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Fault Diagnosis Based On Causal Computations

Albert Rosich, Erik Frisk, Jaﬁ\slund, Ramon Sarrate and Fatiha Nejjari

Abstract—This work focuses on residual generation for model- lookup-tables, saturations, hysteresis functions. Theist
based fault diagnosis. Specifically, a methodology to derive methods for dealing with such models [5], [6], [7], but theync
residual generators when non-linear equations are present in often be practically infeasible. For example, methods tase
the model is developed. A main result is the characterization of iable eliminati fer f : ' lexit oble
compu_tational sequences that are particularly easy to implement varia ? elimina Ipn su e_r rom S_evere complexity pr g
as residual generators and that take causal information into ac- and Gibbner basis techniques fail for even moderately sized
count. An efficient algorithm, based on the model structure only, systems [8, p. 108]. Another example is observer based
that finds all such computational sequences, is derived. Furtlie  techniques, as in [7], where analytical solutions to a rinealr
fault detectability and fault isolability performance depend on partial-differential equation are needed in the desigthadugh

the sensor configuration. Therefore, another contribution is an th ticall d. the desi d is oft tibtes
algorithm, also based on model structure, that places sensors eoretically sound, the design procedure is often notipless

with respect to the class of residual generators that take causa for industrial models, due to the size and complexity of the
information into account. The algorithms are evaluated on a model equations.
complex, highly non-linear, model of a fuel cell stack system.  One possible solution is to rearrange the model equations
A number of residual generators are computed that are, by gq that all variables can be computed using back substitutio
construction, easy to implement and provide full diagnosability However, this would require that parts of the model with
performance predicted by the model. ’ ! . ;
redundancy can be rearranged into a triangular form which
is a severe limitation on the class of models that can be used.
The main contribution of this paper is a method, placed
somewhere in between the simple substitution approach and
I. INTRODUCTION the more general techniques that rely on complex analytical

NDUSTRIAL processes can be affected by faults havin omputations. The computation of the residual is here decom
E sed into either linear sub-problems, which are easy tesol

a serious impact on operation when not promptly detect q _ X ;
and identified. In order to diagnose these faulty behavio [ non-lmegr Pmb'e”"!s W'Fh a structure that allows a simple
efficient diagnosis systems are of great importance for mmdé)aCk subtst;.tutlonf. -trho |dentt|fy these Sl:jb:[prot;:]ems, .?hsnrad: |
industries. Over the last three decades, the growing dengﬁtarese? ? |onAo € lfys etrr? tﬁ' use ogether Wlt q(;:nausa
for safety and reliability has drawn significant researcfaint interpretation. A novetty: wi 'S paper IS the extensidn o

detection and diagnosis based on a model of the system Qrfvious approaches [6] with a systematic treatment oBline
21, [3], [4] d non-linear variables, where the non-linear are segdhrat

Most approaches for model-based fault diagnosis rely 6'?1t0. causal anq non—cgusal variables. B ased on the ggperate
g&lduals, basic techniques from consistency based diagno

consistency checking. A comparison between the obser\és? used to perform the fault isolation. See for exampled#] f

behavior and a model of the process is performed by meansb fault isolati lqorith d 191 for how to int t
a set of residual generators, which are designed by exmioiti asic 1ault 1solation a/gorithms an _[ ] for how to integra
%S|dual generation with such techniques.

the redundancy in the model of the system. Fault detectid ault diagnosis relies on process observations, which are
is achieved when a residual generator is triggered upon thé: 9 P ’

occurrence of a fault. Fault isolation is then performed b sually measured with sensors. Hence, the efficiency of a

inferring the triggering pattern of a set of residuals. Mo '1gn?S'SFS¥S§mn C”t'c"’t‘”% det;r)]er;ds )?int the I(:ca?onn ;L tf;ef
diagnosis systems deployed in industry are still based @e quSe SOTS. For many Systems Inere exists a great number o

basic techniques such as variable limit checking and therepPSS'ble candidate residual generators [10], which mefaats t

a potential to increase diagnosis performance by using mépg restriction on the class of residual generators may not

advanced methods. severely limit the detection and isolation performance of a

Many methods are difficult to use for industrial Systemge&g_ned'dlagnoss system. For .thls reason, an mtere_stlng
uestion is which sensors to use in order to achieve a given

since the models typically include non-linearities such a% . . . ) .
lagnosis specification using this class of residual geoeya
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method requires the previous computation of the complete €1 €3

set of redundant sub-models, which is a highly inefficient @/ I @ > r(y1,y2)

task for large scale complex systems. Lastly, in [15], a more \"\jz

efficient algorithm is developed which does not require this (¥2 I T2

previous computation. However, existing techniques based

structural analysis give only best case results when appligg. 1. computation sequence.

to non-linear systems. This drawback is alleviated in this

present work, by formulating a sensor placement algorithm

which takes into consideration the causal computabilitthi

residual generation. Previous works, as [15], neither $omu e1: w1 = hi(y1)

residual generation nor handle causal variables. ez : ¥y = ha(r1,y2) @)
This paper is organized as follows. In Section Il, the es : hy(21,29,41) = 0

problem to be solved is motivated and defined. In Section llI, A corresponding computation sequence for the unknown
the guidelines to handle causalities within a structuratiého variables can be constructed (see Fig. 1). Equatiois used
are presented and algorithms to determine the computatile pa compute variable:; and equatiore, to compute variable

of the model are proposed. Next, in Section IV, the previous, and it is then straightforward to propagate the values to
algorithms are applied to determine the fault diagnosip@ro compute the residual as in (2).

