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Abstract—In this paper, we address an important problem
associated with hierarchical design flows (termed the mapping
problem): identifying correspondences between a signal in a
high-level specification and a net in its lower level implemen-
tation. Conventional techniques use shared names to associate
a signal with a net whenever possible. However, given that a
synthesis flow may not preserve names, such a solution is not
universally applicable. This work provides a robust framework
for establishing register-transfer level (RTL) signal to gate-level
net correspondences for a given design. Our technique exploits
the observation that circuit diagnosis provides a convenient means
for locating faults in a gate-level network. Since our problem
requires locating gate-level nets corresponding to RTL signals,
we formulate the mapping problem as a query whose solution is
provided by a circuit diagnosis engine. Our experimental work
with industrial designs for many mapping cases shows that our
solution to the mapping problem is 1) fast and 2) precise in
identifying the gate-level equivalents (the number of nets returned
by our mapping engine for a query is typically one or two even for
designs with tens of thousands of VHDL lines).

Index Terms—Fault diagnosis, incremental synthesis, signal cor-
respondences, verification.

I. INTRODUCTION

C IRCUIT designs are typically represented at several
levels of abstraction such as a geometric description of

the layout, a gate-level netlist, or a higher level specification in
a hardware description language like VHDL. Synthesis tools
yield a hardware design by gradually refining a high-level
specification of the design [register-transfer level (RTL)] to a
lower level implementation (gate level or layout) using a series
of mapping and optimization phases.

Several applications in the top-down design approach require
designers to identify a portion of the gate-level implementation
that corresponds to a section of its RTL specification. For ex-
ample, “design bugs” and “late-arriving functionality” force in-
cremental changes to a specification and the gate-level imple-
mentation synthesized from it. Since the designer usually has
some investment in the original implementation [1], it is de-
sirable to reuse as much of that implementation as possible.
This has inspired the Synopsys engineering change order (ECO)
compiler [2], which uses the gate-level incremental synthesis
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techniques (specifications and implementations are gate-level
networks) [1], [3], [4] to carry out engineering changes (ECs) to
RTL specifications. The methodology takes the logical descrip-
tions synthesized from the original and modified RTL specifi-
cations and identifies equivalent logic regions for reuse through
intensive formal verification techniques. In this way, the new
implementation is gradually modified to inherit as much of the
original netlist structure as possible.

A clear disadvantage of the above approach is that a signifi-
cant portion of the time is spent on identifying the large portions
of the design that are unlikely to change (formal verification
of industrial designs typically takes several hours to days for
completion). An alternative way to make incremental synthesis
work would be to provide a viable means for identifying theap-
propriateportion that changes in the gate-level implementation
due to a modification of the RTL specification. We can clearly
do this if we can establish a correspondence between a signal
of interest in the RTL specification and a net or set of nets in its
gate-level implementation. This is themapping problemtackled
in this paper.

Another application that critically requires an efficient solu-
tion to the mapping problem is RTL to gate-level verification.
This is required to improve the performance of the core ver-
ification engine that compares a “mapped” (low-synthesis ef-
fort) gate-level netlist obtained from the RTL circuit with the
implementation netlist. Such verification techniques have been
known to scale well to large designs only when a large number
of internal correspondences can be established between the two
netlists [5]. Therefore, a technique that efficiently maps RTL
signals to gate-level nets in the implementation netlist would
significantly improve their overall performance.

From the above discussion, we see that a solution to the map-
ping problem has the potential to affect applications as diverse
as incremental synthesis and design verification. The main bot-
tleneck that has confronted researchers so far is the absence of a
clear way for identifying the gate-level net corresponding to an
RTL signal. Traditional approaches have relied on using shared
names to relate signals and nets, whenever possible. However,
this approach has a major disadvantage since names are usually
not preserved across the multiple phases that make up a syn-
thesis framework. This is true not only when multiple vendors
cater to a synthesis framework, but also when a single vendor
is responsible. Even otherwise, finding an exact solution to the
mapping problem may be practically impossible. For example,
a signal in the VHDL specification may not appear as a signal
in the gate-level network due to optimizations such as constant
propagation, technology mapping, etc. Given that an applica-
tion such as EC restructures the logic around an RTL signal of
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Fig. 1. Flow chart for diagnosis.

interest, even a solution that can identify the gate-level equiva-
lents of RTL signals in topological proximity to the EC is desir-
able.

