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ABSTRACT

This paper presents the application of an Adaptive Robust
Observer (ARO) to the detection of some common faults that oc-
cur in hydraulic cylinder drive units such as the lack of sufficient
supply pressure, reduced hydraulic compliance and excessive
leakage of the hydraulic fluid. All of these faults could contribute
to the reduced performance of the system and eventual complete
failure. The inherent nonlinear system dynamics, severe para-
metric uncertainties and model uncertainties make fault detec-
tion in hydraulic systems difficult to implement in practice. To
tackle these problems, the Adaptive Robust Observer presented
in this paper is designed using the nonlinear system dynamics
and robust filter structures which attenuate the effect of model
uncertainties to give robust estimates of the states. By using on-
line parameter adaptation the accuracy of the state-estimate is
improved. Also, by estimating the parameters only when certain
persistence of excitation conditions are satisfied, bounds on pa-
rameter estimation errors can be computed which would help in
setting better threshold limits on the residual signals which im-
proves the robustness of the fault detection scheme. Simulation
and experimental results on the swing-arm of a three-degree of
freedom hydraulic robot arm are presented to demonstrate the
effectiveness of the proposed fault detection scheme.
ss all correspondence to this author.
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1 Introduction
Hydraulic systems are widely used in industrial applications

because of their size-to-power ratio and the ability to apply large
forces and torques with fast response times. Some of the appli-
cation areas of hydraulic systems include electro-hydraulic posi-
tioning systems [1, 2], active suspension control [3, 4], material
testing [5], industrial hydraulic systems [6] and hydraulic brak-
ing systems [7]. These applications place a lot of importance on
the reliability, safety and economical detection of faults in the hy-
draulic system being monitored. The complexity of the hydraulic
systems and the tough working conditions under which these sys-
tems operate make the detection and diagnosis of faults in such
systems very difficult. Condition monitoring of hydraulic sys-
tems is therefore very useful in the early detection of component
failure which would lead to better operational safety and econ-
omy. This has lead to the increasing trend towards integrating
elements of fault diagnosis as part of a control system design [8].

Hydraulic systems have a number of characteristics that
complicate the design of fault detection systems. These include
the highly nonlinear dynamics of the hydraulic systems such as
deadband and hysterisis existing in the control valves, nonlinear
pressure/flow relations and variation in fluid volumes due to the
movement of the actuator [9]. Hydraulic systems also have a
large extent of model uncertainties which can be classified into
parametric uncertainties and uncertain nonlinearities. The para-
metric uncertainties include the large changes in load seen by
the system and the variation in the hydraulic parameters due
to changes in temperature, pressure and component wear [10].
Copyright c© 2004 by ASME



Other general nonlinearities such as external disturbances, leak-
age, and friction cannot be modelled exactly and the nonlinear
functions that describe them are not known. These nonlineari-
ties are called uncertain nonlinearities. These model uncertain-
ties make the design of the fault detection systems for hydraulic
systems difficult.

In order to tackle these problems and develop fault detec-
tion algorithms for hydraulic systems a number of different ap-
proaches have been proposed in the literature. These include
some fault detection algorithms based on linearized models as
proposed in [11] in which the linearized model of a hydraulic
drive system is used to design a fault diagnosis system. Un-
fortunately, the hydraulic system is subjected to nonsmooth and
discontinuous nonlinearities due to control input saturation, di-
rectional change of valve opening, friction and valve overlap.
These hard nonlinearities which occur in hydraulic systems lead
to deteriorating performance of the fault detection system and in-
crease in the number of false alarms. Hence, a nonlinear model
based approach which explicitly takes into account the system
nonlinearities for the design of fault detection schemes would
reduce the influence of model uncertainties and improve the per-
formance of the fault detection scheme.

