [39], and by the results shown in Section 4.2. The 

procedural steps for the application of the SPRT are given in the pseudo-code of Fig. 3. 

 

1. Set to 0 the time index i 
2. Set to 0 the SPRT index; 

 

 

 

 

 

 

Fig. 3. The pseudo-code of the procedural steps of the SPRT. 

4.2. SPRT application to the case of RCP of a PWR 

We focus on the signal ‗water flowing to the first seal of the pump in line 1‘ (hereafter referred to as signal 

4a), which belongs to Group 1. The XM historical values of the residuals of the signal under normal 

conditions have been analyzed to set the hypothesis H0, which describes the residual distribution under these 

conditions. The residual distribution has been confirmed to be Gaussian with mean value μo=0.0094, and 

variance σ2
 =0.014, by the Kolmogorov–Smirnov test [40]. The very small mean value of the residuals has 

confirmed that the reconstruction under normal conditions is not biased, and can be approximated by a 

distribution with μo=0. Residuals have been further tested for s-independency with the Durbin–Watson test 

[41]. Small values of the test outcome d indicate that residuals are, on average, positively correlated; whereas 

if d>2, successive residuals are, on average, negatively correlated. In our case, d=0.84, and thus we can 

conclude that residuals are not s-independent, and slightly positively correlated. 

To test the performance of the proposed SPRT for fault detection, an offset of amplitude equal to 1% of the 

standard deviation of the signal values has been injected onto the measurements of signal 4a. The drift starts 

at t=1 hour, and continues until t=1000 hours. In Fig. 4, the abnormal conditions‘ measurements 
4

obs

a
x  and 

 

1. 0  i   Set to 0 the time index i 

2. 0  SPRT   Set to 0 the SPRT index 

3. i+1  i   Increase the time index 

4. At time ti, collect the new residual ri 

a. Update the SPRT index (Eq. 7) 

b. Compare the SPRT index to the upper [ln(B)] and lower [ln(A)] decision boundaries 

c. Detect the component condition, depending on the test outcome: 

if SPRT < ln (A) (lower limit is passed) then 

the component is declared in normal conditions 

Go to 2 and start again the test for the successive times; 

else if SPRT > ln(B) (upper limit is passed) then 

the component is declared in fault conditions 

an alarm flag is raised 

Go to 2 and start again the test for the successive times; 

else if ln (A) < SPRT <  ln(B) (neither limit has been passed) then 

no decision is made 

Go to 3 



 

 

their reconstructions 
4

ˆ nc

a
x  by the AAKR model are shown. Fig. 5 reports the obtained residuals {Rn} = r1, 

r2,…, rn, where    4 4
ˆobs nc

i a i a i
r x t x t  , 1, 2, ...,i n . Table I reports the SPRT parameters used. 

 

Table I 

List of the principal parameters used for the SPRT implementation of the positive offset test 

 

Parameter Value 

α 0.01 

β 0.01 

μ0 0 

μ1 0.46 

σ 
0.12 

 

Fig. 6 illustrates the outcomes of the SPRT in this case study. The SPRT alarm index quickly moves from 

zero to the upper bound ln(B) allowing acceptance of the Hypothesis H1, and thus to promptly detect the 

presence of abnormal conditions. Once the threshold is passed, the SPRT index is reset to zero, and the test 

continues confirming the alarm in a number of time steps similar to the theoretical ASN (8). In fact, the 

empirical ASN, i.e. the average time elapsed between two alarms, turns out to be equal to 1.2 samplings, 

which corresponds to 1.2 hours, with measurements taken every hour. Notice, however, that increasing the 

measurement frequency will result in decreasing the mean time necessary to give the alarms. 

It is also interesting to notice that in the 833 times that a decision is taken, it has been hypothesis H1 (correct 

hypothesis in the present case study) in 827 cases, and hypothesis H0 in 6 cases (wrong hypothesis in the 

present case study). The fraction of missing alarms 6/827=0.007 is smaller than β=0.01, in accordance with 

the analyst-defined parameter value (Table I). Note that, in this case study, a clear tendency of the mean μ of 

the residuals to differ from zero is easily detectable by an analyst observing Fig. 5, and the SPRT has 

performed as expected. 
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Fig. 4. Abnormal conditions’ measurements and reconstructions. 
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Fig. 5. Residuals: difference between measurements and reconstructions of Fig. 4. 
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Fig. 6. Outcomes of the SPRT for the residuals in Fig. 4. 

