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Fault Detection of Broken Rotor Bars in Induction Motor using a

Global Fault Index

G. Didier∗, E. Ternisien†, O. Caspary∗, and H. Razik†

Abstract

Induction motors play a very important part in the safe and efficient running of any industrial plant.

Early detection of abnormalities in the motor would help to avoid costly breakdowns. Accordingly, this

work presents a technique for the diagnosis of broken rotor bars in induction motor. Stator voltage and

current in an induction motor were measured and employed for computation of the input power of one

stator phase. Waveforms of the instantaneous power and line current were subsequently analyzed using the

Bartlett periodogram. We evaluate different global fault indexes on the instantaneous power spectrum and

on the line current spectrum for the fault detection. Several rotor cage faults of increasing severity were

studied with various load effects. Experimental results prove the efficiency of the employed method.

keywords : Induction Motor, Diagnosis, Bartlett Periodogramm, Broken Bar, Global Modulation Index,
Global Fault Index.

1 Introduction

Induction motors, especially the asynchronous motors, play an important part in the field of electromechanical
energy conversion. It is well-known that interruptions of a manufacturing process due to a mechanical problem
induces a serious financial loss for the firm. We know a variety of faults which can occur in induction machines
[1] [2], such as rotor faults (broken bar or end ring) or rotor-stator eccentricity. In fact, if faults are undetected,
they may lead to potentially catastrophic failures. The consequences of a faulty rotor are excessive vibrations,
poor starting performances, torque fluctuation or higher thermal stress.

Various techniques have been proposed to detect a rotor fault. One of the well-known approaches for the
detection of broken rotor bars in an induction machine is based on the monitoring of the stator current to detect
sidebands around the supply frequency [3] - [8].

In this paper, we put forward a broken rotor bar fault detection using the power of the sidebands. The
broken bar detection can be connected to the analysis of all fault components present in the line current or
the instantaneous power. We estimate different global fault indexes corresponding to the contribution of all
detected sidebands. We apply a non-parametric power spectrum estimation, called averaging periodograms or
Bartlett method, in order to detect more precisely the frequency and the magnitude of each sideband created by
the rotor fault. This method is applied on the instantaneous power of one stator phase and on its line current
when the motor is connected directly to the supply voltage.

Scientists have already used the instantaneous power spectral analysis for the diagnosis of broken rotor bar.
For example, in 1999, Cruz calculated the ratio of the magnitude of the characteristic component 2sfs and the
DC (Direct Current) level of the power. He showed that this severity factor is independent of motor rating and
motor-load inertia [9]. In 1996 and 2000, Legowski et al. [10] Trzynadlowski and Ritchie [11] compared the
partial and total instantaneous power to the line current and concluded that the latter yields inferior results to
the first for broken rotor bars detection and mechanical abnormalities in induction motor.

The advantages of the use of the instantaneous power spectrum are given as follows:

• presence of additional components in low frequencies;

• first low frequency component is positioned directly at the speed oscillation frequency;
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• easier filtering of the DC component in the power spectrum than to remove the 50 Hz fundamental
component in the current spectrum without affecting the components at (1± 2s)fs in case of a very little
slip (s represents the slip of the machine and fs the supply frequency).

The method exposed in this paper, in comparison to the works quoted previously, uses all components
created by the rotor fault in the instantaneous power spectrum for the final diagnosis. We show that additional
information carried by the instantaneous power in low frequency improves the diagnosis of broken rotor bars.
In fact, such an instantaneous power method can be interpreted as a modulation operation in the time domain
that translates the spectral components specific to the broken rotor bar to a [0-50] Hz frequency well-bounded
[12] [13]. We show that the diagnosis of a partially broken rotor bar (≃ half broken bar) can be carried out
even if the motor operates under low load.