ties of the system. The sensor placement problem is addresse

in Section V, whereas Section VI deals with the computation r(y1,y2) = ha(h1(y1), h2(h1(y1), v2), y1) (2)

of the sub-models which are used for residual implementatio

Finally, in Section VII, the whole methodology is applied tdVnere:

a fuel cell stack system [16] where main advantages of the [ r(y;,y2) =~ 0 means that there is consistency
proposed approach are illustrated. The fuel cell systemefmod { r(y1,y2) % 0 means that there is no consistency
is complex, involving a wide range of non-linear equations
including look-up tables, piecewise polynomial functipnsn-
linear dynamic equations, etc. The model also covers a wiﬁ
range of operating points.

®3)

Using this procedure to design residual generators in com-
lex systems gives an intuitive idea on how a residual can
& computed. However, solving a certain variable in a non-
linear equation could be a hard task, or even impossible;twhi
Il. PROBLEM BACKGROUND AND MOTIVATION uIti_mater poses restrictions on t_he residual generatsigde _

) ) ) ) This means that not all matchings can be used to design
In model based diagnosis, consistency is checked by usinqeqjqa generator as in the example. This will lead to a

a set of sub-models with redundancy. One approach is Q. ted set of residuals and consequently a restrictedfs

analyze the model structure and findnimal sub-models with corresponding minimal sub-models with redundancy.

Ledundjlncy. These are thde slmalrllest sets Qf equatlo_n_s mlat CaSpecifically, residuals generators that depend on subisiode
e used to compute a residual. The name given to minimal Sz i1y the inverse computation of non-invertible funos

model§ with redundancy dePe”dS on the appr.oqch, for exan\mﬁ be excluded. Furthermore, equation subsets that sl
analytical redundancy relationsARR [17], minimal struc- ¢ hoth algebraic and differential, in the computation

turally overdetermined setMSO [10], testable sub-system sequence will be excluded as well. Therefore, no nonlinear

Tsi [1§Lanldminimal eva!ﬁar:ion c[‘)haianl'ECOElfg]. .. solving tools will be needed and the residual computation
residual generator will here be realized from a minimayy e’ ensyred. On the other hand, to keep the simplicity of

redundant sub-model by computing the internal unknomﬂe approach and at the same time reduce the restrictiveness

variables through a convenient manipulation of SUb'm°d§ub-models including linear loops will not be excludedgcsin

equations and checking consistency in a redundant equatigfy,ing jinear equations is not a complex task. A conseqeienc

This concept is known as a causal interpretation of tqu this extension is that existing structural methods fodifig

_computablhty_ [6]. For mstan_ce, in [18] causality is take ub-models and computational sequences have to be modified.
into account in the computation of the set of redundant su

) o ) . - 2YA main contribution of this work is that the design of the
m°d?'s whereas in [2(.)] causality is con_3|dered n derieatl iagnosis systems and the sensor placement analysis take in
and integral compL_Jtat|ons. _The pausal interpretation @n B, ,nt which methodology is used to compute residuals.
represented by a directed bi-partite graph that shows hew t
internal values can be computed from the equations (value
propagation) in every redundant sub-model. However, to-gua
antee that the residual can be generated by using non-linfarcausal Structural Model
equations, the structural model framework must be adapted i To determine when a redundant sub-model can be used to
order to handle causal computability. generate a residual, using a computation sequence, soate inf
To illustrate residual generation based on a causal irgerpmation on how variables can be computed in each equation is
tation, i.e., a computable sequence for the unknown vas$ablrequired. In non-linear equations, unknown variables catn n
consider the model (1). It consists of three equatians € always be computed as a function of the others, for instance
andes), wherey,; andys are known variables, anei andx, when non-invertible functions are regarded. This lead$éo t
are unknown variables. following definition:

I11. CAUSAL FRAMEWORK



Definition 1 (Causally computable variablelet h(x) = To exemplify a linear algebraic loop, consider the electric
0 be an equation of the model. Variahtg € x is causal inh, motor equations from the air compressor model (5), where all
if z; can be computed usinl, assuming that the remainingvariables are linear. The compressor voltageand the com-
variables,x \ z;, are known. We say that there is a causaressor torque are known variables, whereas the compressor
relation between:; and h. current,i, and the angular speed, are unknown variables.
From Definition 1 it follows that equatiork can never .
be used in the computation sequence to compute non-causal Reithy -w=v (52)
variables: Furthermore, as mentioned before, causalb!asia' ky i — Jdﬁ " Bow=r (5b)
that are involved in non-linear loops are not computable in dt
the computation sequence. For instance, the two expressi@ince both equations are linear, the unknown variablesd
in (4) are used to calculate the compressor efficiencynd w can be easily computed, in spite of the existence of an
the compressor torque, in the fuel cell stack model. Assumealgebraic loop:
that the compressor pressung, the angular speed,, the ) 1
atmospheric temperaturd,,;,,, and the compressor torque, <Z> - (R ku ) <v> (6)
7 are known or measured variables, whereas the efficiency, w kp —(Jp+ B) T
and the air flow)W, are unknown variables. Constaiifs and whereR, k,, k,, J and B are model parameters apds the

