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(e key to fault diagnosis of rotating machinery is to extract fault features effectively and select the appropriate classification
algorithm. As a common signal decomposition method, the effect of wavelet packet decomposition (WPD) largely depends on the
applicability of the wavelet basis function (WBF). In this paper, a novel fault diagnosis approach for rotating machinery based on
feature importance ranking and selection is proposed. Firstly, a two-step principle is proposed to select the most suitable WBF for
the vibration signal, based on which an optimized WPD (OWPD) method is proposed to decompose the vibration signal and
extract the fault information in the frequency domain. Secondly, FE is utilized to extract fault features of the decomposed
subsignals of OWPD. (irdly, the categorical boosting (CatBoost) algorithm is introduced to rank the fault features by a certain
strategy, and the optimal feature set is further utilized to identify and diagnose the fault types. A hybrid dataset of bearing and
rotor faults and an actual dataset of the one-stage reduction gearbox are utilized for experimental verification. Experimental
results indicate that the proposed approach can achieve higher fault diagnosis accuracy using fewer features under complex
working conditions.

1. Introduction

At present, the components of industrial rotating machinery
equipment are becoming increasingly complex and com-
pact. As a key component of the transmission system, ro-
tating machinery is an important part of modern industrial
machinery equipment, including motors, engines, bearings,
and gearboxes [1–3]. When rotating machinery is operating
under harsh or complex conditions, its key components are
extremely prone to failure, which may cause the shutdown of
the entire mechanical equipment, and even endanger the
safety of surrounding operators [4, 5]. (erefore, it is sig-
nificant to construct a fault diagnosis scheme for rotating
machinery under complex conditions to accurately detect
and diagnose its health or fault state.

Fault diagnosis based on vibration signal analysis is the
main research hotspot at present, among which the most
critical step is feature extraction [6, 7]. Based on vibration
signal analysis, the existing methods mainly extract fault
features from the time domain, frequency domain, and time-
frequency domain [8, 9]. Time-domain features contain root
mean square, mean, standard deviation, kurtosis, etc., which
may be valid only for certain fault types [10, 11]. (e fre-
quency-domain analysis is mostly based on the Fourier
transform (FT) [12]. However, these methods are limited by
prior knowledge and experience in practical applications due
to the nonlinearity and nonstationarity of the original vi-
bration signal, which makes it difficult for them to effectively
mine the fault information hidden in the vibration signal
[11, 13].
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As a measure of time-domain uncertainty, entropy-
based analysis methods have attracted extensive attention of
scholars, which have been widely used in image processing,
biological analysis, and other fields [14]. (ese entropies
mainly include sample entropy (SE) [15], approximate en-
tropy (AE) [16], permutation entropy (PE) [17], fuzzy en-
tropy (FE) [18], and symbolic dynamic entropy (SDE) [19].
FE uses a Gaussian function to replace the Heaviside
function in SE to measure the similarity between two vec-
tors. In recent studies, these entropies are usually combined
with some other processing strategies, e.g., multiscale and
improved multiscale techniques, and some signal decom-
position methods in the time-frequency domain [19–21].
However, the multiscale analysis may result in the absence of
part of the frequency band components, which may lead to
the loss of some fault information. In addition, traditional
signal decomposition methods also have some disadvantages
that cannot be ignored.

Research studies based on time-frequency domain analysis
have been done for a long time. For example, empirical mode
decomposition (EMD) and local mean decomposition (LMD)
both are self-adaptive time-frequency decomposition methods
[22, 23]. LMD is improved on the basis of EMD to better
maintain the local characteristics of the original signal [24].
Variational mode decomposition (VMD) proposed by Drag-
omiretskiy et al. is a self-adaptive decomposition method that
aims to overcome the shortcomings of undershoot, overshoot,
mode mixing in EMD [25–27]. However, there are still some
defects in VMD, e.g., the massive consumption of computing
resources [27, 28]. In addition, these methods are all based on
“mode,” and some frequency information will be lost, which
means that they do not apply to frequency analysis.

Compared with the above methods, the decomposi-
tion strategy of wavelet packet decomposition (WPD) is to
pass the signal through a series of filters with different
central frequencies but the same bandwidth. (erefore,
the signal analysis performed by WPD is more refined,
especially for the high-frequency components [29]. In
[30], an automatic method combining WPD and EMD
was proposed to detect the weak defects of rolling bear-
ings. In [31], WPD was combined with PE to extract fault
features of rolling bearings. However, how to select the
optimal wavelet basis function (WBF) has not been
analysed and discussed in these references. (e WBF is a
group of functions obtained from the expansion and
translation, including db wavelets, sym wavelets, and
mexh wavelets [32]. Different WBFs are applicable to
different analysis objects, and improper selection may
affect the accuracy of fault pattern recognition [32, 33]. In
this paper, a two-step principle is proposed to select the
most suitable WBF for the fault vibration signal. (en, the
optimized WPD (OWPD) method is proposed and ap-
plied to decompose the vibration signal to obtain its
frequency component. In view of the advantage that
entropy measure can effectively extract dynamic infor-
mation of time series, FE is used to extract hidden fault
features from decomposed subsignals. Meanwhile, it also
has the advantage of being insensitive to background
noise and good robustness [18, 20]. (erefore, a novel

fault feature exaction method combining OWPD and FE
is further proposed in this paper.