Our solution to the mapping problem is motivated by obser-
vations from a different domain, namely,circuit testing and di-
agnosis[6]. Testing is performed to determine if a circuit is
faulty. Once a circuit is found to be faulty, fault diagnosis is
performed to locate the fault. Typical chip fault diagnosis pro-
ceeds as shown in Fig. 1. A testbenchtargeting a set of mod-
eled faults for the original gate-level implementation is
generated by using a test generator, e.g., HITEC [7] (Step 1).
The vector sequence is then applied to the given circuit
(Step 2). If the circuit responses so obtained do not match the
expected responses,is declared faulty (Step 3). A diagnosis
engine looks at the faulty responses and to pinpoint the lo-
cation in , which is faulty in (Step 4).

A natural solution to the mapping problem follows from
the above statements. First, we introduce a suitablefault at
the signal of interest in the RTL description. Note that this
modification is introduced only for analysis and does not
denote a permanent addition. Then, we simulate thisfaultyRTL
description to generate the responses for a selected testbench
(if the testbench is generated by a gate-level sequential test
generator such as HITEC, then the injected fault is a single
stuck-at fault. This is further detailed in Section III). Lastly, a
fault diagnosis engine looks at thesefaulty responses and the
original gate-level implementation for identifying the desired
gate-level net or set of nets. Our experiments indicate that this
natural solution is a practical plugin to any synthesis system.
We also use this solution to propose an incremental synthesis
method that effectively tackles the problem of making ECs to
RTL specifications.

The rest of this paper is organized as follows. Section II in-
troduces the mapping problem and Section III presents the diag-
nosis-based solution methodology. Section IV applies this solu-

Fig. 2. Inputs and output for the mapping problem.

tion to the problem of making ECs to RTL specifications. Sec-
tion V presents experimental results and Section VI concludes
the paper.

II. M APPING PROBLEM

In this section, we formally define the mapping problem.
Then, we use a simple example to demonstrate the shortcom-
ings of a conventional solution. Lastly, we illustrate why fault
diagnosis offers a natural solution to the mapping problem.

Consider the RTL description of a circuit with a set
of signals and a set of processing elements such that

( is a graph with vertex set and
edge set ). Let be the gate-level implementation syn-
thesized from with a set of gates and a set of intercon-
nections such that . Then, the map-
ping problem is defined as follows.

Definition 1: Let . Does there exist an such
that and are functionally equivalent?

The inputs and output of the mapping problem are shown
in Fig. 2. To understand the problem better, let us consider an
instance of the mapping problem and a conventional solution for
it.
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(a) (b)

Fig. 3. Parts of (a) an RTL circuit and (b) its gate-level netlist with name correspondences preserved.

Example 1: Fig. 3(a) shows the structural view of part of an
RTL circuit, where the sum of signals and is assigned to
signal . Assume that these latched signals are single-bit values
and that a gate-level netlist synthesized from this circuit descrip-
tion is also available [Fig. 3(b) represents a part of the gate-level
netlist]. Consider the mapping problem of identifying the net in
Fig. 3(b) corresponding to signal in Fig. 3(a).

A conventional solution to this problem is shown in Fig. 3(b).
This solution assumes that the names of the nets are preserved
across the different synthesis phases. Consequently, the latch
corresponding to signal is named , and so on. With
this information, we identify the output of as the rele-
vant net of interest. This solution is limited in its applicability
for the following reasons.