~ are known system parameters. differentiation operator.
The structure of a model can be formalized as a bipartite
1 = LookupTablép, W) (4a) graphG(M, X, A), whereM = {...,e;,...} is the set of
T L _1 model equations,X = {...,z,,...} the set of unknown
W = T(C’p na-t: (pv — 1)) (4b) variables andA the set of edges, such thét;,z;) € A if

equatiore; € M depends on the variablg € X. Information

Note that in the first equation, a look-up table is used n causal and linear relations can be well fitted in the stratt
calculate the compressor efficiency from the air flow and thgodel by a partition of the set of edgels= A;, U A, U Ax
compressor pressure. Thus neither the pressure nor theygiere, according to the previous definitions:

flow can be computed using this expression. According to, Ay is a subset of edges such thatis a linear variable
Definition 1, the unknown variable is causal in the first ine,.

equation, wheread? is not. In the second equation, both A, is a subset of edges such thatis a causal but not
unknown variablesy and W, are causal variables. linear variable ine;.

This is a well-constrained set of equations and there is a, An is the remaining subset of edges, whereis a non-
causal relation between unknown variables and equatians, i caysal variable in;.

equation (4a) can be used to computeind equation (4b) In the biadjacency matrix, edges iy, are represented by

can be used to computd’. However, it is not possible to an “L” symbol, edges M, are represented by a® symbol
compute the unknown variables by forward value propagati%rp]d edges in4,A are represented by a\" symbol

since both unknown values must be computed at the SAM& central concept used frequently in the following sections

time. . . L
. . . is matching[21]. A matching is a sef’ of edges such that no
This kind of structure is known as aigebraic loop There two edges in" have common nodes. A matching can, in the

;elre severalntorcl)qlsrtio corlrrlplrjte ﬁnm?:m rvar"’f:i?rlﬁzs Itri] e:]n ?lgfi?]réontext of structural models, loosely be interpreted asciwvhi
oop (6.9, numeric solvers, no ear op ation, tearngajaple is solved in which equation.

techniques), but the solution is not always ensured and the
computation cost can be large. In this work, a conservative B

approach consisting in rejecting all non-linear algebtagps B: Causal Computability

is adopted. On the other hand, linear algebraic loops afereas Given a structural model, there is a need to know whether
to handle as long as algebraically independent coefficrgts a set of unknown variables can be computed when causal
assumed. Thus, in this work, algebraic loops involvingdine and linear relations are considered. L@(M, X, A) be a
variables will be accepted in a computation sequence. Tisisuctural model withA = Ay U A, U An. First, for the

motivates Definition 2. sake of simplicity, assume that there are no linear var&ble
Definition 2 (Linear Variable):Let h(x) = 0 be an equa- i.e., A = 0.
tion of the model. A set of variables; C x is linear inh if h In the previous section it was exemplified how a residual

can be arranged a&(x;) + g(x \ x;) = 0 and|x;| > 1, where can be computed using a computational sequence. To be able
L is a linear function. We say that there is a linear relatioi® do this in a general case, a necessary condition is that the
betweenx; and h. exists a complete matching!y in X, such that

Note that considering one single variable as a linear viriab MXCa )
in an equation is not necessary. Linear relations are meant t G =
be considered for identifying linear algebraic loops, ameé oi.e., only casual variables are matched.
single variable never forms a loop. Thus, linear relatioress a As pointed out in the previous subsection, only algebraic
considered when two or more linear variables appear in tlwops involving linear variables will be accepted. In the ab
same equation. sence of linear variables, this means that the well-coinstta
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Fig. 3. Causal and linear computable decomposition
Fig. 2. Causally computable structure

Since causal variables are determined by means of Algo-
subgraphG’ (0™ M, X) has noHall componentg22] with  rithm 1, now we are only interested in finding the linear
more than one equation, whe@" MY is the subset of variables that can be computed. First, the set of equafions
equations inM incident to edges in\g. that depend on linear variables and no others is identified

Therefore, if a matching with such properties exists then
the set of unknown variables(, can be computed using the Ep={ee M:Vaevarx(e), (e, x) € AL} ©)

computation sequence without loops. Note that this meaats thrhen, the set of linear computable variablés is determined

the set of equations and the set of variables can be reattang@ applying the Dulmage-Mendelsohn decomposition to the
such that the biadjacency matrix has a triangular form withegyuations subseft;,

diagonal of “x” symbols. Fig. 2 shows this pattern where all

unknown variables can be evaluated. Xy, = varx (E7) Uvarx (Ef) (10)
Algorithm 1 searches for the set of variables that can Q@hereEO andE;

computed as causal variables. This is iteratively done lﬂ;{e over-

finding equations that only contain one causal variable,

denote respectively the just-determined and
determmed equation sets of the Dulmage-Menkelso
decomposition inF';,. Note that this holds with the assumption
ec M :|vary(e)] = 1A (e,varx(e)) € Ay (8) that the linear coefficients are algebraically independent

_ _ Algorithm 2 is developed to compute the set of linear
where vak (E) denotes the set of variables i adjacent to computable variableg’;, according to (9) and (10).
the set of equation&. Note that

(e, varx (e)) € ME Algorithm 2 X}, = LinearVariabléG(M, X, A))
Ep:={ee M :Vx evarx(e),(e,z) € AL}

according to (7) and (8). After finding equatienthe graph Xy, = vary (E?) UvarX(Ej)
is pruned and the algorithm continues searching for more
equations until no more equation-variable pairs can bedoun