The SPRT has then been tested in the application for the identification of normal conditions. To this purpose, 

the reconstruction of the signal has been considered during 1000 hours, under normal conditions (i.e., no 

offset has been applied to the signal measurements). 

Fig. 7 shows the measurements 
4

obs

a
x  and the reconstructions 

4
ˆ nc

a
x  obtained by the AAKR reconstruction 

models. Fig. 8 reports the corresponding residuals {Rn} = r1, r2,…, rn, which in this case have a mean value 

close to 0. 

Fig. 9 shows the SPRT index obtained by applying the test with the same parameters of Table I. Notice that 

the SPRT alarm index moves quickly from zero towards the lower boundary ln(A), thus indicating 

acceptance of the hypothesis H0 (component in a normal conditions). In this case, the empirical ASN has 

been 1.2 samples, and a decision has been taken 835 times, with 831 times the hypothesis H0 (correct 

hypothesis), and 4 times the hypothesis H1 (wrong hypothesis). The fraction of false alarms 4/831=0.005 is 

smaller than α=0.01, in accordance with the analyst-defined parameter value (Table I).  
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Fig. 7. Nominal conditions’ measurements and reconstructions. 
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Fig. 8. Residuals: difference between measurements and reconstructions of Fig. 7. 
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Fig. 9. Outcomes of the SPRT for the signals reconstructed in Fig. 7.  

4.3. SPRT parameters setting 

The application of the SPRT requires setting the values of the parameters in Table I. As previously noticed in 

Section 4.1, the correct value of the parameter σ2
 can be estimated by considering the variance of the 

residuals under normal conditions. Parameters α and β relate to the false and missing alarm probabilities, 

respectively, and their values are set by the analyst. The most troublesome parameter to set is μ1, the estimate 

of the mean value of the residuals in abnormal conditions; this quantity is normally not known in practical 

applications. 

In this section, we analyze the influence of μ1 on the results of the SPRT with the aim of providing some 

guidelines for setting its value. 

The driving factors of the choice of μ1 are:  

 the Average Sample Number (ASN) necessary to deliver a decision, 

 the percentage of false alarms when normal conditions‘ residuals are tested, 

 the percentage of missing alarms when abnormal conditions‘ residuals are tested, and 

 the tolerance of the method to identify abnormal conditions when the residuals are characterized 

by probability distributions different from those expected. 

The corresponding desiderata are to have small ASN, small false and missed alarm rates, and a test not very 

sensible to the distribution of the residuals in abnormal conditions. 

Therefore, in what follows, we focus on: 



 

 

 the influence of the choice of μ1 on the ASN, and false and missing alarm rates, for a given 

sequence of residuals {Rn} = r1, r2,…, rn ; and 

 the influence of different distributions of the residuals, for a fixed μ1. 

4.3.1. Influence of μ1 on the ASN, and false and missing alarm probabilities 

The theoretical behavior of the ASN as a function of the parameters μ1 and σ defining the hypothesis H1 can 

be obtained from (8). Fig. 10 shows the ASN behavior, assuming that the distribution of the residuals has a 

fixed mean μ=0.46 (the same mean value of the residual in Fig. 5), while varying μ1 and σ. In Fig. 11, a 

magnification of the lowest curve of Fig. 10 shows a qualitative agreement between the theoretical ASN 

obtained from (8) (circles) and the empirical one (crosses). As expected, the ASN increases with σ2
, and 

decreases as μ1 increases. 

The choice of the value of μ1 should also consider the desired balance between false and missed alarm rates. 

To this purpose, let us define the operating characteristic function, Q, as the probability that H0 is accepted, 

and the power function, P, as the probability that H1 is accepted. Theoretically it is expected that P+Q=1 

because the SPRT should always deliver a decision if an infinite number of residual samples is available. In 

the remaining part of this section, we will analyze the behavior of Q and P as a function of the mean μ1 of the 

alternative hypothesis H1, in both cases in which abnormal and normal conditions are tested. Note that the 

missed alarm rate is estimated by Q in an abnormal conditions test, and the false alarm rate by P in a normal 

conditions test. 