2 The instantaneous power signature

First of all, we consider an ideal three phase supply voltage. The instantaneous power ps(t) of one phase is
classically given by:

ps(t) = vs(t)is(t) (1)

where vs(t) is the instantaneous line voltage and is(t) stands as its line current. If those two conditions are
respected, the supply voltage is sinusoidal and the speed is constant (no ripple). The instantaneous power can
be written as follows:

vs(t) =
√

2Vs cos(ωt) (2)

is0(t) =
√

2Is cos(ωt − ϕ) (3)

ps0(t) = VsIs[cos(2ωt − ϕ) + cos ϕ] (4)

where ϕ is the phase angle between the voltage and the current line. The power spectrum of the current
has only one fundamental component at the frequency fs = ω/(2π), while the instantaneous power spectrum
has a DC component and its fundamental component at the frequency 2fs = (2ω)/(2π).

When a bar breaks, a rotor asymmetry occurs. The result is the appearance of a backward rotating field at
the slip frequency gfs with respect to the forward rotating rotor. It induces in the stator current an additional
frequency at fbbls

= (1 − 2s)fs. This cyclic current variation implies a speed oscillation and a torque pulsation
at the twice slip frequency (2sfs). This speed oscillation induces, in the stator winding, an upper component at
fbbhs

= (1+2s)fs. Briefly, broken rotor bars induce in the stator winding additional components at frequencies
given by:

fbbs
= (1 ± 2ks)fs (5)

where k = 1, 2, 3, ....
Therefore, the current is modulated and can be written as follows [13]:

is(t) = is0(t)[1 +
∑

h

Mch
cos(hωf t)] (6)

is(t) = is0(t) +
∑

h

√
2Mch

Is

2
[cos((ω − hωf )t − ϕ)

+ cos((ω + hωf )t − ϕ)] (7)

where Mch denotes the modulation depth (modulation index) and h = 1, 2, 3, ....
The last expression considers that the magnitude of the left and the right components are identical for the

same index h. If we take a look at Fig. 1(a) and 1(b) which represents the line current spectrum with a healthy
rotor and one broken bar, we can see that components at fbbs

= (1−2ks)fs do not have the same magnitude as
components at fbbs

= (1+2ks)fs for the same index h (influence of the load inertia). Consequently, we have to
separate the magnitude of the left and the right components in expression (7) by introducing a index for each
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Figure 1: Current spectrum for a healthy rotor (a) and one broken rotor bar (b).

component (this index is called magnitude index to make a distinction with the modulation index presents in
(6)). The new expression of the modulated current is given by:

is(t) = is0(t) +
∑

k

√
2Mck

Is

2
cos((ω − kωf )t − ϕ)

+
∑

k

√
2M

′

ck
Is

2
cos((ω + kωf )t − ϕ) (8)

where Mck
denotes the magnitude index for left components, M

′

ck
denotes the magnitude index for right

components and ff =
wf

2π
= 2sfs acts as the modulation frequency. If we develop the cosinus terms, we can put

this last expression in the form:

is(t) = is0(t) +
∑

k

√
2Is

2
(Mck

+ M
′

ck
) cos(kωf t)

(cos ϕ cos(ωt) + sinϕ sin(ωt))

+
∑

k

√
2Is

2
(Mck

− M
′

ck
) sin(kωf t)

(cos ϕ sin(ωt) − sin ϕ cos(ωt)) (9)

This expression allows us to find a similarity with (6) given previously. We can see in (9) that, if we consider
only the study of the magnitude, we define two new indexes:

Mcmk
=

(Mck
+ M

′

ck
)

2
(10)

Mcok
=

(Mck
− M

′

ck
)

2
(11)

The first corresponds to the modulation index usually used in the signal theory, and the second will be called
in this paper oscillation index. Fig. 2(a) and Fig. 2(b) show us a theoretical spectrum to explain the origin of
the different indexes used in (8) and (9).