Nonlinear models have been used for the design of fault de-
tection systems in [12–14] using nonlinear robust observers for
hydraulic systems. But, the high degree of parametric uncer-
tainty in hydraulic systems will lead to large estimation errors
when robust observers with fixed parameters are used. Hence,
the fault detection systems based on robust observers are very
sensitive to parametric uncertainty. In order to reduce the effect
of parametric uncertainty the researchers in [15] proposed the
use of adaptive observers which could be used to estimate both
the states and parameters of a system. But these adaptive ob-
servers cannot be used in closed loop because in the presence of
disturbances of large magnitude, the state estimation error [16]
may become unbounded and lead to deterioration of the perfor-
mance of the fault detection algorithm. Kalman filters based on
the linearized model [17] and extended Kalman filters [18] for
nonlinear models have been used for constructing the states and
by comparing with the actual measurements, the residual sig-
nals are generated and then analyzed to report the occurrences
of faults. Unfortunately, fault detection schemes based on state
estimation are not very effective at detecting slowly occurring or
incipient failure as the effect of a fault could be masked by the
effect of the robust control action.

An alternative approach FDI algorithms based on state es-
timation schemes are FDI approaches based on parameter esti-
mation schemes. These schemes make use of the fact that faults
in a dynamic system are reflected in the physical parameters of
the system as detailed in [7]. It has been used successfully in de-
tecting leakage in hydraulic systems in [19]. It has been shown
that the parameter estimation based approach to fault detection is
very useful in the detection of incipient faults and in the detec-
2

tion of faults in the closed loop as the effect of the faults is not
masked by the effect of the controller which might occur in the
state estimation based methods.

In this paper a fault detection system based on a nonlin-
ear model based adaptive robust observer (ARO) [20, 21] is pre-
sented. The ARO has robust nonlinear filter structures to atten-
uate the effect of the unmodeled dynamics acting on the system.
The effect of the parametric uncertainty is reduced using online
parameter adaptation. The observer has an extended filter struc-
ture so that the online parameter adaptation can be utilized to
reduce the effect of possible large nominal disturbances. Discon-
tinuous projection mapping is used in the parameter adaptation
process for the adaptive robust observer for a controlled adapta-
tion process.

The fault detection system based on the ARO uses informa-
tion of the state and parameter estimates to detect faults. Hence,
it can detect slowly occuring/incipient faults. Since, the parame-
ters of the system under supervision are estimated, the method is
able to detect faults in the closed loop. By the use of robust filter
structures and online parameter adaptation, the effect of mod-
elling errors and the sensitivity of the fault detection scheme to
modelling errors is reduced. By estimating the parameters only
when certain persistence of excitation conditions on the input
signal are satisfied, bounds on the parameter estimates can be
computed and used for the detection of faults. This further in-
creases the robustness of the FDI algorithm to modelling errors.

The paper is organized as follows. Problem formulation and
the dynamic model of the hydraulic cylinder are presented in
Section 2. The proposed ARO based fault detection system is
given in Section 3. Experimental setup and experimental results
are presented in Section 4 and conclusions are drawn in Section
5.

2 Problem Formulation and Dynamic Model
2.1 System Model

The schematic of a typical inertial load driven by a hydraulic
cylinder is shown in Fig. 1.
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Figure 1. A ONE DOF ELECTRO-HYDRAULIC SYSTEM.

The system can be thought of as a single-rod hydraulic cylin-
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der driving an inertial load at the end. The dynamics of the iner-
tial load can be described as

mẍL = P1A1−P2A2−bẋL−Ff c(ẋL)+ f̃ (t,xL, ẋL) (1)

where xL and m represent the displacement and the mass of the
load respectively. P1 and P2 are the pressures of the two cylinder
chambers respectively, A1 and A2 are the ram areas of the two
cylinder chambers respectively, b represents the combined coef-
ficient of the modelled damping and viscous friction forces on the
load and the cylinder rod, Ff c represents the modelled Coulomb
friction force and f̃ (t,xL, ẋL) represents the lumped modelling
error including the external disturbances and unmodeled friction
forces.

The cylinder dynamics can be written as [9]:

Ṗ1 =
βe

v1(xL)
(−A1ẋL +Q1− Q̃il− Q̃el1) (2)

Ṗ2 =
βe

v2(xL)
(A2ẋL−Q2 + Q̃il− Q̃el2) (3)

where v1(xL) = vh1 +A1xL and v2(xL) = vh2−A2xL are the total
volumes of the forward and return chamber respectively, vh1 and
vh2 are the forward and return chamber volumes when xL = 0,
βe is the effective bulk modulus. Q1 and Q2 are defined as the
modeled flows in and out of the head-end and rod-end of the
cylinder and are related to the spool valve displacement of the
servo-valve, xv, by [9]