After feature extraction utilizing OWPD and FE, a
classification algorithm with good performance and com-
putational efficiency is needed to give final diagnosis results.
In addition, screening redundant features before fault
classification can effectively reduce feature dimension and
computational burden and further improve classification
accuracy [34]. Traditional classification algorithms include
support vector machine (SVM) [35], K-nearest neighbor
(KNN) [36], artificial neural networks (ANNs) [37], and
random forest (RF) [38]. Deep learning (DL) algorithms
include convolutional neural network (CNN) [39],
autoencoders (AEs) [40], and deep belief network (DBN)
[11, 41]. However, these classification algorithms still have
some inevitable shortcomings. For example, SVM is not
effective for large-scale training samples and sensitive to the
selection of parameters and kernel function. RF is easy to
overfit in noisy classification or regression problems. (e
structure and parameters of some DL algorithms, e.g., DBN,
are basically determined by human experience, which not
only affects the accuracy of diagnostic results but also causes
a large amount of computing costs [11, 42]. CatBoost is a
new implementation of the gradient boosting decision tree
(GBDT) framework [43]. It has the advantages of high ef-
ficiency, few parameters, and strong generalization ability
and has excellent performance in many machine learning
tasks [43–45]. In addition, as an algorithm based on the
decision tree, it can obtain the importance of each feature
according to the tree model after gradient boosting, and then
the valuable features can be effectively selected for model
training. (erefore, it is introduced for feature selection to
form a feature set that contains the main fault information.
To the best of authors’ knowledge, CatBoost algorithm is
rarely studied in the field of fault diagnosis of rotating
machinery. In this paper, it is introduced not only for fault
pattern recognition but also for selecting the optimal
features.

Finally, the optimization of hyperparameters is also an
urgent problem to be solved in the use of the CatBoost
algorithm, which usually has a great impact on the per-
formance of the model. (e optimization of hyper-
parameters is to find an acceptable solution for the
optimization goal as effectively as possible [46]. Due to the
large amount of data and large solution space, the appli-
cation of traditional solution methods, e.g., grid search and
greedy algorithm, has been limited, while intelligent algo-
rithms such as differential evolution have been widely used
due to their fast computing efficiency and the ability to
obtain global optimal solution [46, 47]. In this paper,
Bayesian optimization (BO) algorithm [48] is considered to
solve this problem to find the optimal hyperparameters of
the CatBoost classifier. It can obtain the global optimal
solution through Gaussian process, which has the advan-
tages of high search efficiency and less iteration times, and
can be used for the optimization of any black-box function.

Based on the above analysis, aiming to solve the defect
that traditional feature extraction methods cannot fully
explore the deep-level fault features and to improve the
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performance of fault pattern recognition, a novel fault di-
agnosis approach based on feature importance ranking and
selection is proposed. In summary, the advantages of WPD
in signal decomposition, FE in feature extraction, and
CatBoost in fault pattern recognition are fully exploited in
the proposed approach. (e main contributions can be
summarized as follows:

(1) A two-step principle is proposed to select the optimal
WBF adaptively according to the characteristics of
the mechanical vibration signal.

(2) A fault feature extraction method combining OWPD
and FE is proposed, where OWPD is utilized to
decompose the vibration signal, and FE is further
adopted to form the fault feature set.

(3) CatBoost algorithm is introduced not only for fault
pattern recognition but also for feature selection to
filter redundant features, which helps to reduce
model training time and improve the classification
accuracy.

(4) BO algorithm is adopted to solve the optimization
problem of hyperparameters in CatBoost. On this
basis, the BO-CatBoost algorithm is established and
applied to the fault diagnosis of rotating machinery.

(e remainder of this paper is organized as follows.
Section 2 introduces the theoretical knowledge and methods
of the proposed approach. (e diagnosis process and the
preliminary validation of the proposed fault diagnosis ap-
proach with a mechanical fault simulation (MFS) platform
dataset are detailed in Section 3. Further experimental
verification using another actual dataset of the one-stage
reduction gearbox is shown in Section 4. Section 5 contains
the conclusions and future research studies.

2. Materials and Methods

2.1. Optimized Wavelet Packet Decomposition

2.1.1. Wavelet Packet Decomposition. Generally, FT has
been widely used in traditional vibration signal analysis [49].
However, only the frequency-domain information is
retained in FT, while the time-domain information is
completely lost, which makes it unsuitable for the analysis of
nonstationary time-varying signals. Wavelet transform
(WT) can provide information in both frequency and time
domains to overcome the deficiency of FT [50]. However,
only the low-frequency coefficients will be decomposed
again in the WT method, which will cause the problem of
missing high-frequency information. WPD was proposed to
address this deficiency, where the information in both low-
frequency band and high-frequency band is completely
preserved [51]. (e schematic diagram of a three-layer WPD
is shown in Figure 1, and the theory is described as follows.

Let j denote the decomposition layer, n denote the
frequency factor (n � 0, 1, 2, . . . , 2j − 1), and ψ(n) and ϕ(n)
represent the wavelet function and scale function, respec-
tively. Given φ0(n)� ϕ(n) and φ1(n)�ψ(n), the wavelet
packet φi(n) (i� 0, 1, 2, . . .) can be defined as

φ2i(n) �
�
2

√ ∑
k∈Z

hkφi(2n − k),

φ2i+1(n) �
�
2

√ ∑
k∈Z

gkφi(2n − k),

 (1)

where k is the shift factor, Z is the integer set, hk denotes the
low-pass filter, gk denotes the high-pass filter, and hk, gk is a
couple of quadruple mirror filters that satisfies gk � (−1)khk.