Fig. 12 reports the experimental evolution of P(μ1) and Q(μ1) for different values of μ1, when the abnormal 

conditions‘ residuals of Fig. 5 are tested. Several SPRT tests with different values of μ1 have been performed 

on the 1000 available residuals, and we have collected the number of times in which hypothesis H0 or H1 

have been delivered. Notice several points. 

- For small values of μ1, the SPRT test does not deliver any conclusion considering the 1000 available 

residuals. This result is confirmed by (8), which provides SPRT values larger than 1000 (outside the 

range of Fig. 10). 

-  When μ1≈μ/4=0.12, the SPRT starts to give an alarm (accepting H1) relatively often, with probability 

P(μ1)>1-β. 

- When μ1>2μ≈1, the SPRT begins accepting H0 relatively often: the alternative hypothesis H1 is not 

realistic for the case under analysis, and it has to be rejected with probability equal to 1 when μ1 ≈ 

4μ, while accepting the null hypothesis H0. 

Analogously to Fig. 12, Fig. 13 reports the experimental evolution of P(μ1) and Q(μ1) for different values of 

μ1 when the normal conditions‘ residuals of Fig. 8 are tested. Notice that the larger μ1, the more probable is 

not rejecting H0.  
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Fig. 10. Values of ASN for different σ, and different μ1, assuming μ=0.46.  
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Fig. 11. Values of ASN for the case study under analysis at different μ1. 
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Fig. 12. P(μ1), and Q(μ1) testing the abnormal conditions’ residuals of Fig. 5 with μ= 0.46, and σ= 0.12. 
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Fig. 13. P(μ1), and Q(μ1) testing the normal conditions’ residuals of Fig. 5 with μ= 0, and σ= 0.12. 



 

 

In this case, when choosing the value μ1, the analyst should simultaneously consider Figs. 11, 12, and 13. 

The criteria of a small ASN and of a low rate of false alarms would suggest taking a large value of μ1 

because both the ASN (Fig. 11) and the false alarm probability (P curve in Fig. 13, obtained through testing 

normal conditions‘ residuals) are decreasing with μ1. On the contrary, the objective of minimizing the 

missing alarm rate would suggest using a low value of μ1 because the missing alarm probability (Q curve in 

Fig. 12, obtained testing a normal conditions‘ residual) is increasing with μ1, when a set of residuals are 

tested, and the system is working in abnormal conditions. A compromise solution for μ1 needs to be found, 

able to recognize both normal and abnormal conditions in acceptable time. With reference to the case study 

analyzed, an indication of taking a value of μ1 equal to μ can be suggested. The estimated ASN is not the 

smallest possible (which could be reached with large values of μ1), but it can guarantee a good trade-off 

between small ASN and the reliability of the decision provided by the SPRT. 

4.3.2. SPRT results in case of different distributions of the residuals 

For the case study at hand, we have suggested setting μ1 equal to μ to properly balance the delay in the 

detection and the probability of false or missed alarms. However, because it is usually not easy for an analyst 

to a priori quantify the consequences of abnormal conditions on the measured signals, and thus the expected 

behavior of the residuals from which μ is estimated, this suggestion is not easily applicable. In practice, 

however, one can identify, for each signal, the amplitude of the minimum offset that he or she is interested in 

identifying. This offset can be considered equal to the expected mean value of the residuals between the 

signal in abnormal conditions (x
obs

) and the expected value of the signal in normal conditions ( ˆ nc
x ). For 

example, in Section 4.2, the minimum amplitude of the offset that has been considered is equal to 1% of the 

signal standard deviation. 

An interesting question arises: which is the behavior of the SPRT in the case of residuals with Gaussian 

probability distributions different from those supposed in H1? Basically, we want to know what is going to 

happen if we have fixed a given value of μ1, according to expert judgment, and then we use the SPRT for the 

detection of abnormal conditions characterized by a residual distribution with a mean value μ different from 

μ1, or a variance σ2
 different from that of H1. 