Q1 = kq1xv
√

|∆P1|, ∆P1 =

{

Ps−P1 for xv ≥ 0
P1−Pr for xv < 0 (4)

Q2 = kq2xv
√

|∆P2|, ∆P2 =

{

P2−Pr for xv ≥ 0
Ps−P2 for xv < 0 (5)

where kq1 and kq2 are the flow gain coefficients for the forward
and the return loop respectively, Ps is the supply pressure of the
pump and Pr is the reference pressure in the return tank. Q̃il is
the internal fluid leakage across the piston seals of the cylinder.
Q̃el1 and Q̃el2 are the external flow losses from the head end and
rod end of the cylinder. The leakage flows can be written as:

Q̃il = cil(P1−P2)

Q̃el1 = cel1(P1−Pr) (6)
Q̃el2 = cel2(P2−Pr)

where cil , cel1, and cel2 are the corresponding leakage coeffi-
cients.
3

Define a set of state variables as x = [x1,x2,x3,x4]
T =

[xL, ẋL,P1,P2]
T . The entire system of dynamic equations (1)-(6)

will lead to the state space model of the electro-hydraulic cylin-
der unit with the input voltage u to the spool as the input:

ẋ1 = x2

ẋ2 =
1
m

(x3A1− x4A2)+d, d =
1
m

( f̃ (t,x1,x2)−bx2−Ff c(x2))

ẋ3 =
βe

v1(x1)
(−A1x2 +g2(x3,sign(u))u− Q̃il− Q̃el1) (7)

ẋ4 =
βe

v2(x1)
(A2x2−g3(x4,sign(u))u+ Q̃il− Q̃el2)

Given the measurements of various signals like the displace-
ment of the cylinder, the velocity of the cylinder, the pressures on
the head end and the rod end of the cylinder, the objective is to
detect the failure of various components as early as possible in
spite of various parametric uncertainties and uncertain nonlin-
earities. In this paper we present a method for robust residual
generation.

2.2 Design Model and Issues to be Addressed in the
Design of the Fault Detection System

The system is subjected to parametric uncertainties due to
the variations of m, βe, b, cil , cel1, cel2, and Ff c. In this pa-
per, for simplicity, only the major parametric uncertainties due
to the mass m, the bulk modulus βe, dn, the nominal value of the
lumped modelling error d and leakage flow coefficients cil , cel1
and cel2 in Eqn.(6), are considered.

Let l1 = A1
v1(x1) , l2 = A2

v2(x1) , r1(x3,sign(u)) = g2(x3,sign(u))
v1(x1) ,

r2(x4,sign(u)) = g3(x4,sign(u))
v2(x1) , Ā = A2

A1
and define the unknown

parameter set θ = [θ1,θ2,θ3,θ4,θ5,θ6]
T as θ1 = A1

m , θ2 = dn,
θ3 = βe, θ4 = cilβe

vh1
, θ5 = cel1βe

vh1
, and θ6 = cel2βe

vh2
, the system dy-

namics can be simplified to the following form:

ẋ1 = x2

ẋ2 = θ1(x3− x4Ā)+θ2 +∆1(t,x1,x2) (8)
ẋ3 = θ3(−l1x2 + r1(x3,sign(u))u)−θ4(x3− x4)−θ5(x3−Pr)

ẋ4 = θ3(l2x2− r2(x4,sign(u))u)+θ4(x3− x4)−θ6(x4−Pr)

where,

∆(t,x1,x2) = d̃ = d(t,x1,x2)−dn (9)

The major difficulties in the design of a fault detection system
for the system described in Eqn. (8) are:
Copyright c© 2004 by ASME



1. The system dynamics described as Eqn. (8) are highly non-
linear due to the inherent nonlinearities such as the nonlinear
flow gains represented by r1(x3,sign(u)) and r2(x4,sign(u)).

2. The system has severe parametric uncertainties represented
by the unknown vector θ. The system is also subject to
model uncertainties because of unmodeled dynamics and
uncertain nonlinearities represented by ∆.