For a given time series x(n), let x
p
j (n)

(p � 0, 1, 2, . . . , 2j − 1) denote its subsignal, which can be
represented as a linear combination of the corresponding
wavelet function of the wavelet packet:

x
p
j (n) � ∑

k∈Z
d
p
j (k)φ2j−1+p

(2n − k), (2)

where d
p
j (k) denotes the p-th wavelet packet coefficient of

the j-th layer, and it can be obtained by the inner product
between x(n) and φ2j−1+p

(2n − k), namely,

d
p
j (k)≤ x(n), φ2j−1+p

(2n − k)≥ ∫+∞
−∞

x(n)φ2j−1+p
(2n − k)dn.

(3)
An approximation xj(n) of x(n) with layer j equates the

sum of all the subsignals:

xj(n) �∑
p

x
p
j (n). (4)

2.1.2. Optimized Wavelet Packet Decomposition. (e main
idea of the OWPD method is to automatically select the most
suitable WBF for vibration signal analysis of rotating ma-
chinery according to the proposed two-step principle on the
basis of WPD. In general, the main characteristics to be
considered in selecting the WBF include orthogonality,
compactness, symmetry, and vanishing moment. Consid-
ering the characteristics of different wavelet families and
vibration signals of rotating machinery, the coif wavelets, db
wavelets, and sym wavelets are selected as the candidate
WBFs. Figure 2 shows the proposed two-step principle for
selecting the optimal WBF, detailed as follows.

Step 1: select the candidate WBFs preliminarily from the
same wavelet family according to the principle of max-
imum energy-to-Shannon entropy ratio (METSE) [52].

(1) Calculate the energy value E(n) of the n-th node:

E(n) �∑m
i�1

Cn,i
∣∣∣∣ ∣∣∣∣2, (5)

where i and m are the serial number and total
number of discrete points in the n-th node, re-
spectively, and Cn,i is the coefficient corresponding
to the discrete point.

(2) (e Shannon entropy of the n-th node is defined as

Sentropy(n) � −∑m
i�1

pilog2pi, (6)
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where pi is the energy probability distribution of the
wavelet coefficients, defined as

pi �
Cn,i
∣∣∣∣ ∣∣∣∣2
E(n) .

(7)

(3) (e ratio of the total energy and the total Shannon
entropy of the j-layer WPD is represented as ζ,
namely,

ζ � ∑2j

n�1 E(n)∑2j

n�1 Sentropy(n)
. (8)

According to equations (5)–(8), the candidate WBF
with the largest ζ value can be selected from the
same wavelet family.

Step 2: select the optimal WBF further from different
wavelet families according to the principle of similarity
measure.

Firstly, the candidate WBFs from different wavelet
families mentioned above are applied to implement WPD,
respectively. (en, the signal is reconstructed using the
coefficients with the nodes of the last layer. Finally, a
standardized Euclidean distance is used to measure the
similarity between the original signal xi and reconstructed
signal yi (i � 1, 2, . . . , N):

d �

������������
∑N
i�1

xi − yi
si

( )2

√√
, (9)

where si is the standard deviation between xi and yi. (e
smaller the value of d is, the closer the reconstructed signal is
to the original signal, and the corresponding WBF is more
suitable for signal analysis.

2.2. Fuzzy Entropy. Given an N-dimensional time series
[μ(1), μ(2), . . . , μ(N)], the phase space dimension and the
similarity tolerance are defined as m (m≦N− 2) and r, re-
spectively. (en, the phase space can be reconstructed as

X(i) �[μ(i), μ(i + 1), . . . , μ(i +m − 1)] − μ0(i), i

� 1, 2, . . . , N −m + 1,
(10)

where

μ0(i) �
1

m
∑m−1

j�0

μ(i + j). (11)

(e fuzzy membership function A(x) is introduced as

A(x) �

1, x � 0,

exp −ln(2) x
r
( )2[ ], x> 0.

 (12)

For i � 1, 2, . . . , N −m + 1, calculate

Amij � exp −ln(2) ·
dmij

r
( )2 , j � 1, 2, . . . , N −m + 1, j≠ i,

(13)
where dmij is the maximum absolute distance between
window vector X(i) and X(j), that is,

dmij � d [X(i), X(j)] � max
p�1,2,...,m

μ(i + p − 1) − μ0(i)
∣∣∣∣ ∣∣∣∣(

− μ(j + p − 1) − μ0(j)
∣∣∣∣ ∣∣∣∣).