1) An existing system must maintain correspondence be-
tween the names present in input and output descriptions
of the individual synthesis phases. Maintaining such
databases places a considerable burden on the end-user
system.

2) The stringent naming requirements must not only be met
by the existing synthesis phases, but also by any new op-
timization plugins added to the synthesis path. If these
plugins are developed by other vendors, the proposed so-
lution is likely to break down.

In the above example, we saw a conventional solution based
on naming correspondences and its limitations. In the next ex-
ample, we outline a robust scheme for overcoming these limita-
tions. Details of the solution methodology follow in the subse-
quent sections.

Example 2: Consider now the RTL circuit shown in Fig. 4(a),
where signal is set to logic value 0. If we simulate this cir-
cuit with a testbench, the set of responses output by the cir-
cuit is likely to be different from the set of responses output
by the circuit in its normal functioning. We can restate the pre-
vious statement in a stronger manner as follows. The set of re-

sponses output by the modified RTL circuit is identical to the
set of responses output by a gate-level netlist [see Fig. 4(b)]
with a stuck-at 0 (SA0) fault on , the gate-level equivalent
of signal . In other words, a diagnosis engine examining the
faulty RTL responses and the original gate-level netlist would
output with an SA0 fault as the solution. In this way, we
locate the gate-level equivalent ( ) of signal .

III. FAULT-DIAGNOSIS-BASED SOLUTION FRAMEWORK

In this section, we present an overview of the proposed solu-
tion methodology followed by details of the constituent steps.

A. Solution Paradigm

In Section I, we saw that fault diagnosis provides a direct
means for locating faults in a circuit. Before proceeding fur-
ther, let us first describe the fault diagnosis problem formally.
Suppose that we have a fault-free gate-level circuit

with vertex set and edge set and a set of test
vectors targeting single stuck-at faults in . Then,
the diagnosis problem (see Fig. 5) can be defined as follows.

Definition 2: If is the sequence of responses that a
faulty implementation of yields on receiving ,
which net (or nets) in could have a single stuck-at
fault to cause such a sequence of responses?

Since the mapping problem (Definition 1) requires lo-
cating the gate-level net corresponding to an RTL signal,
we can formulate the mapping problem as a question whose an-
swer is provided by diagnosis (Definition 2). In other words, we
can reduce to using the transformation described below.

1) Introduce a single stuck-at fault at signalin . That
is, set permanently to logic value 1 [stuck-at 1 (SA1)
fault] or to logic value 0 ( SA0 fault). This constitutes the
stuck-at transformation shown in Fig. 6.
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(a) (b)

Fig. 4. Parts of (a) an RTL circuit and (b) its gate-level netlist with the mapping solution determining the correspondence.

Fig. 5. Diagnosis problemD.

Fig. 6. ReductionT to solve the mapping problemM.

2) creates a circuit (at the RTL) with a single stuck-at fault.
We now simulate thisfaulty RTL circuit with the
testbench for the gate-level circuit to ob-
tain a set of faulty responses (phase in Fig. 6).

3) The composition constitutes the desired reduction.
Fig. 6 now completes the solution methodology. When a gate-

level diagnosis engine examines the faulty responses along
with the description of , it solves the diagnosis problem

by determining the net or a set of nets in , which,
when faulty, will produce . This net corresponds to the
gate-level equivalent of since the fault was introduced at
(note that a single stuck-at transformation can identify nets to
within the equivalence class of faults; this is further discussed
in the subsequent sections). In this way, reductiongives us
the opportunity to use an existing solution to solve . The
strengths and limitations of (along with the circuit under
consideration) clearly contribute to the extent to which we can
solve successfully.

With the help of the following example, we illustrate the RTL
transformation technique and show how our methodology can
be systematically applied.

Example 3: Consider process shown in Fig. 7, which
forms a fragment of a VHDL description. We are going to use
VHDL throughout this paper for consistency. However, similar
transformations can be done on Verilog descriptions as well.

assigns different values to the parameter based
on the values taken by . Let us consider the mapping
problem, which examines the following query:which gate-level
net(s) corresponds to (bit 0 of offset)?