To this purpose, Fig. 14 shows the theoretical behavior of the ASN for different values of the residual mean 

μ and its standard deviation σ (8), when μ1 is fixed. As expected, if the standard deviation of the residual 

increases, the ASN tends to become larger. Notice also that, s-independently from the standard deviation of 

the residuals, the maximum of the ASN is reached for μ equal to μ1/2. 

Finally, observe that for μ<μ1/2 the smaller μ is, the smaller is also the time necessary for the SPRT to 

deliver a decision. Unfortunately, in these cases in which an abnormal conditions with small μ is tested, the 

delivered decision tends to be the wrong hypothesis H0 (normal conditions) because the residual distribution 

results are very similar to the normal conditions‘ residual distribution (see Fig. 12 for large μ1). On the other 

side, for μ>μ1/2, the larger the mean value of the residual is, the smaller the time necessary for the SPRT to 

deliver a decision is. Thus, in this case, the delivered decision tends to be the correct hypothesis H1. 
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Fig. 14. Values of ASN for different σ and μ, assuming μ1 fixed (μ1=0.46). 

Consider an additional example to further clarify the SPRT outcomes when testing residuals with 

distributions having a mean value μ different from μ1. To this purpose, we have simulated a new abnormal 

conditions on signal 4a which starts at t=200 hours, and consists in an offset of increasing amplitude: 0.25% 

of the standard deviation of the signal values in normal conditions in the time [201-400] hours, 0.5%, in the 

time interval [401-600] hours, 0.75% in the time interval [601-800] hours, and 1%, in the time interval [801-

1000] hours. Fig. 15 shows the measurements 
4

obs

a
x , and the reconstructions 

4
ˆ nc

a
x  obtained by the AAKR 

reconstruction models. Fig. 16 reports the corresponding residuals {Rn} = r1, r2,…, rn. 
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Fig. 15. Signal 4a measurements and reconstructions. Normal conditions from 1hour to 200 hours, and abnormal 

from 201 hours to 1000 hours. 
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Fig. 16. Residuals: difference between the measurements and the reconstructions of Fig. 15. 
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Fig. 17. Outcomes of the SPRT for the signals reconstruction reported in Fig. 15, μ1=0.46. 

The SPRT with the same parameters of Table I has been applied to the residuals. Notice that the choice of 

μ1=0.46 indicates that the analyst is interested in identifying offsets of amplitude 0.46 or larger. 

Fig. 17 shows the outcomes of the SPRT. Table II reports the number of times in which the SPRT has 

correctly recognized normal and abnormal conditions, and an estimate of the ASN in the different time 

intervals. 

Table II 

Performance of the SPRT test in the different time intervals 

Time interval Offset Estimated ASN Number of times in which 

normal conditions have been 

detected 

Number of times in which 

abnormal conditions have 

been detected 

[0-200] No 

 

1.2 150 2 

[201-400] Yes 

(amplitude = 0.11) 
1.9 70 5 

[401-600] Yes 

(amplitude = 0.23) 

2.4 15 17 

[601-800] Yes 

(amplitude = 0.34) 

2.1 0 94 

[801-1000] Yes 

(amplitude = 0.46) 

1.2 2 142 

 

Notice that, as expected, when in the time interval t=[1-200] hours, the component is under normal 

conditions, the SPRT index moves quickly from zero towards the lower boundary ln(A), thus indicating to 



 

 

accept the hypothesis H0 (component under normal conditions) with high probability. Then, when t = [201-

400] hours (μ=0.11, μ1=0.46, μ<μ1/2), the decisional process is still very fast (see Fig. 14); but, although the 

case is one of abnormal conditions (an offset of small amplitude is applied to the signal), the delivered 

decision tends to be the wrong hypothesis H0 (normal conditions) because the residuals distribution is very 

similar to the normal conditions‘ residuals distribution. Later, for t = [401-600] hours (μ=0.23, μ1=0.46, 

μ≈μ1/2), the ASN reaches its maximum (see Fig. 14), but the missed alarm rate decreases in favor of a larger 

number of true alarm flags. For t = [601-800] hours (μ=0.33, μ1=0.46, μ>μ1/2), the test becomes much more 

reliable because the false alarms rate approaches β. For t = [801-1000] hours (μ=0.45, μ1=0.46, μ≈μ1), the 

ASN is very small, and the delivered decision tends to be the correct hypothesis H1. 