The diagonal matching presented in Fig. 2 is now extended
Algorithm 1 X = CausalVariableG (M, X, A)) to include I.ir_1ear. computaple \{ariables. The resulltingdmal
o decor_nposmon is shown in Fig. 3 where_ the triangular form
while Je € M : [vary(e)] = 1A (e, vary (e)) € Ay do remains, but now thd::iall componentsan mclude_more than
X = X \ varx (e) one 'var|able, since Illnear Ioopg are allqwed. This decompos
Xo = Xo Uvary (e) tl_on is done by Alg0r|t_hm 3, which iteratively alternatesgat
end while rithms 1 and 2, and finally returns the sub-gra@gf€, X', A)
which corresponds to the computable part.
From the discussion above, it is clear that the sub-graph
Here, it is assumed that a set of variables can be solvediifg, X', A) contains the computable part of the model. Thus,
every variable can be matched with an equation using a caugkemaining equations)/ \ £, are not useful anymore, since
edge and there are no algebraic loops, sotdaly component they contain variables that can not be computed, iKe), X
with more than one equation-variable pair is rejected.
Now, assume that also linear variables are considered, lé\q?gonthm 3 {X,&} = ComputableSysteft: (M, X, A))
A=ApUA, UAA. In Section lll-A, it was discussed that a —0
subset of linear variables can be solved in an algebraic. Ioop
epeat
Therefore, the Dulmage-Mendelsohn decomposition can be X' := CausalVariabl&G (M, X \ X, A))
applied to determine the subset of linear computable viasab X o—xux ’ ’
The Dulmage-Mendelsohn decomposition [23], [24] defines Xy, = LinearVariabléG(M, X \ X, A))
a partition on the set of equations and the set of variables. X =XUX, ’ ’
This partition consists in the under-determined part, the-j until X' U Xy — 0
determined part and the over-determined part, which costai € := {e e M :varg(e) C (X)}
the redundant equations. i X\ =




. . : TABLE |
Note that extracting the computation sequence given by the NON-SYMMETRIC 1SOLABILITY EXAMPLE

subgraphG(&, X, A), decomposed as in Fig. 3, is straightfor-

ward since now the matching-diagonal establishes an irgerp | 21 @
tation of which equation to use to compute each variable fimen A A
q p ' fo—es X X

€3 A X

IV. CAUSAL STRUCTURAL MODEL BASED DIAGNOSIS ¢4 x

According to the decomposition in Fig. 3 there exists, at
least, one complete matching @(&, X', A). This means that

there is no under—determi.ned. supset qf equationg,irile'., This means that for each causally detectable fAult Fp,
£~ = 0. Since the matching in Fig. 3 is complete M, it here exists a set of faultd;(f) that are causally isolable

follows thgt the over-determ_ined set of_equati@]’fscontains from f. Algorithm 5 uses Algorithm 4 to compute the causally
part of this diagonal matching, so variablesdn are com- igg|aple fault set for each causally detectable fault.
putable. Now, fault diagnosis analysis can be performedhen t

over-determined part and the cqmputation sequence.cayalwmgorithm 5 F; — CausallsolabilityG (M, X, A), Fp)
be guaranteed to generate residuals. For extended informat
on the Dulmage-Mendelsohn decomposition applied to fault
diagnosis see for example [6]. My =M\ {/} .

In this work, faults are defined as a subset of equations, F1(f) := CausalDetectabilitG(My, X, A), Fip)
F C M, since a relation between an equation and a fanlrend for
can be easily established, i.e., a signal fault that affacts
equation, or the assumption or support of an equation. larord Note that, here, the isolability relation between two fault
to simplify the following theoretic development, only sgst is not symmetric, i.e., faulyf; is isolable from faultf; does
faults and faults in the original sensor setup will be coaeséd, not imply thatf; is isolable fromf;. Since causal detectability
i.e., no faults in additional sensors will be included in thdepends on the causally computable sub-model, the symmetry
sensor placement analysis. property in the isolability relation (see [15]) is lost.

For instance, assume the following causal structural model
represented in Table I, where faulfs and f> affect equation

A. Causal Structural Detectability ‘
. e1 ande, respectively, and both are detectablg = {e1,e2}.
It is well known that the set of detectable faults Cafhen by applying Algorithm 5 we obtain that

be defined from the over-constrained part [6]. A given set
of faults F C M is structurally detectable iff C M. Fr(e1) = {ea}
Analogously, causal (structural) detectability can be rofi Fi(es) = 0
from the computable part of the model.
Definition 3 (Causal (Structural) Detectability)a ~ fault and it can be therefore concluded thatis isolable fromf;
f € F is causally detectable in/ if but the reverse does not hold (i.e., the symmetry property is
not satisfied).

where&y, is the computable part off \ {f;}.

for eachf € Fp do

feet (11)
where is the computable part of/. V. SENSORPLACEMENT FOR CAUSAL STRUCTURAL
Algorithm 4 uses Algorithm 3 to find all causally detectable MODEL BASED DIAGNOSIS

faults Fp, when computable sequences are taken into accountgiven a set of equations, the subset of unknown variables
The inputs are a structural modél(M, X, A) and a set of that can be computed will depend on the set of installed

faults, F* C M. sensors (i.e., known variables).
The main idea is to perform fault detectability and fault
Algorithm 4 Fp = CausalDetectability=(M, X, A), F) isolability analysis with all sensors installed. Understisiet-
{X, €} := ComputableSystef& (M, X, A)) ting, the set of detectable faults and the set of isolablésfau
Fp:=&TnF will give an upper limit on the fault diagnosis specificaton