The mathematical expression for the modulated instantaneous power of one phase is obtained by multiplying
(2) by (8) and is written:
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Figure 2: Magnitude indexes of the left and right component (a), modulation index Mcmk
and oscillation index

Mcok
(b)

ps(t) = ps0(t) +
∑

k

Mpk
VsIs

2
cos((2ω − kωf )t − ϕ)

+
∑

k

M
′

pk
VsIs

2
cos((2ω + kωf )t − ϕ)

+
∑

k

VsIs

2
[Mpk

+ M
′

pk
] cos ϕ cos(kwf t)

+
∑

k

VsIs

2
[M

′

pk
− Mpk

] sin ϕ sin(kwf t) (12)

In addition to the fundamental frequency and sideband components at f = (2ω ± ωf )/(2π) for the case of
k = 1, we have a spectral peak at the modulation frequency ff = ωf/(2π) in the instantaneous power spectrum.
The latter, referred to the characteristic component, provides an additional indication of diagnosis information
about the state of the motor. Its amplitude depends on phase angle ϕ and on indexes Mp1

and M
′

p1
. In

our case, this component is used for the calculation of the 2sfs frequency. This value could be used for the
induction machine speed estimation. If we rewrite (12) in the same form as (9), we obtain for the expression
of the modulation index Mpmk

and for the oscillation index Mpok
of the instantaneous power, the following

expressions:

Mpmk
=

(Mpk
+ M

′

pk
)

2
(13)

Mpok
=

(Mpk
− M

′

pk
)

2
(14)

The value of magnitude indexes Mck
, M

′

ck
, Mpk

and M
′

pk
depends on the severity of the abnormality. In fact,

these indexes will increase when a broken bar appears because magnitudes of the different components created
by the rotor fault will increase. We could use this information for the broken rotor bars diagnosis of induction
motor.

3 Broken bar detection based on the global fault index

In the case of a healthy motor, the equation of the instantaneous power contains an amplitude modulation
with one modulation signal around the carrier frequency at 100 Hz. In fact, this modulation signal is created
by a natural rotor asymmetry (eccentricity created by the load for example). If a broken rotor bar occurs,
this asymmetry increases and several sidebands appear at the modulation frequency 2ksfs. According to the
amplitude modulation theory, if several sinusoidal signals modulate the same carrier wave, the power of this wave
does not change while the modulating signals increase the power contained in sidebands. Since the modulation
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index is proportional to the amplitude of the modulating signal, different modulation indexes correspond to
different modulating signals. The global modulation index Mgmx

is defined as that the power of sidebands
equals the sum of powers of each sideband:

M2
gmx

Pc

2
=

∑

k

M2
xmk

Pc

2
(15)

where the spectral power Pc of the carrier frequency is Pc = (VsIs)
2

with the signal ps(t). The subscript letter x,
in the latter expression, can be replaced by p (instantaneous power) or c (line current). For the global oscillation
index Mgox

, we have:
M2

gox
Pc

2
=

∑

k

M2
xok

Pc

2
(16)

If we have a look at (8) and (12), we propose to calculate a new index that we call global fault index Mtx

with the expression:
M2

tx
Pc

2
=

∑

k

M2
xk

Pc

2
+

∑

k

M
′2
xk

Pc

2
(17)

This expression was chosen so as to find a similarity with the signal theory. The expression of Mtx
, by supposing

Kl the number of components at the left of the supply frequency and Kr the number of components at the
right, becomes:

M2
tx

=

Kl
∑

k=1

M2
xk

+

Kr
∑

k=1

M
′2
xk

(18)

Moreover, for each modulation frequency (2fs ± 2ksfs) for the instantaneous power spectrum and (fs ± 2ksfs)
for the line current spectrum, we can deduce its magnitude index Mz by dividing its estimated amplitude
Asz

= MzAc/2 by the amplitude of the carrier frequency Ac = VsIs (z can be replaced by ck for the line current
and pk for the instantaneous power):

Asz

Ac

=
MzAc

2

1

Ac

=
Mz

2
(19)