2.3 Faults in Hydraulic Systems
In this paper, the nonlinear adaptive robust observer based

fault detection scheme is used to detect the following faults
which occur commonly in hydraulic systems:

1. Incorrect supply pressure: Insufficient supply pressure would
lead to a degradation of the actuator performance. The drop
in supply pressure could lead to actuator stall and eventual
actuator failure. The lack of pump pressure [22] could be
because of the failure of the pump, leakage in the pump due
to a cracked supply line or failure of the relief valve.

2. Increased leakage in the supply lines: The leakage in an hy-
draulic system could be classified into internal leakage at
the hydraulic cylinder head and external leakage or external
flow loss. If there is internal flow loss, it could lead to ac-
tuator performance reduction, since only a part of the fluid
is available for actuation. When there is external leakage,
the fluid loss in the system would lead to drop in the pres-
sure and the system would stop operating after a period of
time. In [22], various expert systems and neural network
approaches to flow leakage diagnosis have been presented.

3. Change in the hydraulic compliance: As shown in [22],
any contamination in the hydraulic system would lead to a
change in the bulk modulus of the system which ultimately
effects the natural frequency of the system and may degrade
the closed-loop performance of the system. In [22], various
methods of wear debris monitoring and particle counting are
presented for detection of the changes in hydraulic compli-
ance.

3 Adaptive Robust Observer Design for Fault Detec-
tion for Electro-hydraulic cylinder drive units
To address the problems identified in the design of the fault

detection systems for hydraulic cylinders, the following strate-
gies are employed:

1. The nonlinear model is used in the design of the adaptive
robust observer which would reduce the effect of model un-
certainties which would occur when linear models are em-
ployed.

2. The observer design integrates adaptive and robust ap-
proaches to reduce the sensitivity to model uncertainties.
4

3. The use of the discontinuous projection mapping with the
adaptation law makes sure that the parameter estimates and
hence, the state estimates remain bounded making it attrac-
tive for closed loop implementation.

4. By updating the parameters only when some persistence of
excitation conditions are met, we can compute hard bounds
on the parameter estimates which can improve the robust-
ness of the fault detection scheme to model uncertainties and
hence, avoid false alarms.

The adaptive robust observer presented in [20, 21] is used
in the proposed fault detection scheme for the electro-hydraulic
cylinder drive unit. The flow of information for the ARO based
fault detection scheme is shown in Fig. 2.

Figure 2. FLOW OF INFORMATION IN THE ARO BASED FDI SCHEME
FOR THE ELECTRO-HYDRAULIC CYLINDER UNIT.

3.1 Adaptive Robust Observers as a Residual Gener-
ator

In fault detection systems, the residual signal is used to sig-
nal and detect the presence of faults in the system. In this paper,
the state estimation error x̃i and the parameter estimation error θ̃
are used as residual signals for fault detection.
Copyright c© 2004 by ASME



Changes in the estimates of the pressure signals, p1 and p2
are reflected in the estimation error of the states, p̃1 and p̃2 and
reflect the lack of sufficient supply pressure. Similarly, an es-
timate of the bulk modulus higher than a pre-computed thresh-
old value signifies the presence of contaminants in the hydraulic
fluid. By estimating the leakage flow coefficients cel1, cel2 and
cil we can predict the occurrence of internal and external leakage
of the hydraulic fluid. The residual signals, x̃ and θ̃ i.e., state es-
timation error and the parameter estimation error are excited by
modeling errors, initial estimation errors and faults. The adaptive
robust observer presented in this paper is used to reduce the sen-
sitivity of the residual signals to unmodeled dynamics and para-
metric uncertainties and reduce the occurrence of false alarms.
The fault detection scheme is broken up into two parts:

Parameter Estimation The constant but unknown vector θ is
estimated using explicit on-line condition monitoring of cer-
tain persistent excitation conditions on the regressor. This
helps us in computing bounds on the parameter estimation
error and reduce the sensitivity of the residual θ̃ to unmod-
eled dynamics.

State Estimation Using robust filter structures and on-line pa-
rameter adaptation the typical model uncertainties in a phys-
ical system are tackled to improve the state estimates and
reduce the sensitivity of the state estimation error x̃ to these
model uncertainties.