Installing the same sensor more than once makes neither

detectable a non-detectable fault nor isolable a noniiémla

B. Causal Structural Isolability fault, except for faults in the installed sensors. Once maxn
Isolability analysis is based on detectability conditiondault diagnosis specifications are known, the minimal set of

According to [15], a faultf; € F' is structurally isolable from sensors that satisfies these specifications is sought.

fj € F if f; is detectable in the sub-modé{ \ {f;}. The

same holds when causal computations are considered.
Definition 4 (Causal (Structural) Isolability)Given  two

causally detectable faultg;, f; € F, fault f; is causally

isolable from faultf; in M if

A. Maximum causal detectability and isolability specificas

The maximum detectability specification is ensured when all
candidate sensors are installed. Therefore, it is straigisrd
to select those faults that can be detected from those thiat wi
fi € 5}: (12) never be, before the sensor placement analysis.



The set of candidate sensors can be defined as a subsélgerithm 6 S,,;, = CausalSensorPl, Sq,Fp,,,., F1,,.,.)
unknown variablesS C X. Each sensor has a correspondingi: S,,,;,, := 0
sensor equatioy = z, with y being the measurement signal 2: repeat
andz € S the measured variable. This equation has to b&: S, := the minimal subset not previously tested from
added to the model whenever the corresponding sensor is S,
selected for installation. Note that adding this equatioplies 4.  Fp =

thatz becomes a causal variable in the corresponding sensor CausalDetectability(MUMsg, , X, A), Fp,,..)

equation. Given a sensor configuratih C S, the set of s if Fp = Fp___ then

sensor equations is denoted bys, . 6: Fr := CausallsolabilityG(M UMsg, , X, A), Fp,...)
Even if all sensors are added, there may be some sensors if Fr=Fy,,, then

that can not be used to compute a residual. It is importang: Siin = Sk

to identify these sensors in order to exclude them from the: end if

sensor placement analysis. These sensors are charatterize end if

by the property that the corresponding sensor equation daas until S,,;, # 0
not belong to the over-determined part of the computabie
subsystem. Therefore, it is possible to determine the set of

useful sensors from VI. CAUSALLY COMPUTABLE MSO S=T GENERATION

Finding redundant sub-systems for diagnosis is an impbrtan
topic in the field of diagnosis based on structural models.
There are several works devoted to this issue [17], [10],
t18], [19]. An efficient algorithm that computes the complet
set of MSO (Minimal Structural Overdetermined) sets was
%ublished in [10]. An MSO set is a subset of model equations
th%t is structurally overdetermined and no proper subset is
overdetermined. Furthermore, an MSO set can be used to im-
plement a residual generator. A modification of this aldnonit
iis presented in this section. It consists in only computing
those MSO sets that can be used to generate a residual by
means of the computation sequence. This kind of MSO set
is calledcausally computable MSO sétherefore, a causally
— CausalDetectabilityG (M U Mg,, X, A), F) computable MSO set is an MSO set that contains a causally

B computable structure, which means that it can be decomposed

The maximum causal isolability specification is compute@® In the(&, &) structure depicted in Fig. 3. The extension of
by Algorithm 5, with just the set of senso&; installed, and the algorithm in [10], that computes the complete set of MSO

Ms, ZE;QMS (13)

where s is the computable part of the system with al
sensors installed, i.e{X', £s} := ComputableSysteft (M U
Mg, X, A)). Thus, the new set of candidate senséisC S,

is now defined as all sensors such that their correspond
sensor equation belongs fdg,. Therefore, there is no need
to further consider sensors froffl\ S, in the sensor placement
analysis.

Now, the maximum causal detectability specification
computed by Algorithm 4 with the new set of sensdfg
added in the model:

Fp

max

for those system faults that are detectalflp,, _: sets, is presented in Algorithm 7.
Fy, .. = CausallsolabilityG(M U Mg,, X, A), Fp, ..) Algorithm 7 M = findCCMSQG(M, X, A), R)
1 M:=0
) 2. {X, &} := ComputableSyste(d (M, X, A))
B. Sensor placement algorithm 3 if (M\ EF)NR =0 then

Once maximum causal detectability and isolability speci-#: Mﬁ: er
fications are known, the sensor placement algorithm can bg if ¢(3) =1 then

introduced. Algorithm 6 uses Algorithms 4 and 5 to searctf: M= MU{M}
for the minimal set of sensors that satisfies them (g, /- €Ise
andFy, ). : while R 2 M do

The algorithm starts each iteration by choosing the minimaf" Select are € M \ R
set of sensors9;,) not already chosen. The sensor set cos: E =M\ (M \{e})*
or cardinality are different criteria that could be used td if EN R =0 then
determine the minimal set of sensors. Then, the algorithf$: R:=RUE
computes causal detectability using the chosen sensondet &% M":= M\ E
tests whether maximum causal detectability is achieved. 1 M := MUfindCCMSQG(M', X, A), R)
so, the same is done with causal isolability and maximurt?: else
causal isolability. When both, maximum causal detectabilit'®- R:=RUE
and isolability, are achieved the solutiofi,(;,,) is returned. 17 end if