Mz =
2Asz

Ac

The same method can be applied for the low frequency components of the instantaneous power. In fact, we
have seen previously that instantaneous power spectrum contains additional components in low frequency. We
can use the magnitude of these components to determine their global fault index. With (12), we can give the
mathematical relation of the low frequency components magnitude for a specific value of k:

Apk
=

∑

k

VsIs

2

√

M2
pk

+ M ′2
pk

+ 2Mpk
M ′

pk
cos(2ϕ) (20)

where Apk denotes the magnitude of the low frequency component k presents in the instantaneous power
spectrum. With the latter expression, we can deduce a new fault index Mlfk

specific to those components:

Mlfk
=

√

M2
pk

+ M ′2
pk

+ 2Mpk
M ′

pk
cos(2ϕ) (21)

and consequently, we can deduce the global fault index for the low frequency components with the expression:

M2
tlf

=

Kpn
∑

k=1

M2
lfk

(22)

where Kpn represents the number of components detected in the low frequency band.
Thus, the broken bar detection can be connected to the analysis of the global modulation index Mgmx

, the
global oscillation index Mgox

, the global fault index Mtx
and the low frequency global fault index Mtlf

. If a fault
appears in the rotor cage, we will have an increase of those global indexes and consequently, a good indication
for the diagnosis of the motor. To evaluate those global indexes, we must find the frequency and amplitude of
each sideband to estimate the magnitude indexes Mxk

, M
′

xk
and Mlfk

.
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(a) (b)

Figure 3: Test-bed (a) and position of the broken rotor bar (b).
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Figure 4: Classic periodogram (a) and Bartlett periodogram (b) of ps(t) for the healthy rotor.

To reduce the variance in the spectrum and to improve the evaluation of the components magnitude, we
apply a non-parametric power spectrum estimation, called averaging periodograms or Bartlett method, instead
of the classic periodogram [15]. Indeed, when the record length N increases, the frequency resolution of the
periodogram is better but its variance is not reduced. The definition of the periodogram is:

P̂ps
(f) =

1

N

∣

∣

∣

∣

∣

N−1
∑

m=0

ω(m)ps(m)e−j2πfm

∣

∣

∣

∣

∣

2

(23)

and it can be calculated from a Discrete Fourier Transform (DFT) or a Fast Fourier Transform (FFT). We
can use a window ω(m) if necessary to form the modified periodogram. For the Bartlett periodogram, the
data sequence of N samples is divided into L non-overlapping segments of D samples such as D.L < N . The
modified periodograms of each segment are averaged in order to reduce the variance of the Bartlett periodogram
as follows [16]:

P̂B
ps

(f) =
1

L

L−1
∑

i=0

P̂ (i)
ps

(f) (24)

where P̂
(i)
ps (f) is the modified periodogram of the ith segment of the signal ps(m). Overlapped segments can be

used to form the Welch periodogram but it is not necessary in our case because of the high number of samples.
Nevertheless, the Bartlett periodogram is only fitted for the use with an operation at steady state as it is

the case in this study.

4 Experimental results

The test-bed used in the experimental investigation is composed of a three-phase induction motor, 50 Hz, 2
poles, 3kW (Fig. 3(a)). In order to test the effectiveness of the suggested method, we have several identical
rotors with 28 bars which can be exchanged without affecting the electrical and magnetic features. The position
of the broken bar is given on Fig. 3(b). The voltage and the line current measurements were made at the
nominal rate. For those two variables, the sampling frequency was 2 kHz and each data length was equal to 218

values.
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Table 1: CALCULATION OF DIFFERENT GLOBAL INDEXES

Motor 2sfs Speed Kpn Mtlf
Mtp

Mtc
Mgmp

Mgop
Mgmc

Mgoc

frequency (r/min)