(14)
(e function Φm is defined as

Φm(r) � 1

N −m + 1
∑N−m+1

i�1

1

N −m ∑N−m+1

j�1,j≠ i
Amij . (15)

(erefore, the FE value of the original time series can be
calculated as

FE(m, n, r,N) � ln Φm(n, r) − ln Φm+1(n, r). (16)

2.3. Categorical Boosting

2.3.1. CatBoost for Classification. In the GBDT algorithm,
lots of decision trees are combined to produce a model of
high accuracy, and the progress can be written as

y(x) �∑T
t�1

ft x, θt( ), (17)

x

hk

hk

hk
hkhk

hk

gk

gk

gkgkgkgk

x1,0 x1,1

x2,1 x2,2 x2,3x2,0

x3,0 x3,1 x3,2 x3,3 x3,4 x3,5 x3,6 x3,7

gk : high-pass filter

hk : low-pass filter

Figure 1: Schematic diagram of the three-layer wavelet packet decomposition.
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where x is the feature vector, T is the number of trees, θt
(t � 1, 2, . . . , T) is a learned parameter, and ft (x, θt) rep-
resents the decision trees that are learned.

Given training samples D � (xk, yk){ }n1, where n is the
number of samples, xk (k � 1, 2, . . . , n) is the sample data,
and yk is the true sample label. To learn the model introduced
in equation (17), the following objective function needs to be
minimized:

Ο ft( ) �∑n
i�1

L yk, ŷk( ) +∑T
t�1

Ω ft( ), (18)

where ŷk is the predicted sample label, L is the loss function
that represents the difference between yk and ŷk, andΩ is the
regular function that is used to punish the complexity of ft,
defined as

Ω � αq + 1

2
β‖ω‖2, (19)

where α is the penalty parameter that controls the number of
leaf nodes, q is the number of leaf nodes, β is the regula-
rization parameter, and ω is the weight coefficient.

Let g denote the negative gradient of the loss function,
and the objective function is minimized in the direction of g,
namely,

g � − zL yk, ŷk( )
zŷk

[ ]. (20)

Traditional GBDTalgorithms generally have the problem
of prediction offset, which affects the generalization ability of
the model. To overcome this defect, CatBoost was proposed
with two notable improvements [43]: (1) the ordered boosting
strategy was adopted to obtain the unbiased estimation of the

gradient and slow down the prediction offset; (2) the oblivious
tree was used as the basic learner to increase the reliability of
the model and speed up the prediction. In addition, to better
deal with categorical features, the greedy target-based sta-
tistics strategy was improved by adding prior terms in Cat-
Boost algorithm, which can be summarized as three main
steps: (1) all the sample datasets are randomly arranged; (2)
samples with the same category are selected, and the average
label of similar samples is calculated; and (3) features of each
sample are digitized by adding the prior term and its cor-
responding weight coefficient. (e improved greedy target-
based statistics strategy can be expressed as

x̂ik �
∑nj�1 x

i
j � x

i
k{ } · yi + a · P∑nj�1 x

i
j � x

i
k{ } + a , (21)

where xik represents the i-th category feature of the k-th
sample, x̂ik represents the corresponding numerical feature,
P represents the increased prior value, and a represents the
weight coefficient (a> 0). (e addition of prior values can
effectively reduce the noise caused by low-frequency features
and avoid the overfitting phenomenon.

2.3.2. CatBoost for Feature Selection. (e growth strategies
of decision trees are different in different GBDT algorithms.
XGBoost uses level-wise strategy, which has the disadvan-
tage of inefficiency [53]. CatBoost uses the symmetric tree
strategy to optimize the computation of the leaf value to
prevent the model from overfitting. In the case of the basic
learner of CatBoost is the tree model, the feature coefficient
or importance can be obtained according to a certain
evaluation index after training the model, e.g., the change of
loss function or prediction values.

Start

Given original signal x, decomposition layer j

Select a candidate WBE family (coif, db, sym)

Select a WBF in the family to perform j-layer WPD

Calculate the energy value E(n) of the n-th node

Calculate the Shannon entropy Sentropy of the n-th node

Calculate the total METSE ratio ζ

Are all WBFs from the
family utilized?

Are all WBFs utilized?

Are all WBF families utilized?

Select the candidate WBF with the largest ζ 

Select the optimal WBF with the largest d

N

N Y

Step 1: METSE principle Step 2: similarity measure

Given obtained candidate WBFs of all families

Select a WBF to reconstruct the subsignals of the
j-th layer to obtain y

Define and calculate similarity d between x and y

End

N

Y

Y

Figure 2: (e proposed two-step principle of selecting the optimal WBF.
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For a given feature set F � f1, f2, . . . , fN{ }, the feature
importance of fi (i � 1, 2, . . .N) in the trained CatBoost
model is calculated by

featurefi � ∑
trees,leaf Sfi

]1 − avr( )2 · c1 + ]2 − avr( )2 · c2,
(22)

and

avr � ]1 · c1 + ]2 · c2
c1 + c2

, (23)

where S denotes the different paths to the leaf nodes in the
decision tree, c1 and c2 denote the total weight coefficient in
the left and right leaves, respectively, and υ1 and υ2 denote
the formula value in the left and right leaves, respectively.

2.3.3. BO Algorithm for Optimizing Hyperparameters. In
machine learning algorithms, the hyperparameters usually
have a strong influence on the performance of the model.
(ere are some inevitable shortcomings in traditional
methods of parameter tuning. For example, greedy algo-
rithm can only obtain the local optimal solution, and the
uncertainty and nonconvexity of grid search tend to miss
global optimality. Different with these methods, BO algo-
rithm can obtain the global optimal solution through
Gaussian process, which is considered to find the optimal
hyperparameters for the CatBoost model.