In Section V-A, it has been shown that the algorithnillg: enzni? while

will terminate since the set of candidate sensdfsg, is one

admissible set, that fulfills the specifications. 20: end if




TABLE Il
SYSTEM FAULTS, F'

Anode Inlet
Flow Control _—
o Stack |— | Rewm Fault | Description Involved
Inlet Magic Static Vaniol equation
= | Vanifold Cojer == | Humidfier | = fi Electrical fault in the compressor moto e1
fo Mechanical fault in the compressor motor e2
f3 Compressor fault. The relation described
. by the compressor maploes not hold e11
Fig. 4. Fuel Cell System scheme Ta Air Teak in theinlet manifold €13
fs Humidifier fault. Output humidity does
not follow desired humidity €29
The algorithm computes the set of causal MSO sets byfs | Cathodereturn manifoldfault €33
iteratively removing equations. The sgtis a set of equations — /7| EXit cathode fault ers
that are not allowed to be removed to avoid finding the same TABLE Il

MSO set more than once. Algorithm 7 is initially called with
the entire modelG(M, X, A) and R = (). The condition to

ensure that an MSO set has been found isgfar) = 1 (step _Variable

CANDIDATE SENSORS

Description

5), whereg(M) is the structural redundancy degree, which is %
defined by et
(M) = |M| — |varx (M) (14)  Pepout

im,out
The extension, compared to the algorithm in [10], mainly Pim,out
consists of steps 2 to 4. The satf \ &1 is the set of anuZ
equations that are removed in step 4 and, in step 3, it 9, ou
ensured that no equations i are removed. The remaining Psh,out
part of Algorithm 7 is equivalent to the MSO sets generation” °™°"*
algorithm in [10]. The original algorithm in [10] finds all p.q,in
possible MSO sets. Since the set of causally computable MSQst,ds
sets is a subset of all the MSO sets, Algorithm 7 finds all, "

1,0ut

Pan,in

possible causally computable MSO setd, Pan,out

Wca,out

VII. APPLICATION TO THEFUEL CELL STACK SYSTEM ?“’”“j
ca,ou

Compressor motor speed

Compressor motor current

Compressor output air flow temperature
Compressor output pressure

Inlet manifold output air flow temperature
Inlet manifold output pressure

Magic cooler output air flow temperature
Magic cooler output pressure

Static humidifier output air flow temperature
Static humidifier output pressure

QOutlet manifold output air flow temperature
Stack anode input pressure

Stack cathode input pressure

Stack downstream pressure

Stack voltage

Stack anode output flow temperature
Stack anode output pressure

Stack cathode output flow

Stack cathode output flow temperature
Stack cathode output pressure

Fuel cell devices are receiving much attention in the last
decade as good candidates for clean electricity generation
Here, we will use a fuel cell based system to apply théxample by changing a parameter or a variable. Table II
presented diagnosis approach. summarizes the faults considered in this work. Other faults
could be easily included in this set, that should be related t
A. System description their corresponding model equations. Another assumpson i

The model of the Polymer Electrolyte Membrane (PEI\/ﬁ‘at only single faults are_allowed. This means that Fwo or
fuel cell stack (FCS) system used in this work was propos8ePre faults can not occur in the system at the same time.
in [25], and further information can be found in [16]. The Furthermore, there is a set of already known variables: the
benchmark is widely accepted in the control community &9mpressor voltage ) and stack current(;) since they are
a good representation of the behavior of a fuel cell systefgeded for control purposes, the desired temperatiife )(
The model (see Fig. 4) includes a detailed description of tA8d humidity ¢q..), both set-points, the stack temperature
air compressor, the inlet and return cathode manifolds, thest) @nd all the ambient variables (presspirg.,, temperature
static air cooler, the static humidifier, the hydrogen flovdl anlams @nd humidity ¢an,;). All these variables are excluded
the PEM fuel cell stack. The fuel cell stack model is furthefom the sensor placement problem.
decomposed into four main subsystems: stack voltage, datho
flow, anode flow and membrane hydration. In the model, it |5$
assumed that the temperature is known and constant since it
dynamic behavior is much slower than that of the rest of the A set of 20 candidate sensors for installation has been
model. considered for this benchmark. Table Ill briefly describes

In [26] there is a model of the FCS with 116 equations. TH&sem. All these physical quantities can be easily measuyed b
equations describe, in great detail, the physics and cligmisstandard sensors. Other physical quantities such as hymidi
in the components. However, the model comprises non-lingarmass have not been considered since measurement of those
relations, for example non-linear algebraic equationscgyi quantities usually involve complex and expensive sensors.
wise polynomial functions, function maps, and look-up ¢ésbl  Following the methodology introduced in Section V-A,
which makes the proposed approach suitable. maximum causal detectability and isolability specificati@re

A set of seven faultg” has been selected for this evaluatiosought. The conclusion is that all faults can be detected and
study. Each fault affects one, and only one, equation, f@olated, under the assumption that all candidate sensers a

SSensor Placement for the FCS System



installed. Thus,Fp,... = F and Fy, (fi) = F\ {f;} for
1={1,...,7}.

Moreover, the sensor equation corresponding to sengor
is not in the computable over-determined part. So, the &ffec
set of candidate sensors beconsgs= S\ {vs}. This is due
to the fact that there is only one equation (15) that depends o
variablev,; and not all the variables involved in this equation
can be causally computed.