H-L100 6.53 2804 2 0.0020 0.0028 0.0021 0.0015 0.0012 0.0012 0.0009
05b-L100 5.98 2820 3 0.0063 0.0060 0.0058 0.0037 0.0021 0.0033 0.0018
1b-L100 6.67 2799 3 0.0435 0.0454 0.0408 0.0260 0.0189 0.0237 0.0164

H-L75 4.94 2851 3 0.0024 0.0036 0.0024 0.0021 0.0015 0.0014 0.0008
05b-L75 4.27 2871 3 0.0057 0.0064 0.0051 0.0040 0.0021 0.0032 0.0015
1b-L75 4.64 2860 4 0.0408 0.0470 0.0442 0.0288 0.0165 0.0274 0.0151

H-L50 3.17 2904 2 0.0017 0.0023 0.0018 0.0015 0.0007 0.0012 0.0004
05b-L50 2.87 2913 3 0.0040 0.0057 0.0038 0.0037 0.0017 0.0026 0.0007
1b-L50 2.99 2910 4 0.0279 0.0393 0.0350 0.0256 0.0109 0.0233 0.0083

H-L25 1.59 2952 2 0.0044 0.0100 0.0048 0.0059 0.0038 0.0030 0.0014
05b-L25 1.47 2956 2 0.0115 0.0214 0.0100 0.0120 0.0092 0.0061 0.0036
1b-L25 1.53 2954 3 0.0240 0.0358 0.0281 0.0246 0.0059 0.0198 0.0019

We can see in Fig. 4(a) and Fig. 4(b), which represent the power spectrum of the instantaneous power of
one phase for the healthy rotor (referred to the 100 Hz fundamental), that the noise level is reduced thanks to
the averaging by using the Bartlett periodogram (the data length D for the average is equal to 215 values). We
have shown in [17] that the use of a Hanning’s window for the calculation of the Bartlett periodogram (ω(m) in
(23)) improves the detection of the components magnitude for the evaluation of magnitude indexes Mck

, M
′

ck
,

Mpk
and M

′

pk
.

We keep a good estimation of the sidebands power translated from the 0 Hz by avoiding numerous maxima
peaks contained in each one because of a very slight frequency variation of the slip. Consequently, we can
consider the detection of maxima peaks in the spectrum. The first frequency that we want to detect is the 2sfs

frequency because it corresponds to the component with the highest power that is not disrupted by the supply
power when we remove the mean of the instantaneous power signal. Then, we search all maxima from this first
frequency that are at frequencies 2ksfs in the considered band [1−35] Hz with a greater accuracy (the tolerance
is below 1%) and above a threshold defined as the mean of this spectral band. This information gives us the
number of components Kpn and the magnitude of each one. With those magnitudes, we can calculate the global
modulation index Mlfk

specific to the low frequency components with (22). The value Kpn, multiplied by two,
gives us the total number of components that we must detect on both sides of the carrier frequency of ps(t)
and is(t). We calculate the frequencies 2(1± ks)fs in the instantaneous power spectrum and (1± 2ks)fs in the
current spectrum to evaluate their magnitudes. Then, we estimate the magnitude index of each modulation
frequency in the same way as (19). At the end, with (15), (16), (18) and (22), we can calculate the global
modulation index Mgmc

, the oscillation index Mgoc
and the global fault index Mtc

specific to the line current
spectrum and the global modulation index Mgmp

, the oscillation index Mgop
, the global fault index Mtp

and
the low frequency global fault index Mtlf

specific to the instantaneous power spectrum. We made a comparison
between those seven various indexes in the continuation of paper to find which is the most judicious to base the
diagnosis of broken rotor bars.

We studied the case of a partially broken rotor bar and one broken rotor bar with different load levels. Table
1 shows the results obtained by the proposed method. In this Table, we report the state of the motor (for
example we note H-L100 the case of a healthy rotor with 100% load and 05b-L25 the case of a partially broken
rotor bar with 25% load), the value of the 2sfs frequency, the speed of the motor, the peaks number Kpn found
in the band [1 - 35] Hz, the value of the three different global fault indexes, the value of the two different global
modulation indexes and finally the value of the two different global oscillation indexes.