(e basic thought of BO algorithm is that, for the given
data and optimal termination condition (usually, the
number of iterations or the expected value of the objective
function), Bayesian theory is used to estimate the posterior
distribution. (e distribution and the information from the
previous sampling point are used to select the hyper-
parameters of the later sampling until that the value of the
objective function reaches the maximum globally. Here, the
objective function is defined as the maximum of the clas-
sification accuracy:

OF(μ) � arg max
1

K
∑K
k�1

f CB, μ, Dt, Dv( ) , (24)

where CB denotes the CatBoost classifier,
μ � μ1, μ2, . . . , μn{ } is the hyperparameters, Dt and Dv

represent the training and validation set divided by the K-
fold cross-validation, respectively, and f (CB, μ,Dt,Dv) is the
classification accuracy.

2.3.4. De Proposed Fault Diagnosis Approach. An overview
of the proposed fault diagnosis approach for rotating ma-
chinery based on feature importance ranking and selection is
shown in Figure 3. (e specific steps are as follows:

Step 1: the original vibration signals are acquired by
accelerometers and the data acquisition system.

Step 2: the optimal WBF is selected according to the
proposed two-step principle, and then the original
vibration signals are decomposed by OWPD.

Step 3: the FE values of the decomposed subsignals are
calculated to form the fault feature set F.

Step 4: CatBoost algorithm is utilized to obtain the
importance of each feature in F by a certain strategy.
According to the ranking result of feature importance,
the candidate features are selected in sequence and
combined with the corresponding labels to form
dataset S.

Step 5: dataset S is divided into two parts according to a
certain proportion: training set and test set.

Step 6: the training set is used to train the CatBoost
classifier, and BO algorithm is adopted to optimize the
main hyperparameters.

Step 7: the test set is fed into the trained CatBoost
classifier to output the diagnostic results.

3. Case I: Experimental Verification with the
MFS Dataset

3.1. Experimental Setup and Data Description. To prove the
effectiveness of the proposed fault diagnosis approach, a
hybrid dataset of bearing and rotor faults collected by the
machinery fault simulator (MFS) platform was used for
experimental verification [54]. (e experiment setup is
shown in Figure 4, the MFS is driven by the AC motor with
the speed of 2100 rpm, and the power of it is transmitted to
the rotating plate and the drive shaft and through the
coupling. (e sampling frequency is 6 kHz. (rough
replacing different components, ten different types of
datasets are collected with the data acquisition box, in-
cluding nine fault types and one normal type, with detailed
information shown in Table 1. (ere are 160 samples for
each type, and each sample contains 1000 nonoverlapping
data points.

To observe the difference between different types of
vibration signals, a sample of each fault type is randomly
selected to draw the waveform in time and frequency do-
mains, respectively, and the results are shown in Figure 5. It
can be seen that all fault types are time-varying and fre-
quency-varying signals, which indicates that the original
vibration signals are nonstationary. In addition, in view of
the frequency domain, most types of fault information are
concentrated in the low-frequency band, while the high-
frequency band contains less.

Each sample data is standardized by the z-score method.
In addition, missing values are detected in advance. If there
is a missing value, it is filled with the Lagrange interpolation
formula. (e design and improvement of the experimental
algorithms are implemented by Python 3.7.3 with a com-
puter configured with Intel Core i5-6000hq CPU and 12G
RAM.

3.2. Research on Feature Extraction

3.2.1. Parameter Settings of OWPD. Different decomposi-
tion layers in OWPD will result in different frequency
resolutions of subsignals, which affect the accuracy and time
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consumption of fault diagnosis. If the decomposition layer is
l, the frequency resolution of the signal is

df �
fs

2l+1
, (25)

where fs is the sampling frequency, and here, it is 6 kHz. To
make sure that df is greater than 1Hz, the value of l needs to
be less than 12. In addition, the number of features and
calculation time will increase with the increase in the
number of subbands. (erefore, l is preliminarily selected as
5, and each sample is averagely separated into 32 parts in the
frequency domain. (e influence of the value of l on the
diagnostic results will be analysed in detail in the following
experiments.

(e optimal WBF will be selected according to the two-
step principle described in Section 2.1.2. To reduce the
calculation time, 10 samples are randomly selected under
each fault type to form a new dataset, and 5-level WPD is
carried out for each sample with different WBFs. In the first
step, the total energy-to-Shannon entropy ratio ζ of each
sample is calculated, respectively, according to equations
(5)–(8), and then the average value of these 100 samples is
taken. (e results are detailed in Table 2. As can be seen, the
WBFs with the largest average ζ value are db7, sym7, and
coif3 in the same wavelet family, respectively.

In the second step, the above candidate WBF is used to
reconstruct the signal, and the average value of its similarity
coefficient d with the original signal is calculated according
to equation (9). (e results are detailed in Table 3. As can be
seen, the original signal is most similar to the reconstructed
signal when coif3 WBF is selected. coif WBF has orthog-
onality and compact support. In addition, compared with db
WBF, it has better symmetry. (erefore, it is more effective
to extract fault vibration signals of impulsive and nonsta-
tionary characteristics.

Data
acquisition box

Inverter

Coupling

Centering
adjustment dial

Rolling
bearing

Rotor

X-Y-Z
acceleration

sensor

Ac motor

Figure 4: Experimental platform of the MFS dataset [54].