€79 I Ust = h(ist;pca,ouhpOg ) Tsta )\m7pH2) (15)

Now, the minimal cardinality sensor placement for diaggosi
is solved. Applying Algorithm 6, six possible solutions are
obtained. All sensor configurations are equivalent, invgh\8
sensors as follows:

MSO;3
Smini = Sbase U {Pep,outs Deayin }
Smins = Sbase U {Dep,outs Dsh,out t
Smins = Sbase U {Pme,outs Pea,in }
Sming = Sbase U {Pme,outs Psh,out } MSO,
Sming = Svase U {Dim,out, Pea,in }
Sming = Sbase U {Pim,outs Dsh,out }

with
Shase = {wcpa Z.cpa Ti7r1,,()utapst,d37 Wca,ouhpca,out} MSO0s
Sensor configuratiot$,,,;,,, is finally adopted for the FCS
system.
MSOg

C. Causal MSO Sets Generation for the FCS System

TABLE IV

RELATION BETWEEN MSO SETS AND SYSTEM FAULTS

fi fo fs fa fs fe f7
MSO1 X

MSOQ X
MSOs X X
MSOy4 X X
MSOs5 X X

MSOg X X

MSO~ X

€116, €124, 6125}

{612, €13, €14, €15, €16, €18, €19, €20, €25, €28,
€29, €82, €83, €84, €85, €87, €88, €89, €90, €94,
€95, €96, €97, €98, €100, €101, €102, €114, €121,
€122, €123, €126, €119, €121, €122, e126}

{67, €9, €11, €12, €14, €15, €16€18, €19, €20,
€25, €28, €29, €82, €83, €34, €85, €86, €87, €88,
€89, €94, €95, €96, €97, €98, €100, €101, €102,
€114, €119, €121, €122, 6123}

{92, €3, €4, €6, €8, €9, €13, €14, €15, €16, €18,
€19, €83, €84, €85, €86, €87, €90, €119, €120, €121,
€122, 6126}

{62; €3, €4, €, €7, €8, €9, €11, €14, €15, €16,

€18, €19, €83, €84, €85, €86, €87, €119, €120,

Once the set of sensors to achieve maximum diagnosis €121, €122}
§peC|f|cat|op is known and their correspond!ng quaﬂoe; ansso, = {e1, €117, €119, €120} (16)
introduced in the FCS structural model, Algorithm 7 is apgli
It returns 323 causally computable MSO sets.

This will be compared to the number of MSO sets obtained
under the assumption that all unknown variables were causal
Applying the original MSO set generation algorithm in [10],
219089 MSO sets are computed. Note that, for many of the
MSO sets it is not possible to implement a residual generator
due to computational problems.

Not all 323 corresponding residuals have to be implemented,
but a reduced set. A subset of causally computable MSsoFor instance, consider the causally computable MSO set
sets will be selected such that it ensures maximum caudd®O2 in (16). The system and sensor equations that belong
detectability and isolability of the fault set given in Tadl. t0 this MSO set are presented in (17). Note that variables
Following this criterion, 7 causally computable MSO seteena Lst: Pom.ds: Wea,out @Nd psr,as are all known:Weq o, and
been selected for residual implementation. Table IV showst.ds are measured (see Section VII-Bm 45 is the down-
the fault sensitivity of these causally computable MSO .sefi{ream outlet manifold pressure, which equals to the arhbien
An MSO set is sensitive to a fault if the corresponding fauRressure, and’y; equals the ambient temperature. Equations
equation belongs to that MSO set. Note that all faults afé31,€s2, €33, ess} belong to theoutlet manifoldcomponent.
causally detectable and isolable from each other, acoprdin The causal structural model corresponding to (17) is degict
Definitions 3 and 4. The system and sensor equations tHatfable V. In equatioress, a non-linear function computes

belong to each selected causally computable MSO set g output manifold flow. This function is not invertible, &o
described in (16). cannot be used to compute any of the input variables, which

is consistent with the row assigned &g in Table V. The
same reasoning holds for each causally computable MSO set
in (16). Note that the structure in Table V can be decomposed
as in Fig. 3 (i.e., it is a computable structure).

MSO, = {ers,e124,€125,€126}

MSO; = {es1,es2,€s3, €36, €s1, €103, €104, €105, €109,



TABLE V Episode: fault 6

COMPUTABLE STRUCTURE OFM SO2 A
-0.1 ,‘
S = _k E w s -0.2
S-S g 3 57
S ) - = Q 3
s s 2R & B B 2 K £ = g
e31 L L i:
€32 L L ol
€33 X L X L 09 o
€36 X A A A s 10 I 20 25
€105 L L time (sec)
€116 L L
es1 L L Fig. 6. Normalized residuals response fault 6
€104 L L
€103 X
€109 X . . ;
€194 % inaccuracies). However, when fauft occurs, equatioress
€125 X does not hold and consequentlyz 0, signaling the fault (i.e.,
fault detection). Furthermore, according to (16),is the only
€104 . . . . . . . .
| W, residual which is sensitive to faufs. This is consistent with
i s o o Table IV, and implies that a violation of residual indicates
7 ; that fault fs has occurred (i.e., fault isolation).