Fig. 5(a) and 5(b) represent the line current and the instantaneous power spectra for a healthy rotor. We
can note that instantaneous power spectrum contains a modulation frequency at 2sfs (which is induced by a
natural eccentricity of the rotor) and a component at the frequency 2(1− s)fs. This component is also present
in the line current spectrum at the frequency (1− 2s)fs. The same phenomenon appears in Fig. 7(a) and 7(b)
for 25% load. This modulation frequency allows the calculus of global indexes in the case of a healthy rotor.
Those indexes will stand as a reference for the broken rotor bar diagnosis.
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Table 2: COMPARISON BETWEEN DIFFERENT GLOBAL FAULT INDEXES.

Motor Kpn Mtlf
αMtlf

Color Mtp
αMtp

Color Mtc
αMtc

Color

H-L100 2 0.0020 0.0040 G 0.0028 0.0056 G 0.0021 0.0042 G
05b-L100 3 0.0063 0.0040 R 0.0060 0.0056 R 0.0058 0.0042 R
1b-L100 3 0.0435 0.0040 R 0.0454 0.0056 R 0.0408 0.0042 R

H-L75 3 0.0024 0.0048 G 0.0036 0.0072 G 0.0024 0.0048 G
05b-L75 3 0.0057 0.0048 O 0.0064 0.0072 G 0.0051 0.0048 O
1b-L75 4 0.0408 0.0048 R 0.0470 0.0072 R 0.0442 0.0048 R

H-L50 2 0.0017 0.0034 G 0.0023 0.0046 G 0.0018 0.0036 G
05b-L50 3 0.0040 0.0034 R 0.0057 0.0046 R 0.0038 0.0036 R
1b-L50 4 0.0279 0.0034 R 0.0393 0.0046 R 0.0350 0.0036 R

H-L25 2 0.0044 0.0088 G 0.0100 0.0200 G 0.0048 0.0096 G
05b-L25 2 0.0115 0.0088 O 0.0214 0.0200 O 0.0100 0.0096 O
1b-L25 3 0.0240 0.0088 R 0.0358 0.0200 R 0.0281 0.0096 R

Table 3: COMPARISON BETWEEN DIFFERENT GLOBAL MODULATION INDEXES AND GLOBAL
OSCILLATION INDEXES.

Motor Kpn Mgmp
αMgmp

C Mgop
αMgop

C Mgmc
αMgmc

C Mgoc
αMgoc

C

H-L100 2 0.0015 0.0030 G 0.0012 0.0024 G 0.0012 0.0024 G 0.0009 0.0018 G
05b-L100 3 0.0037 0.0030 R 0.0021 0.0024 G 0.0033 0.0024 R 0.0018 0.0018 R
1b-L100 3 0.0260 0.0030 R 0.0189 0.0024 R 0.0237 0.0024 R 0.0164 0.0018 R

H-L75 3 0.0021 0.0042 G 0.0015 0.0030 G 0.0014 0.0028 G 0.0008 0.0016 G
05b-L75 3 0.0040 0.0042 G 0.0021 0.0030 G 0.0032 0.0028 O 0.0015 0.0016 G

1b-L75 4 0.0288 0.0042 R 0.0165 0.0030 R 0.0274 0.0028 R 0.0151 0.0016 R

H-L50 2 0.0015 0.0030 G 0.0007 0.0014 G 0.0012 0.0024 G 0.0004 0.0008 G
05b-L50 3 0.0037 0.0030 R 0.0017 0.0014 R 0.0026 0.0024 R 0.0007 0.0008 G

1b-L50 4 0.0256 0.0030 R 0.0109 0.0014 R 0.0233 0.0024 R 0.0083 0.0008 R

H-L25 2 0.0059 0.0118 G 0.0038 0.0076 G 0.0030 0.0060 G 0.0014 0.0028 G
05b-L25 2 0.0120 0.0118 O 0.0092 0.0076 O 0.0061 0.0060 O 0.0036 0.0028 O
1b-L25 3 0.0246 0.0118 R 0.0059 0.0076 G 0.0198 0.0060 R 0.0019 0.0028 G

Table 4: INCREASE OF GLOBAL FAULT INDEXES Mtlf
, Mtc

AND Mgmc
.