Table 1: Details of ten types of faults.

Fault class Label

Ball fault 1
Inner race fault 2
Outer race fault 3
Combination fault 4
Normal state 5
Spindle central bent 6
Couple bent 7
Cocked rotor 8
Unbalanced rotor 9
Eccentric rotor 10

Rotating
machinery

Rotor

Gearbox

Rolling
bearing

Vibration signal acquisition

Acccelerometer Data acquisition
system

Original signal

Feature extraction by OWPD-FE

Select the optimal WBF
Calculate entropy values

of subsignals

Fault feature set F

FE computationSignal decomposition

Fault classification and diagnosis

State 1

State 2

State k

Result outputModel training and testing

Model testing on the test set

Validation set

Cross-
validation

Training setOptimized
catboost

Bayesian
optimization

Dataset splitting composed of F
i

and category labels

Feature selection

Select the candidate features Fi

Figure 3: (e flowchart of the proposed approach.

Shock and Vibration 7



3.2.2. Parameter Settings of FE. After determining the de-
composition layer and optimal WBF, the original signals are
decomposed by OWPD. (en, the FE values of these subsignals
are calculated separately. (at is to say, the dimension of the
feature set is 32. (e parameters of FE are set according to
[14, 18], as shown in Table 4, where STD represents the
standard deviation of each sample. Time consumption of
feature extraction is 1.29 s/sample. To visualize the calculation
results, a sample from each fault type is randomly selected to
carry out 5-layer OWPD using coif3 WBF. Figure 6 shows the
FE values of the subsignals of different fault types. It can be seen
that the difference of FE values among different fault types is
quite obvious, which indicates that the proposed OWPD-FE
method can effectively extract fault features. In addition, the FE
values of some subsignals for certain fault types are almost 0,
which also indicates that there is some feature redundancy.

3.2.3. Feature Visualization. t-SNE is the most commonly
used algorithm for data visualization and dimensionality
reduction [55]. Here, it is adopted to project the extracted

32-dimensional features into two-dimensional (2D) space
for visualization. For each fault type, 20 groups of data after
dimensionality reduction by t-SNE are selected to draw a
scatter diagram, as shown in Figure 7. It is clear that, in the
2D plane, the features of ten fault types overlap little, and the
boundaries among different types can be clearly distin-
guished, which shows that the OWPD-FE method is effective
in extracting fault information of bearings and rotors.

3.3. Feature Selection Using CatBoost. An appropriate fea-
ture selection method can reduce the feature redundancy
and improve the diagnostic performance of the model. In
this paper, CatBoost algorithm is considered for this step.
According to Section 2.3.2, equations (22) and (23) are used
to get the values of importance of the 32 fault features
extracted by the OWPD-FE method, according to which the
feature importance can be ranked in the descending order.
(en, candidate features and their corresponding labels are
added sequentially to train and test the model. Finally,
through the relationship between the number of features and

0.3

–0.3

0

0.3

–0.3

0

0.3

–0.3

0

0.3

–0.3

0

0.3

–0.3

0

0.3

–0.3

0

0.3

–0.3

0

0.3

–0.3

0

0.3

–0.3

0

0.3

–0.3

0

A
m

p
li

tu
d

e 
(m

V
)

Ball fault

Inner race fault

Outer race fault

Combination fault

Normal state

Spindle central bent

Couple bent

Cocked rotor

Unbalanced rotor

Eccentric rotor

0 400 600 800 1000

Data point

200

(a)

A
m

p
li

tu
d

e 
(m

V
)

0 1000 1500 2000 2500 3000500

0.01

0

0.03

0

0.004

0

0.03

0

0.01

0

0.01

0

0.01

0

0.004

0

0.03

0

0.01

0

Frequency (Hz)

(b)

Figure 5: Time- and frequency-domain waveforms of ten fault types. (a) Time domain. (b) Frequency domain.
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the classification accuracy, the feature set used to reach the
highest classification accuracy can be obtained. Figure 8
shows the normalized calculation results of the importance
of 32 features, whose sum is 100.

3.4. Diagnosis Results and Analysis. At first, the dataset is
divided into training set and test set, and the ratio of them is
set as 3 : 2. (at is to say, 96 samples of each fault type are
used for model training and the rest of 64 samples for test. In
addition, ten-fold cross-validation is conducted on the
training set. (e main hyperparameters of CatBoost opti-
mized by BO algorithm are shown in Table 5.

(en, to study the effect of the number of features on the
classification results, the feature selection process is carried
out according to the analysis of Section 3.3. (e experi-
mental results are detailed in Figure 9. It can be seen that the
model training time is positively correlated with the number
of features, which is consistent with the actual experience.

(e average accuracy of ten-fold cross-validation on the
training set has reached 100% when 7 features are selected.
When the number of features is 22, the test set accuracy is
the highest, reaching 99.17%. However, when all 32 features
are used, it decreased by 0.21 percent (only 98.96%).
(erefore, the classification accuracy of using 22 features is
considered as the final diagnosis result. (e time con-
sumption of model training in this case is 10.13 s, which is
1.68 s less than that without feature selection. Experimental
results show the reliability of the proposed feature selection
method and the effectiveness of the classification algorithm.