We can systematically apply the aforementioned solution par-
adigm as follows (with , , and assuming
the usual meaning).

1) In order to establish a correspondence between
with an unknown net or set of nets, say, in the gate-level
network , we first introduce a stuck-at fault at line

. This is shown in Fig. 8, where assignments to
in lines 3–5 are modified to incorporate an SA1

fault at (using the VHDL concatenation operator
&). This transformation yields the new RTL description

.
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Fig. 7. Fragment of VHDL code calledEx1.

Fig. 8. Example of the stuck-at transformation:o�set(0) in Ex1 set to 1.

2) Next, given the gate-level network , say with six
inputs and eight outputs, an automatic test pattern gen-
eration tool is run to obtain a testbench that tar-
gets all the single stuck-at faults in . Suppose that

is the vector sequence given below

(1)

We now simulate with to get the output
responses . Suppose that is as follows:

(2)

3) A diagnosis engine now accepts and as its
inputs. A simple way of looking at the diagnosis proce-
dure is to associate a lookup structure that successively
prunes the list of candidate faulty nets as it sequentially
examines both the expected and faulty responses. This is
illustrated in Fig. 9. Suppose that we have an initial list
of four candidate faults at the end of the first step as
follows:

(3)

The next comparison of responses prunes to
. Diagnosis finally outputs

with a unique member . This means that
in is the faulty gate-level net that could

have produced the computed responses . Or, is
the desired gate-level equivalent of RTL signal .

Note that fault diagnosis (Step 3 in the above example) can be
done in many ways. Static techniques [8] use precomputed in-
formation in the form of fault dictionaries to match the faulty re-
sponses produced by the defective circuits. Dynamic techniques
[9] diagnose the fault behavior of the circuit while the test set is
applied. More recently, integrated techniques use small amounts
of precomputed information in tandem with dynamic algorithms
to perform efficient fault location [10].

B. Reduction—A Closer Look

In this section, we examine the individual steps of the reduc-
tion in greater detail. First, we examine stuck-at transformations
and then discuss the test generation and diagnosis phases of the
solution.

1) Stuck-At Transformations:The stuck-at transformation
that introduces an SA0 or an SA1 fault at an RTL signal for
subsequent processing can be formally defined as follows.

Definition 3: Thestuck-at transformationfor an RTL signal
modifies all assignments toso that takes a constant value,

i.e., either logic 0 (for an SA0 transformation) or logic 1 (for an
SA1 transformation).

In many cases, we can apply either the SA0 transformation
or the SA1 transformation (Example 3) to find a solution to
the mapping problem. However, in some cases, we may have
to use both the transformations. This is because the precision
with which diagnosis can identify a gate-level net is limited by
the faults to which a fault on that gate-level net is equivalent. For
example, consider theNAND gate network for anXOR function
of two variables shown in Fig. 10 [11]. The classical example
for equivalence is that line and line are indistin-
guishable because they produce the same faulty responses for
all input vectors. In fact, the equivalence class containing
is . Likewise, the equiva-
lence class containing is .

Extending the above example to the mapping problem, we
can see that if line is the desired mapping solution and the
RTL stuck-at transformation is actually targeting , then
our solution will be accurate to the resolution level of (ele-
ments of are indistinguishable by definition). Similarly, if we
use only the RTL SA1 transformation that is actually targeting

, then our solution will be accurate to the resolution level
of . However, if we use both the transformations and com-
pare the results, we find that the only net identified by both the
transformations is net (in other words, the intersection of
and finds the net faulty in both and , which is ). In this
way, application of both the SA0 and SA1 transformations at the
RTL [so as to target SA0 and SA1 faults on the corresponding
gate-level net(s)] improves the accuracy of the mapping solu-
tion.