 

As a final investigation, we are interested in analyzing the results of the previous test considering an 

alternative hypothesis μ1=0.11, rather than μ1=0.46 as it was in the previous analysis. This alternative setting 

agrees with the suggestion given in the previous section, i.e., μ1 equal to μ, where μ is the smallest value of 

deviation from nominal conditions that the experts foresee to occur in the case of anomalies. 

Fig. 18 shows the outcomes of the SPRT. Starting from t = 201 hours, that is the onset of the abnormal 

conditions with μ = μ1 = 0.11, the alarm flag is already raised with very high probability. See that the ASN is 

larger than that obtained in Fig. 11 due to the fact that the theoretical ASN is not at its minimum (which can 

be reached with very large values of μ1, see Fig. 19). However, assuming μ1=0.11 has allowed a guarantee of 

a good trade-off between small ASN and the reliability of the decision provided by the SPRT. 
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Fig. 18. Outcomes of the SPRT for the reconstructed signals reported in Fig. 15, μ1=0.11. 
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Fig. 19. Values of ASN for the case study of Fig. 15 at different μ1. 

5. Conclusions 

The problem of detecting faults in components of NPPs has been considered in this paper. Based on 

previously published works [29], a condition monitoring scheme capable of identifying the signal groups by 

a hybrid approach based on CA and GA has been adopted. This approach has been selected because of its 

capability to limit fault propagation with respect to a CA-based filter approach, and to demand a lower 

computational effort with respect to a GA-based wrapper approach. The grouping outcomes are then fed to a 

traditional empirical AAKR method for signal reconstructions. 

On the basis of the reconstructions provided by the AAKR models (one for each signal group identified), the 

SPRT for the detection of abnormal conditions has been adopted for balancing misclassification probabilities, 

i.e., false and missed alarm rates. A novel procedure for setting the parameters used of the SPRT has also 

been proposed, for practical use. 

A case study regarding the monitoring of the RCPs of a typical PWR has been considered. In the performed 

tests, the combination of a hybrid signal grouping technique with AAKR and SPRT has proven capable of 

detecting the onset of abnormal conditions with a controlled low percentage of false and missed alarms. 

Future work will entail the design of decision thresholds such that the SPRT strategy can guarantee the 

minimum time for the fault detection (ASN), even in the case of auto-correlated signals. 

 



 

 

Appendix 

The Auto-Associative Kernel Regression (AAKR) method 

Let obs nc
X

  be a matrix of observed data whose generic element  ,
obs nc

x k n
  represents the k-th time 

observation, k=1,…,T, of the n-th measured signal, n=1,…,N, taken during normal plant conditions. The 

basic idea of the AAKR method is to reconstruct the signal values in case of normal conditions, ˆ nc
x , given a 

current signal measurement vector,     1 , ...,
obs obs obs

x x x N


, as a weighted sum of the observations in 

obs nc
X

 . Thus,  ˆ nc
x n , the reconstruction of  obs

x n , the n-th component of obs
x


, is given by 

 
   

 

1

1

,

ˆ

T

obs nc

nc k

T

k

w k x k n

x n

w k













 (10) 

The weights  w k  are similarity measures obtained by computing the Euclidean distance between the 

current sensor measurements obs
x


 and the k-th observation of obs nc
X

 : 

      
2

2

1

,

N

obs obs nc

n

d k x n x k n




  . (11) 

Inserting it in the Gaussian kernel, 

 
 2

2
2

1

2

d k

hw k e
h



  (12) 

where the signal h defines the Gaussian bandwidth. 

To provide in (11) a common scale across the different signals measuring different quantities, it is necessary 

to normalize their values. In the present work, the signal values are normalized according to  

 
   

 
x n n

x n
n






  (13) 

where  x n  is a generic measurement of signal n, and  n  and  n  are respectively the mean and 

standard deviation of the n-th signal in obs nc
X

 : 

 
 

 
    

1

2

1
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,

T
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k

T
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k

x k n

n
T

x k n n

n
T
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






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
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