As indicated in Figure 10, the confusion matrix of the
diagnosis result using 22 features is presented in detail. It is
not hard to see that the diagnostic accuracy of all fault types
is above 98%, and it reaches 100% for 6 fault types (cor-
responding category labels are 2, 3, 6, 7, 9, and 10). (e
experimental results show that the proposed approach can
effectively identify the hybrid fault states of the rotor and
bearing.

3.5. Comparison of Different Decomposition Layers. In this
section, in order to further demonstrate the effectiveness and
reasonability of setting decomposition layer l to 5, the in-
fluence of the value of l on the diagnostic performance is
investigated. Firstly, l needs to be less than 12 according to
equation (25). (erefore, l is set to 1 to 8, respectively, to
perform OWPD. (en, the parameters of FE are set
according to Table 4. (e partition of the sample dataset is
described in Section 3.4. CatBoost is still applied to feature
selection and fault pattern recognition of the 8 datasets, and
BO algorithm is used to optimize hyperparameters. (e
experimental results are shown in Figure 11.

As can be seen from Figure 11(a), the classification
accuracy generally presents an upward trend with the in-
crease of l. In detail, when l is equal to 1, the average accuracy
of the training set and validation set is very low, only 82.02%
and 53.75%, respectively, while the test set accuracy only
reaches 57.29%. When l is greater than 2, all the training sets’
accuracy reaches 100%. (e validation set accuracy reaches
the maximum when l is equal to 6 (99.29%). When l is equal
to or greater than 5, all the test sets’ accuracy reaches 99.17%.
As can be seen from Figure 11(b), the time of feature ex-
traction and model training increases with the increase of l.
(e feature extraction time increases exponentially with the
increase of l. Experimental results show that high-quality
features containing effective fault information can be ob-
tained by selecting appropriate l to perform WPD. An in-
appropriate value of l will result in too low classification
accuracy (l less than 4) or too high computational cost (l
greater than 6). (erefore, it is reasonable to set l to 5
considering the classification accuracy and time consump-
tion comprehensively.

In addition, to illustrate the necessity of feature selection,
the diagnostic performance with and without feature se-
lection is compared, and the experimental results are shown
in Figure 12. As can be seen from Figure 12(a), there is no
feature redundancy when l is less than 4. However, the
number of redundant features gradually increases when l is

Table 2: (e average value of the total energy-to-Shannon entropy
ratio ζ.

WBF Average ζ

db1 4.538
db2 5.349
db3 5.660
db4 5.960
db5 5.986
db6 5.951
db7 6.311
db8 5.986
db9 6.285
db10 6.237
sym2 5.349
sym3 5.660
sym4 5.854
sym5 6.044
sym6 5.968
sym7 6.310
sym8 6.151
coif1 5.362
coif2 5.857
coif3 6.319
coif4 6.057
coif5 6.241
— —
— —

Table 3: (e average value of the similarity coefficient d.

WBF db7 sym7 coif3

Similarity coefficient d (10−12) 20.036 9.213 7.632

Table 4: Parameter settings of the FE method.

Parameter Description Value

Λ Time delay 1
m Embedding dimension 2
r Similarity tolerance 0.15 ∗ STD
n Gradient of similarity tolerance 2
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greater than 4, which is caused by the increase of frequency
bands containing no or less fault information. Accordingly,
the implementation of feature selection greatly reduces
model training time from the perspective of computational
cost. Meanwhile, it can be seen from Figure 12(b) that
feature selection can also effectively improve the classifi-
cation accuracy, especially when l is 5, 7, and 8.

3.6. Comparison of Different Classifiers. In this section, to
justify the superiority of the proposed BO-CatBoost algo-
rithm and the applicability of the OWPD-FE method
combined with other classifiers, SVM, RF, GBDT, and
XGBoost are adopted for comparison. (e dataset consisting
of 22 high-quality fault features described in Section 3.4 is
input into the above classifiers, respectively, for model
training and testing. To obtain the optimal diagnostic per-
formance, the main hyperparameters of these classifiers are
all optimized by BO algorithm, as detailed in Table 6. (e
diagnostic results are shown in Figure 13. It can be seen that
the average training set accuracy of RF, GBDT, and CatBoost
all reaches 100%, while SVM is the lowest, only 97.88%. In
terms of the validation set accuracy, SVM has the lowest
average accuracy (only 95.27%), while it is the highest of
CatBoost (98.39%). RF has the lowest standard deviation,
indicating that it is relatively stable. In terms of the test set
accuracy, CatBoost is the highest, followed by GBDT and
XGBoost (both 98.54%), while SVM performs the worst. In

practical applications, different classifiers are applicable to
different task requirements. Experimental results show that
the diagnostic performance of GBDT algorithm and its
variant (XGBoost) is close to that of CatBoost under the
premise of setting appropriate hyperparameters. In addition,
it is also demonstrated that the OWPD-FE method can
extract high-quality fault features that are easy to identify.