The stuck-at transformation is a simple and powerful tool that
is applicable toanysignal in the VHDL description of a circuit
irrespective of the language constructs used. It can be applied
to any RTL signal that is expressible as a bit or bit-vector data
type. The next example illustrates a typical instance of how this
transformation can be incorrectly applied and the subsequent
side-effects.

Example 4 (Latch Inference Problem):Consider, for ex-
ample, the VHDL conditional construct shown in Fig. 11(a)
and the problem of applying an SA0 transformation to .
Direct modification of the construct to incorporate a perma-
nent logic 0 at preserves the assignment in
the if portion while modifying the assignment in theelseif
portion. This is shown in Fig. 11(b). However, the indicated
modifications do not completely achieve the objective of
introducing logic-0 settings on all assignments to the
signal. This is because of potential implicit latch inferences
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Fig. 9. Snapshot of faulty net identification using fault diagnosis.

Fig. 10. NAND gate network for theXOR function.

(a)

(b)

Fig. 11. VHDL code fragment (a) in its original form and (b) with an incorrect
application of the stuck-at transformation.

in a synthesis system [12]. In other words, Fig. 11(b) ignores
the presence of an implicitelse construct that executes the
“ ” statement in Fig. 11(a) [note that the
“ ” statement is still in-
ferred]. Therefore, the correct transformation should explicitly
include anelsestatement as shown in Fig. 12.

Let us now analyze how differences between the code in
Figs. 11(b) and 12 can affect the overall solution. Suppose that
signal takes the following sequence of values .
Then, in Fig. 11(b) evaluates to . How-
ever, in Fig. 12 evaluates correctly to
since has an SA0 fault. Since a diagnostic engine
compares the expected and faulty responses to obtain the fault
location, the faults identified in the two cases are likely to be
different.

2) Test Generation and Diagnosis:The RTL description
generated after applying the stuck-at transformation is charac-

Fig. 12. VHDL code fragment with the correct usage of the stuck-at
transformation.

terized by an SA0 or SA1 fault on an RTL signal. Since our
approach requires this fault to be detected and located in the
original gate-level description, we will now examine how this
affects the success of our method.

Observation 1: The probability of locating the gate-level
equivalent of an RTL signal is limited by the testability of the
faults induced in the gate-level implementation by the two
stuck-at transformations applied to the RTL signal.

Let us analyze the above observation in greater detail. If the
faults introduced on the RTL signal alter the output responses
for the given testbench, then they are detectable. Otherwise, if
neither of the two faults gets detected, we cannot proceed fur-
ther. Extending these statements further, we can say that if a
circuit is highly testable, then it is very likely that we can find
a mapping solution. Available information about the economics
of circuit design and manufacturing [13], [14] indicate that at
least 98% fault coverage is necessary to reduce field failures and
cut down costs. This statistic as well as empirical evidence sug-
gests that our solution methodology will fare well for circuits
designed in the industry. Note that even if the SA0 (SA1) fault
on a line is untestable, but the corresponding SA1 (SA0) fault is
testable, our method is still applicable.

While test vectors that guarantee high fault coverage are cru-
cial for fault detection, their diagnostic quality in terms of their
ability to distinguish fault pairs is also important. For example,
suppose that testbench ( ) detects fault because the cir-
cuit with fault generates a response ( ) that differs from
the normal response ( ). Likewise, suppose that test-
bench ( ) detects fault because the circuit with fault
generates a response ( ) that differs from the normal re-
sponse ( ). This means that faults and are indistin-
guishable when testbench is applied while distinguishable if
testbench is applied. In other words, while either testbench
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Fig. 13. Iterative strategy for enhancing the effectiveness of the mapping solution.

or is suitable for fault detection, only testbench fa-
cilitates diagnosis.