Fig. 6 shows the residuals response correspondirfgttlh
fe episode (normalized in the intervah1,1]). At time 10
seconds, some residuals are slightly affected due to a ehang
of the system operating point. However, at time 15 seconds
Fig. 5. Computation sequence frodd SO the residualry is clearly affected by the fault, whereas the
other residuals are not.

The same procedure could be followed to verify the perfor-
mance of the residuals corresponding to the remaining MSO

5
\\_/&j:m
Dom,ds Wom.out
€116 /_K

Pom,out
|

€31 : Pom,out =& sets in (16). Remind that working with structural modeldyon

€30 1 & = % best case results are obtained. This means that the residual
€331 & :Tom,in%(wom,in — Wom.out) sensit.ivities shown in Table IV will (_jepend or}_thg faL_JIt
€36 : Wom.out = NonlinearNozzIépom out» Pom.ds, Tom.in) mag_nltude. Furthe.rmore, a proper residual conditioning, (i _
est : Tea.out = Tt flltgr|qg, thrgsholdmg, etc.) shpuld be done. Howevers thi
€103 : Pom,ds = latm topic is outside the scope of this work.

€104 - Wom,in = ca,out

€105 * Tom,in = Tca,out E. Comparison with the Non-Causal Approach

€109 Tst = 353K

€116 * Pom,out = Pst,ds

€124 : Pst,ds = Pst,dsmeasured
€125 * Wca,out = Wca,outmmsumd

These results are compared to the solution of the minimal
sensor placement problem when causal computability is not
addressed. This can be accomplished by applying Algorithm 6
(17) to a causal structural model of the fuel cell benchmark under

the assumption that every unknown variable is a linear vari-
] ] able. Under this hypothesis, the minimal sensor configumati
D. FCS System Diagnosis involves fewer sensorgii.,, pst.ds }-

Once the set of causally computable MSO sets is obtainedFor this particular solution, there exist 7 useful MSO sets
residuals can be easily implemented following the compéer causal fault detectability and isolability. The tabliefault
tation sequence. Note that the diagonal in the computalsiensitivities of these 7 MSO sets is shown in Table VI. Note
decomposition (see Fig. 3) shows how all variables can Heat all the faults are causally detectable and fully isielab
computed. Therefore, implementing the computation sezpierHowever, implementing residual generators with this fault
for a causally computable MSO set is straightforward. Feensitivity pattern is not a trivial task since all faultscept
instance, considei SO, shown in the previous subsectionone have to trigger the residual.

The corresponding computation sequence is depicted irbFig. Furthermore, analyzind/SO%¢ in Table VI, it could be
Here sensor equationg 124, €125} and constant assignmentsseen that most of system equations are contained in this MSO:
{e103, €100} have been omitted in order to make the figurd/ SO = M\ {e1, e34, €35, €79, €106 }, With M being the set
more readable. This computation sequence corresponds toadhl116 system equations. Computing the unknown variables of
evaluation of residuats. this MSO set entails solving a non-linear system of equation

To test the residuat,, fault fg has been simulated by anA search through all choices of a redundant equation in this
abrupt change of parametes,,, in equatioress, from nominal MSO set reveals that a non-linear algebraic loop of size at
value 5 - 1073m? to 4,5 - 10~3m?, at time 15 seconds. As least 49 needs to be solved. Similar conclusions can be drawn
long as faultfs does not occuryy ~ 0 (i.e., assuming model for the other MSO sets.



TABLE VI
RELATION BETWEEN NON-CAUSAL MSO SETS AND SYSTEM FAULTS [5]
fi fo fs fa fs fe fr
MSO7}* X X X X X X (6]
MSOgz° X X X X X X
MSOg* X X X X X X (7]
MSO}° | x x x X X X
MSOoge X X X X X X
MSOg* X X X X X X 8l
MSOne X X X X X X [9]

For these reasons, implementing residual generators in non
linear large models by means of the computation sequence is
often not possible when causal computations are not taken if10]
account.

[11]
VIII. CONCLUSIONS

Structural methods are often used to find suitable sets [&!
equations that can be used to design residual generators. If
invertability properties of the model are not taken intoaot  [13]
in the analysis, then the resulting residual generators may
include non-linear systems of equations that need to bedoly;4)
either analytically or by using numerical techniques.

One way to avoid solving non-linear systems of equations
is to take into account causal information an look for realduy;s)
generators where the unknown variables are computed usin
direct back substitution. Such back substitution soltiane [1°
only possible under strong requirements on the model struc-
ture. The basic idea in this paper is to extend back sulistitut [17]
techniques to allow linear loops. This alleviates the madet
straints but does not significantly increase the computatio [1g]
complexity of the residual generators. A main contributafn
this paper is a structural framework and algorithms to iidgnt [19]
sets of model equations where the unknown variables can
be solved either by back substitution or by solving linear
loops. In addition, a sensor placement algorithm has beléfl
developed that selects which sensors to include in order to
meet a given diagnosability requirement under the assompti
that all residual generators are designed using the extenéfd!
back substitution approach. [22]

A case study of a fuel cell stack system is used to illustrate
the approach. With no causal restrictions on the residuaf!
generator, less sensors are needed to meet the diagriysalpili]
requirement, but this comes at the price of having to solve
large non-linear systems of equations. Utilizing the chu 2>
information in the model results in a set of residual gener-
ators, fulfilling the isolability requirements, that carsidabe [26]
computed by a simple back substitution approach and/or by
solving linear loops.
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