4. Case II: Experiment Verification with the
One-Stage Reduction Gearbox Dataset

4.1. Experimental Setup and Data Description. Since the
working condition of the MFS dataset is relatively simple,
this section further verifies the effectiveness of the proposed
approach in practical applications through an actual gearbox
dataset with more complex working conditions. (e ex-
perimental platform is composed of a one-stage reduction
gearbox, a torque sensor, a servo motor, etc., as shown in
Figure 14. Four fault types are formed by processing gears
with different crack lengths (0, 5, 10, and 15 mm). (e
sample frequency is 5 kHz. (e details of the dataset can be
found in [2]. Here, data collected under 20 different working
conditions are used, as shown in Table 7. (ese data con-
stitute 10 different datasets, as shown in Table 8. Datasets D1
to D9 contain a relatively simple number of working con-
ditions. Composed of all 20 working conditions, D10 is the
most complex dataset that is closest to the actual working
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Figure 6: (e FE values of subsignals decomposed by OWPD.

10 Shock and Vibration



conditions. For a single working condition, there are 40
samples for each fault type. (e total number of samples is
3200, each containing 1500 consecutive data points.

4.2. Diagnosis Results andAnalysis. (e steps and settings of
feature extraction refer to the descriptions in Section 3.2,
where sym5 is the optimal WBF. (e BO-CatBoost
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Figure 7: 2D projection of the extracted fault features using t-SNE.
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algorithm is still used to identify and diagnose fault types.
Figure 15 shows the diagnostic results of ten datasets after
selecting the optimal feature subset. For all ten datasets, the
training set accuracy reaches 100%. For D1 to D9, the test set

accuracy is higher than 96.56% and even higher than 99% on
D2, D6, D7, and D9. (e test set accuracy of D10 under the
most complicated conditions is 98.65%, which is 0.22 per-
cent higher than using the default CatBoost
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Table 5: (e main hyperparameters of CatBoost optimized by BO algorithm.

Parameter Value

Loss function Cross-entropy
Number of estimators 450
L2 regularization 3
Learning rate 0.254
Max depth of one tree 4
Random seed number 50
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Figure 11: (e change of diagnostic results with the number of decomposition layers. (a) Classification accuracy. (b) Feature extraction and
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Table 6: (e main hyperparameters of different classifiers optimized by BO algorithm.

Classifier Parameter Value

SVM

Penalty factor 1799
Coefficient of the kernel function 0.833

Kernel function rbf
Decision function shape ovo

RF

Number of estimators 928
Max depth of one tree 3

Maximum number of features allowed for a single tree 0.1Nf
1

Minimum number of samples needed to split a node 6

GBDT

Number of estimators 208
Learning rate 0.115

Max depth of one tree 2
Subsampling ratio 0.795

XGBoost

Number of estimators 516
Learning rate 0.129

Max depth of one tree 4
Proportion of randomly sampled features in each tree 0.584Nf

1

L1 regularization 0.105
L2 regularization 0.591
Subsampling ratio 0.1

Booster model gbtree
Objective function multi: softmax
Number of classes 10

1Nf denotes the total number of features.
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Figure 14: Experimental platform for the one-stage gearbox [2].

Table 7: 20 different working conditions of the one-stage gearbox.

Shaft speed (rpm)
Load (N·m)

0 2 4 6 8

600 W1 W2 W3 W4 W5

900 W6 W7 W8 W9 W10

1200 W11 W12 W13 W14 W15

1500 W16 W17 W18 W19 W20

Table 8: Details of 10 datasets used for experimental verification.

Label Working conditions Sample size

D1 W1,W2,W3,W4,W5 800
D2 W6,W7,W8,W9,W10 800
D3 W11,W12,W13,W14,W15 800
D4 W16,W17,W18,W19,W20 800
D5 W1,W6,W11,W16 640
D6 W2,W7,W12,W17 640
D7 W3,W8,W13,W18 640
D8 W4,W9,W14,W19 640
D9 W5,W10,W15,W20 640
D10 W1,W2, . . . ,W20 3200
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hyperparameters. However, in terms of time consumption, it
takes 206.09 s to complete the training process with default
hyperparameters, while 6.94 s with hyperparameters opti-
mized by BO algorithm, which greatly improves the com-
putational efficiency. (erefore, experimental results in this
study show that the proposed approach is also effective for
fault diagnosis of the gearbox.

5. Conclusions

In this paper, aiming at the fault diagnosis of rotating
machinery under complex working conditions, a novel
approach based on feature importance ranking and se-
lection is proposed. Firstly, the OWPD method is pro-
posed to decompose the vibration signal, where a two-step
principle of selecting the optimal WBF is introduced. On
this basis, it is combined with FE to extract hidden and
high-quality fault features from the decomposed sub-
signals. (en, in order to filter out redundant fault fea-
tures that are not conducive to the diagnosis result, the
CatBoost model is constructed and preliminarily applied
to calculate the importance of each feature for further
feature selection. Moreover, the classification model based
on BO-CatBoost algorithm can effectively solve the op-
timization problem of hyperparameters, which can greatly
reduce model training time and improve the diagnosis
accuracy. Finally, experimental results on the MFS dataset
and the one-stage gearbox dataset under complex working
conditions demonstrate the practicability and the gen-
eralization performance of the proposed approach, and
the classification accuracy reaches 99.17% and above
96.56%, respectively. In addition, the robustness of the
proposed approach under different working conditions is
also verified by the one-stage gearbox dataset.

In the future work, the effect of combining OWPD with
other information entropies or some dimensionless time-
domain indexes still needs to be discussed. In addition, the
vibration data collected by only one acceleration sensor are

utilized in this paper, while the fusion of multisensor data
may provide more real fault information, which is also worth
investigating in the next step.
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