Diagnostic test generation [15] provides a means for deriving
a test set that can facilitate both fault detection as well as sub-
sequent diagnosis. Test vectors generated using diagnostic test
generators are the ideal candidates for our methodology be-
cause they can potentially resolve the mapping problem with
one stuck-at transformation. However, empirical evidence indi-
cates that a gate-level sequential test generator like HITEC [7]
that does not explicitly target diagnosis is able to achieve com-
parable precision.

For many designs (with high or low fault coverage and/or di-
agnosability), we can iteratively improve the performance of the
diagnosis-based mapping solution as illustrated in the following
example.

Example 5: Consider the objective of determining the
mapping solutions for signals and in the RTL
circuit description (see Fig. 13). Assume that our diag-
nosis-based mapping engine first established correspondence
of with net in the gate-level implementation ,
and then failed to determine the gate-level equivalent net of

.
One way to get around the above bottleneck is to reuse in

a meaningful manner theestablishedcorrespondence, namely,
that of and . A simple step would be to make and

primary outputs in and , respectively (again,
note that this transformation is for analysis performed by the
mapping engine only). This improves the testability and diag-
nosability of the given circuitwithoutviolating existing corre-
spondences in any way. The transformed and
descriptions are now fed to the mapping engine to determine
the gate-level equivalent net of (net in Fig. 13).

Generalizing the above strategy for the case when mapping
solutions to multiple signals must be computed, a design can
be modified at any iteration by the introduction of primary in-
puts and/or primary outputs at RTL signals and gate-level nets
whose correspondence has already been established. For a given
gate-level netlist, this transformation yields a new netlist that
maintains a one-to-one correspondence with it, but with en-

hanced testability and diagnosability characteristics. Hence, the
mapping engine now computes a testbench that can detect and
identify a larger set of faults than before. Therefore, more RTL
to gate-level correspondences can be established when the mod-
ified RTL and gate-level descriptions are used in the next itera-
tion.

IV. A PPLICATION TO INCREMENTAL SYNTHESIS

In this section, we detail how the mapping solution is applied
to a practical problem like incremental synthesis. First, we out-
line our framework for incremental synthesis and then illustrate
its working with the help of an example.

A. Overview

In Section I, we suggested a viable alternative for tackling
ECs of RTL specifications that relies on identifying theappro-
priateportion that changes in the gate-level implementation due
to a modification to the RTL specification (see Fig. 14). We can
clearly do this if we can establish a correspondence between
a signal of interest in the RTL specification ( ) and a net
in its gate-level implementation ( ). This is the mapping
problem we have illustrated in Section II.

With the mapping solution in the incremental synthesis
framework, no synthesis effort is necessary for obtaining the
new implementation . We can now view incremental
synthesis as a “find-and-replace” mechanism wherein we
first find the region of interest in using the
mapping solution and thenreplace it with a new gate-level
section . This “find-and-replace” mechanism can be
implemented systematically as shown in Fig. 15 to realize

as follows.

1) First, identify region in corresponding to
the EC made to using our solution to the mapping
problem (Steps 1–3). For this purpose, we first extract
using RTL constant propagation and redundancy anal-
ysis an envelope encompassing the EC. This simply can
be the process boundary or the smallest boundary con-
sisting of latched inputs and outputs (latch boundaries are
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Fig. 14. Incremental synthesis paradigm.

Fig. 15. Incremental synthesis. Detailed flow.

often used by formal verification techniques [16], [17]
to reduce sequential logic verification to a combinational
equivalence check). We call this list of inputs and out-
puts and generate the mapping solutions for the
different signals using the framework in Section II. This
gives us in .

2) Next, generate aprimitive model for (Step
4) and verify that the identified region in

is equivalent to it (Step 5). is a module-level
description of and can assume any equivalent form.
Its purpose is to have a structural or Boolean description
that our equivalence checker uses to compare with the
identified for equivalence.

3) Having established the above correspondence, replace
with the gate-level implementation of in

to synthesize .
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Fig. 16. Ex1 with the desired EC.