Motor Mtlf
Mtc

Mgmc

05b-L100 215 % 176 % 175 %
1b-L100 2075 % 1842 % 1875 %

05b-L75 137 % 112 % 128 %
1b-L75 1600 % 1741 % 1857 %

05b-L50 135 % 111 % 116 %
1b-L50 1541 % 1844 % 1841 %

05b-L25 161 % 108 % 103 %
1b-L25 445 % 485 % 560 %
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We can see in Fig. 6(a) and 6(b) for 100% load and Fig. 8(a) and 8(b) for 25% load that when a rotor fault
appears, the components created by the asymmetry increase in magnitude in the line current and instantaneous
power spectra. We see in Table 1 that, in the case of one broken rotor bar, global fault indexes, global modulation
indexes and global oscillation indexes increase in a very significant way. For a partially broken rotor bar, these
indexes increase but with a less significant value than for the test with one broken rotor bar. Moreover, Table 1
shows us that the number of peaks Kpn detected in the low frequency band of the instantaneous power spectrum
also increases with the rotor fault.

Consequently, for the broken rotor bar diagnosis, we established a criterion which takes into account global
indexes (modulation, oscillation and fault) and peaks number Kpn. This criterion is given at Table 5. Index

Table 5: CRITERION USED FOR THE FAULT DETECTION.

Test Result
if (MXMeasured

< αMXHealthy
) No fault (Green color)

if (MXMeasured
≥ αMXHealthy

) & (KpnMeasured
= KpnHealthy

) Incipient rotor fault (Orange color)
if (MXMeasured

≥ αMXHealthy
) & (KpnMeasured

> KpnHealthy
) Rotor Fault (Red color)

MX represents one of the seven global indexes (Mgmp
, Mgop

, Mgmc
, Mgoc

, Mtlf
, Mtp

or Mtc
). The term α is

called index of sensitivity and takes value 2 in this case (α = 2).
Table 2 gives us the results of the criterion explained previously applied to the three global fault indexes.

The last column is composed of colors as Green, Orange and Red as preciously mentioned. With the use of
the global fault index Mtp

, the criterion does not detect the incipient rotor fault (partially broken rotor bar)
with 75% load. With global fault indexes Mtlf

and Mtc
, the detection of rotor faults is possible in all cases.

If we have a look at Table 3 which gives the results of the criterion applied to global modulation indexes and
to global oscillation indexes, we can deduce that only the global modulation Mgmc

allows the detection of all
faults. Global index Mgmp

does not detect a partially broken rotor bar with 75% load. In the case of global
index Mgop

, it is a partially broken rotor bar with 75% and 100% load and one broken rotor bar with 25% load
which are not detected. Moreover, if we refer to global oscillation index Mgoc

, it is a partially broken rotor bar
with 50% and 75% load and one broken rotor bar with 25% load which are not detected.

According to the latter notes, only the low frequency global fault index of the instantaneous power Mtlf
,

the global fault index Mtc
and the global modulation index Mgmc

of the line current allow the detection of all
faults. Table 4 shows the increase of those three global fault indexes for each defect. We can deduce that the
global fault index specific to the low frequency of the instantaneous power spectrum Mtlf

allows a detection
of the partially broken rotor bar faster than global fault indexes of the line current Mtc

and Mgmc
because it

increases more significantly.
Consequently, we advocate the use of the global fault index Mtlf

specific to the low frequency components
of the instantaneous power of one stator phase for the broken rotor bar diagnosis in induction motor. Besides,
with the exposed method, an incipient rotor fault generated by a partially broken rotor bar in the rotor cage
with 25% load has been detected. With a load inferior to 25%, the broken rotor bar detection remains difficult
with this method because the instantaneous power of the motor is absorbed by the stator (stator ohmic losses
and stator core losses). The power transmitted to the rotor is very low. However, if we consider the fact that
in industrial applications, the motors operate with a load level higher than 50%, the presented method exposed
gives very good information about the state of the rotor cage.