3.2 Assumptions
In the absence of faults in the system, the model uncertain-

ties satisfy the following assumptions:

Assumption 1. The unknown but constant parameters θi lie in
a known bounded region Ωθi:

θi ∈Ωθi = {θi : θimin < θi < θimax} (10)

Assumption 2. The uncertain nonlinearities ∆i, i = 1 are
bounded, i.e.,

∆i ∈Ω∆i = {∆i : ∆i(x,η,u, t)| ≤ δi} (11)

where δi are some constants.

Note that the above two assumptions are rather practical for
the electro-hydraulic systems.

3.3 Parameter Estimation
The dynamics of the hydraulic cylinder given by Eqn. (8)

can be linearly parameterized in terms of θ ∈ R6 as

ẋ = f0(x,u)+Θ(x,u)θ+∆x (12)
5

where f0(x,u) =









x2
0
0
0









, Θ(x,u) =









0 0 0 0 0 0
(x3− Āx4) 1 0 0 0 0

0 0 (−l1x2 + r1u) −(x3− x4) −(x3−Pr) 0
0 0 (l2x2− r2u) (x3− x4) 0 −(x4−Pr)









and ∆x =









0
∆1
0
0









. With the dynamics as given in Eqn.(12), a

set of filters need to be designed to create a static equation for
the prediction error based on the model of the system. For this
purpose, consider the following filters:

Ω̇T = AΩT +Θ(x,u) (13)
Ω̇0 = A(Ω0 + x)− f0 (14)

where A is any exponentially stable matrix, ΩT ∈R4×6 and Ω0 ∈
R4. Now define

z = x+Ω0 (15)

which is calculable. By substituting equations (12) and (14) into
the derivative of (15),

ż = Az+Θ(x,u)θ+∆x (16)

Let ε = x+Ω0−ΩT θ, then z can be written as z = ΩT θ+ε where
ε is governed by

ε̇ = Aε+∆x (17)

which has stable dynamics with bounded model uncertainties.
Now, define the estimate of the z as

ẑ = ΩT θ̂ (18)

and defining the prediction error as e = ẑ− z, the prediction error
model for the estimation of the parameters is given as:

e = ΩT θ̃− ε (19)

which is linearly parameterized in terms of the parameter estima-
tion error θ̃ with an additional term that exponentially converges
Copyright c© 2004 by ASME



to zero in the absence of modelling errors (i.e., ∆x = 0). Using
this model, various standard estimation algorithms can be used
to estimate θ. In this paper, the least squares algorithm is used
to estimate the unknown parameter vector, θ only when certain
persistence of excitation conditions are satisfied by the regressor
vector.

3.3.1 Bounds on Parameter Estimates The model
uncertainties represented by ∆x in the model used for parame-
ter estimation lead to estimation errors which might trigger false
alarms. In order to reduce these alarms, the parameters are esti-
mated only when certain persistence of excitation conditions are
satisfied. This enables us to compute bounds on the parameter
estimates.

The model used for the estimation of the unknown parameter
vector θ can be written is:

z = ΩT θ+ ε (20)

where ε is the unknown noise because of the model uncertainties
and/or disturbances. This can be written in scalar discrete time
as:

zi = φT
i θ+ εi, i = 1,2, . . . ,N (21)

where zi ∈R is the computed at time instant i, and φT
i ∈R6 is the

measurable regressor vector. Then, by estimating the parameters
only when the regressor satisfies certain persistence of excitation
condition, i.e., ΣN

i=1φiφT
i ≥ αI, we can compute bounds on the

parameter estimation error based on the bounds on the model un-
certainties. Based on the work on bounded parameter estimation
in [23, 24]:

Theorem 1. If θ̂LS is the least squares estimate of the unknown
parameter vector computed based on the model in Eqn. (21)
then,

sup
θ ∈Θ,υi

‖θ̂LS−θ‖2 ≤ γ (22)

for some γ > 0 if and only if

λmin[
1
N

ΣN
i=1φiφT

i ]≥ 1
γ

ΣN
i=1ε2

i (23)

Consider for example, that the noise εi in the model is
mainly due to model uncertainties and is bounded by |εi| ≤ δ
6

for some δ > 0 and ∀i. Then, using Theorem 1,

sup
θ ∈Θ,υi

‖θ̂LS−θ‖2 ≤ Nδ2

λmin(ΣN
i=1φiφT

i )
(24)

The right hand side of the above inequality 3.3.1 provides the
upper bound for the parameter estimation error.