If the equivalence checker fails (Step 5), we examine if an al-
ternative mapping solution is possible and reapply the previous
steps.

B. Incremental Synthesis Example

In this section, we demonstrate how a find-and-replace-based
incremental synthesis framework can be used effectively to
carry out ECs of RTL specifications.

Example 6: Consider again the VHDL code fragment
shown in Fig. 7. Since the rest of the code is not shown, assume
that contains the only assignments to in the entire
specification and also that is a three-bit signal. Consider
the design error where in line 3 is erroneously assigned a
“0011” value instead of a “0010” value. Then, the EC in ques-
tion is the transformation of line 3 in Fig. 7 to that shown in
Fig. 16.

Clearly, the extent of change affected by the EC shown in
Fig. 16 is likely to be small. If forms a portion of a
medium-sized design with around 10 000 lines of VHDL code,
then the EC shown affects less than 0.01% of the RTL descrip-
tion. In the following example, we will show how the different
steps in Fig. 15 can be systematically applied to carry out the
EC introduced in Example 6.

Example 7: Consider again the EC discussed in Example 6
assuming that is the extracted in Fig. 15. Therefore,

and are the RTL signals for which
we apply our solution to the mapping problem (Section II). The
mapping solution yields the region shown in Fig. 17,
where is the gate-level net corresponding to ,
and so on.

We are now ready to verify that the marked region in the
gate-level netlist indeed corresponds to in the RTL de-
scription. For this purpose, we generate the primitive model for

, , as shown in Fig. 18. This primitive model
and the extracted “sea_of_gates” from Fig. 17 form the inputs to
our equivalence checking engine which results in “affirmative”
verification.

We then apply the EC to the primitive model in Fig. 18. In
other words, we modify constant “0011” to “0010” in Fig. 18.
A gate-level description is then synthesized from the modified
primitive model, which then replaces shown in
Fig. 17. This completes incremental synthesis.

V. EXPERIMENTAL RESULTS

The techniques described in this paper were evaluated within
the framework of an inhouse synthesis flow with the help of

five example designs. The examples were chosen from a suite
of Fujitsu designs used in telecommunication and networking
applications. A designer-specified set of mapping instances in
these examples were then selected for analysis. We applied the
diagnosis-based solution methodology (Section III) to find the
corresponding gate-level nets. Once the mapping solutions were
determined, we validated them using the equivalence checker
[18].

Typical synthesis of a circuit in our set-up proceeds as fol-
lows. At the top-level, the Synopsys Design Compiler [12] takes
in the RTL specification of the circuit as its input along with the
specified constraints. High-effort synthesis is then used to opti-
mize the design for the specified constraints. The output of De-
sign Compiler is then customized and technology-mapped using
an industrial cell library to a gate-level netlist. Then, iterative
improvement procedures are used at the logic level to enhance
the quality of the final gate-level netlist for area and/or delay
constraints. Most nontrivial name correspondences between the
RTL signals and the gate-level nets except those of the design’s
inputs and outputs are lost at this stage.

Table I describes the characteristics of the different bench-
marks. Circuit GPIO is a general-purpose input–output con-
troller that is used as an interface circuitry in system chips.

is an asynchronous transfer mode switch part while
is a memory controller. and

form portions of popularly used chip sets. Columns 2 and 3 in-
dicate the size of the specifications and the number of signals
at the RTL. Columns 4 and 5 give postsynthesis gate-level sta-
tistics in terms of the number of flip-flops and number of nets,
respectively. Columns 6, 7, and 8 report the results of test gen-
eration (fault coverage, number of test vectors, and test gener-
ation time) obtained from running the gate-level sequential test
generator HITEC [7] on the different circuits. Note that HITEC
generates test vectors only for fault detection and does not ex-
plicitly target fault diagnosis. The central processing unit (CPU)
time was measured on a 360-MHz UltraSparc 60 workstation
with 512-MB dynamic random access memory.