If we make a comparison to other techniques such as pattern recognition [18] or neural networks ones, this
approach presents some advantages. First, our method does not need a training to create a classifier (only a few
tests with a healthy rotor at a specific load are needed). Consequently, it is not necessary to make a lot of tests
to obtain training samples. Moreover, the method allows the detection of an incipient rotor fault (0.5/28 bars).
This point may be difficult since the two classes (healthy and half broken bar) are very close to each other, and
decision is difficult to take. Finally, if we consider the case of a DSP implementation, the computational time
is faster (only a FFT calculus and a few operations).

5 Conclusion

In this paper, a novel approach of diagnosis on induction motor has been put forward and tested. The diagnosis
based on the global fault index method applied to the instantaneous power signal and line current signal provides
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relevant results for the detection of broken rotor bars. A comparison between those two signals allowed to show
that the detection of a partially broken rotor bar is faster if we use the low frequency global fault index of
the instantaneous power. We have demonstrated that a half broken bar with 25% load can be detected using
the criterion which has been developed previously. The experimental results showed up the effectiveness of the
technique, even if the motor operates under a low load.

We can note that this method can be used for the detection of mechanical faults (for example, pulsation
torque at the twice slip frequency). In this case, the components present around the supply frequency of the
line current and instantaneous power have the same frequencies than the components created by a broken rotor
bar fault. In addition to components present around the supply frequency, it is well known that rotor cage fault
creates additional components at frequencies (k

p
(1 − s) ± s)fs, where k

p
denotes the space harmonic number (3,

5, 7, . . .) [19]. The evaluation of a new global fault index, specific to the components present near to space
harmonics could be done. In fact, we know that when a mechanical fault appears, contrary to a rotor fault,
those components are not disrupted. Indeed, a broken rotor bar induces a modification of the rotor induction
(fundamental and space harmonics) what results in an increase of components harmonics amplitude in the line
current spectrum. This phenomenon does not appear in the case for a load torque variation. With this study,
we could differentiate a mechanical fault from a rotor fault with a good accuracy [20].

The method can also be extended to the detection of eccentricity faults. A new fault index, specific to static
and/or dynamic eccentricities can be created by monitoring components situated at frequencies [21]:

fsh =

[

(kR ± nd)
(1 − s)

p
± v

]

fs (25)

where k = 0, 1, 2, ...; R is the number of rotor slots; nd is know as eccentricity order and v = ±1,±3, ... is the
order of stator time harmonics that are present in the power supply. If the index increases with regards to the
healthy rotor reference, an eccentricity fault is detected.

Finally, in order to make α independent of machine parameters, additional tests with different motors will
be necessary.

6 Parameters of motor used in experiments

Number of poles 2
Rated power 3 kW
Rated voltage 230 Volts
Rated current 5.90 Amp
Rated frequency 50 Hz
Rated speed 2800 r/min
Number of stator slots 36
Number of rotor bars 28
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(a) (b)

Figure 5: Bartlett periodogram of instantaneous power (a), and line current (b) for a healthy rotor (100% load).

(a) (b)

Figure 6: Bartlett periodogram of instantaneous power (a), and line current (b) for a partially broken bar (100%
load).

(a) (b)

Figure 7: Bartlett periodogram of instantaneous power (a), and line current (b) for a healthy rotor (25% load).

(a) (b)

Figure 8: Bartlett periodogram of instantaneous power (a), and line current (b) for a partially broken bar (25%
load).
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