3.4 Observer Design for State Reconstruction
The design of an adaptive robust observer is presented in

[21], where robust filter structures and on-line parameter adap-
tation are combined to reduce the sensitivity of the state estima-
tion error to unmodeled dynamics and parametric uncertainties.
In [20], the velocity of the hydraulic cylinder is estimated using
only pressure measurements. In this paper, each of the signals
P1, P2, and, ẋL is reconstructed using information from the other
three signals. Hence, information from xL, ẋL, and P1 are used
to estimate P̂2 and so on. Consider that η ∈ R be the state to be
reconstructed and x ∈ R3 be the vector of signals being used for
the reconstruction. Then the state estimation error for η is given
as [21]:

η̃ = f (θ̃,x,u,∆x) (25)

3.5 Residual Generation
For the ARO to act as a fault detection system, the following

conditions have to be satisfied [25]:

1. For all possible values of the modelling uncertainty, the ob-
server should be stable.

2. For known bounds on the modelling uncertainty, in the ab-
sence of faults, the state estimation error and the parameter
estimation error should be within a known predicted bound.

3. The effect of the initial estimation errors should be removed
from the residual signal as t → ∞.

4. When a fault occurs in the system, its effect should be re-
flected in the residual signal.

The following performance results are given in [20, 21]:

1. In the presence of uncertain nonlinearities, the signals from
the parameter estimator and the state estimator are bounded.
The state and parameter estimation errors are given by Eqns.
(25),(24). Hence, the system used for the fault detection
scheme is Input to State Practically Stable (ISpS).

2. In the presence of known bounded model uncertainty,
the bounds on the parameter estimation error is given by
Eqn(24). Using these bounds, we can also compute bounds
on the state estimation error for all possible values of un-
modeled dynamics.
Copyright c© 2004 by ASME



From the above performance results, we see that the condi-
tions required by the system to be a residual generator are satis-
fied.

4 Simulation and Experimental Results
4.1 Experiment Setup

The proposed fault detection algorithm based on the ARO
is implemented on the swing circuit of a three-link robotic arm
(a scaled down version of industrial backhoe loader arm) using
a DS1003 Controller board from dSPACE Inc. and a Pentium
IV 1.5 GHz computer. The detailed experimental set-up can be
found in [26]. The schematic of the swing circuit of the electro-
hydraulic robot arm is shown in Fig. 3.
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Figure 3. SWING CIRCUIT OF A HYDRAULIC ARM.

The physical parameters of the swing cylinder are A1 =
2.027× 10−3m2, A2 = 1.069× 10−3m2, vh1 = 4.995× 10−4m3

and vh2 = 9.068×10−4m3. The flow gain coefficients are kq1 =

3.59×10−8m3/
√

PasV and kq2 = 3.721×10−8m3/
√

PasV . The
swing inertia with just the arm is J0 = 78.69kg m2. The effective
bulk modulus of the system is βe = 2.71× 108Pa. The parame-
ters lime J0 and βe have been estimated from system identifica-
tion experiments on the actual experimental set-up.

4.2 Simulation Results
In order to demonstrate the effectiveness of the ARO based

fault detection scheme to the detection of faults like contam-
ination and fluid leakage, simulation results on the model of
the swing-arm of an electro-hydraulic robot arm are presented.
7

Since, simulating faults like contaminants is difficult in experi-
mental setups, simulations studies are presented in order to val-
idate the scheme. Even though model parameters like the effec-
tive bulk modulus or the leakage coefficients cannot be measured
directly, they can be estimated and tracked using available mea-
surements. Since during simulations, the actual failure is known,
simulation based studies help in the validation of failure detec-
tion scheme.