Our experiments to study the effectiveness of the diagnosis-
based solution framework consisted of first selecting a designer-
specified set of mapping instances for analysis and then ap-
plying our diagnosis-based mapping solution. The results are
summarized in Table II. Columns 2 and 3 describe the mapping
instances and their classification into the functionality (Databit
or Control bit) that they describe. For example, mapping in-
stance is a parity control bit set in a nested conditional con-
struct. Mapping instance is a data bit assigned values in a
case construct. This example was specifically selected since a
design error in one of the assignments tomade it a suitable
candidate for the incremental synthesis procedure described in
Fig. 15. For any mapping instance, both SA0 and SA1 transfor-
mations were applied to the RTL signal for generating the faulty
responses using HITEC-generated test vectors. Column 4 re-
ports the number of VHDL lines affected by carrying out an SA0
or SA1 transformation. A state-of-the-art fault diagnosis engine
[19] was then used to determine the gate-level net (or nets) cor-
responding to the RTL signal. This engine exploits three-valued
fault simulation to perform efficient fault diagnosis. This is im-
portant because faulty responses can contain somevalues and
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Fig. 17. G(Proc1) extracted from the original gate-level netlist.

Fig. 18. Primitive model ofProc1.

TABLE I
CIRCUIT CHARACTERISTICS

these must be considered by the diagnosis engine for accurate
fault location. Column 5 indicates the total CPU time taken by
the diagnosis scheme for determining the mapping solution. In
Column 6, we indicate the size of the mapping solution in terms
of the number of faulty gate-level nets common to the equiv-
alence classes returned by the SA0 and SA1 transformations.
None of the mapping solutions had shared names relating the
RTL signals and the gate-level nets.

The average number of nets returned by our mapping engine
for the different mapping instances is 1.8. Expressed as a per-
centage of the total number of nets in each case, this number
amounts to only 0.028%. We performed an additional experi-

ment with example GPIO. We carried out the mapping process
for all the RTL signals and found that gate-level mappings for
95 of these signals (98%) were returned by our engine.

With the average diagnosis time being 71.1 s, these results
demonstrate that our solution is fast and highly accurate for the
example designs. The technique proved to be highly effective
in identifying correspondences in complex control logic even
for large designs. For example, the gate-level equivalent for,
which is a start-of-data-transfer flag in the memory
controller example required only 39.7 s for the identification of
a net among 14 424 existing nets (see Table I). Formal verifi-
cation techniques, in contrast, cannot handle the size of the cir-
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TABLE II
MAPPING SOLUTION STATISTICS

cuits considered due to the well-known state-space explosion
problem.

Also noteworthy is the extremely small number of lines in
the RTL specification that needed to be changed (temporarily)
in order to perform our transformations (the least and most
number of lines transformed were 1 and 22, respectively). The
above observations clearly demonstrate the effectiveness and
ease-of-use of our mapping technique on typical design styles
and sizes. Note that the approach is precise by construction
using three-valued RTL simulation as well as fault diagnosis.
Its performance is, therefore, constrained only by the testability
of the gate-level net under SA0 and SA1 faults. In that sense,
the overall testability of the original implementation greatly
influences the success of this methodology.

VI. CONCLUSION

This paper addresses an important problem in hierarchical de-
sign flows, namely, the mapping problem of establishing corre-
spondences between RTL signals and gate-level nets. We con-
tribute an efficient solution that reduces the mapping problem
to a diagnosis query, thereby enabling the application of a rich
set of techniques developed in the area of circuit diagnosis to
this problem. Our experiments with industrial circuits clearly
demonstrate the efficiency and resolution with which the map-
ping problem can be solved in practice and applied to an ap-
plication like incremental synthesis. We believe that techniques
such as ours that transform one level of the hierarchy and ana-
lyze potential transformations that result in similar changes at a

different level of hierarchy will not only increase in popularity,
but will be key in establishing signal correspondences in future
design flows.
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