4.2.1 Detection of fluid contaminants Hydraulic
fluid is often times characterized by the stiffness of the ”oil
spring”, which refers to the fluid compressibility, combined with
the mechanical properties of the entire hydraulic system. This
can be easily interpreted in terms of the effective bulk modulus
(βe) of the fluid. The word effective indicates that this value re-
flects not only the compressibility of the fluid but also expansion
of the hydraulic cylinder, hoses etc. Since, the properties of the
mechanical components of the hydraulic system and the type of
the fluid stay virtually similar, the effective bulk modulus value
serves as a good indicator of fluid contaminants. For instance,
the bulk modulus of air is very small compared with that of the
hydraulic fluid, therefore, with even small amounts of entrapped
air, there is a significant reduction of the effective bulk modulus.
Similarly, since the bulk modulus of water is higher than that of
the fluid, water contamination results in an increase in the value
of the effective bulk modulus. Hence, in order to detect the pres-
ence of contaminants early enough to warrant preventive main-
tenance, the value of the effective bulk modulus is updated when
the regressor signal is rich enough to detect the presence of con-
taminants. Simulation studies are presented which show that the
use of parameter estimation with persistence of excitation condi-
tion check would increase the robustness of the detection scheme
to unmodeled dynamics. In Fig. 4, the estimate of the effective
bulk modulus is presented. In this simulation study, particle con-
taminants are slowly added to the hydraulic fluid leading to a
slow ramp-like increase in the value of the bulk modulus. As
can be seen from the simulation results, the parameter estimate
tracks the increase and finally a fault is detected when the value
of the bulk modulus increases beyond the threshold computed
using Eqn. (24).

4.2.2 Detection of fluid leakage In order to simu-
late the effect of internal leakage on the system, the system is
subjected to a fluid loss of 1×10−6 m3

s per Pascal of pressure at
the cylinder head. The model of the hydraulic system presented
in Eqn. (8) is used for the estimation of the coefficient of internal
leakage cil . An increase in the value of this coefficient is a good
indicator of the existence of internal fluid loss. In Fig. 5, the
estimate of cil is shown and a value greater than that the thresh-
old computed using Eqn. (24) would indicate the existence of
internal leakage.
Copyright c© 2004 by ASME
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TECT FLUID CONTAMINANTS.
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Figure 5. DETECTION OF INTERNAL LEAKAGE USING PARAMETER
ESTIMATION.

To detect the occurrence of external fluid flow the coeffi-
cients of external leakage like cel1 and cel2 are estimated using
the model in Eqn. (8). The estimates are then compared against
the threshold value computed using Eqn. (24) which would help
in the detection of external leakage. A simulation study was con-
ducted in which the swing arm of the hydraulic system was sub-
jected to an external fluid loss of approximately 1×10−6 m3

s at the
head-end and rod-end of the cylinder. In Fig. 6, the estimates of
cel1 and cel2 are shown which help us in detecting external fluid
8

leakage at the head-end and rod-end of the hydraulic cylinder.
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Figure 6. DETECTION OF EXTERNAL LEAKAGE USING PARAME-
TER ESTIMATION.

4.3 Experimental Results
In order to detect the lack of sufficient supply pressure, the

states like the velocity of the cylinder (ẋL) and the pressure at the
head-end and rod-end of the cylinder (p1,p2) are reconstructed
and the state estimation error is used as the residual signal. In
order to demonstrate the effectiveness of the state estimation
scheme to incipient failure, the supply pressure is ramped down
from normal operating supply pressure to 2% of the normal sup-
ply pressure. The profile of the supply pressure failure is shown
in Fig. 7.

The state estimation error of the three states is shown in Fig.
8. In the experiment, the supply pressure was ramped down after
10 seconds. As can be seen, the state estimation of both the ve-
locity and the rod-end pressure increase and the fault is detected
at the rod-end. The state estimation error of the head-end error
does not cross the threshold and cause an alarm. But, the lack
of sufficient supply pressure is detected early enough to cause
maintenance.

5 Conclusions
In this paper a fault detection scheme has been presented

based on the Adaptive Robust Observer (ARO). The design is
based on the actual nonlinear dynamics of the system to di-
rectly address the effect of typical nonlinearities of the hydraulic
Copyright c© 2004 by ASME
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Figure 8. DETECTION OF LACK OF SUFFICIENT SUPPLY PRES-
SURE USING STATE ESTIMATION.

system. Robust filter structures and on-line parameter adapta-
tion help in the reduction of the sensitivity of the fault detection
scheme to model uncertainties. The simulation and experimen-
tal results obtained on the swing circuit of a hydraulic arm are
presented to demonstrate the effectiveness of the proposed algo-
rithm in the detection of some common faults like lack of suffi-
cient supply pressure and change in hydraulic compliance of the
hydraulic fluid.
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