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�e analysis of vibration signals has been a very important technique for fault diagnosis and health management of rotating
machinery. Classic fault diagnosis methods are mainly based on traditional signal features such as mean value, standard derivation,
and kurtosis. Signals still contain abundant information which we did not fully take advantage of. In this paper, a new approach is
proposed for rotatingmachinery fault diagnosis with feature extraction algorithm based on empirical mode decomposition (EMD)
and convolutional neural network (CNN) techniques. �e fundamental purpose of our newly proposed approach is to extract
distinguishing features. Frequency spectrum of the signal obtained through fast Fourier transform process is trained in a designed
CNN structure to extract compressed features with spatial information. To solve the nonstationary characteristic, we also apply
EMD technique to the original vibration signals. EMD energy entropy is calculated using the �rst few intrinsic mode functions
(IMFs) which contain more energy. With features extracted from both methods combined, classi�cation models are trained for
diagnosis. We carried out experiments with vibration data of 52 di
erent categories under di
erent machine conditions to test the
validity of the approach, and the results indicate it is more accurate and reliable than previous approaches.

1. Introduction

Rolling-element bearings (REBs) are the most fundamental
and important components of rotating machines in indus-
trial manufacture and agricultural production. �erefore,
the analysis of REB vibration signals is always considered
an important approach in fault diagnosis and condition
monitoring. A minor defection of rolling bearings may lead
to breakdown of the entire system and cause severe �nancial
losses.

Vibration signals are usually generated from rolling-
element bearings, which contain rich information that may
assist in the procedure of condition monitoring, fault diag-
nosis, and machine health management. �e research of
bearing fault diagnosis has long been receiving extensive
attention over years and is becoming more important in
modern industry for the need of higher reliability and lower
loss possibility.

Essentially, fault diagnosis is a pattern recognition prob-
lem, which includes two major steps that are feature extrac-
tion and classi�cation. Traditional features of vibration sig-
nals are generated from threemain kinds of methods as listed
below. Time domain analysis and frequency domain analysis
are mostly commonly used in feature extraction; also the
combination known as time-frequency domain analysis is
another signi�cant method.

Timedomain features have long been used in the aspect of
fault diagnosis for rotating machinery [1]. Most time domain
features are statistical features such as mean value, root mean
squares, standard deviation, kurtosis, and skewness. �ey
are generally easy to calculate and acquire and therefore are
trained in di
erent classi�er models for fault diagnosis. Hu et
al. [2] and Sreejith et al. [3] combined time domain features
with arti�cial intelligence, namely, arti�cial neural network
(ANN), in bearing fault diagnosis. Anothermachine learning
technique such as support vector machine (SVM) is also
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applied in [4]. Chang et al. in [5] summarized other time
domain features used in fault diagnosis.

�e analysis of the vibration signals’ frequency spec-
trum is the basis of frequency domain analysis. Fundamen-
tal frequencies of the signals are calculated through fast
Fourier transform. Usually the signi�cant frequencies and
the corresponding amplitudes are chosen manually as fault
diagnosis features. Frequency domain features are applied
with di
erent methods in [6–8]. Time domain features and
frequency domain features re�ect di
erent characters of the
vibration signals, so generally fault diagnosis methods con-
sider them both as classi�cation features. In [9], time domain
features and frequency domain features were combined using
information fusion and an ANN model was trained for fault
diagnosis. Cao et al. in [10] trained a SVMmodel with feature
extraction using PCAmethod. Other experiments were done
trying to take advantage of both domain analyses in [11, 12].

Time-frequency methods are usually e
ective in extract-
ing the features of the original rotating machinery signals.
However, most of the vibration signals may have nonsta-
tionary characteristic; other analysismethods are introduced.
Wavelet transform is one of the most useful signal analysis
methods. E�cient results of applying wavelet transform are
shown in [18, 19].

�ough traditional analysis methods are mostly e
ective,
however some fundamental mathematicmodels usually need
to be established before applying to the original signals. For
instance, the fundamental frequencies need to be selected
manually and the bandwidth of �lters to preprocess signals
is chosen with expert experiences. In real rolling-element
bearing systems, signals are more complex and parameters
may be hard to extract or determine.

Being a time-frequency analysis technique, empirical
mode decomposition (EMD) shows its powerful ability for
signal analysis. �e analysis process of EMD is not based on
predetermined parameters but takes the local time scales of
the signals into consideration [20]. In an EMD procedure,
the vibration signal of a rotating machine is decomposed
into a set of intrinsic mode functions (IMFs). Each IMF
may be considered as a basic function of the signal. When
the vibration signals are nonlinear and nonstationary, EMD
technique may have better performance than traditional
techniques. Also, EMD is a self-adaptive processing method,
which means less manual work.

Most feature extraction methods mentioned focused on
utilizing signal characteristics instead of modeling the signal
itself. However, vibration signals still contain rich informa-
tion. Recentlymachine learning techniques, especially neural
networks, have beenwidely used in feature engineering. Deep
learning technique is a machine learning method proposed
in 2006 [21]. �e special structure of deep neural network
(DNN) makes it possible to extract features for original
signals representation [22]. �e performance of DNN has
been state of the art in many applications, such as computer
vision andnatural language process [23, 24]. Researchers have
applied DNN in fault diagnosis as well [25–28]. Verma et al.
[27] purposed a condition monitoring method using sparse
autoencoder. In [25], Tagawa et al. built a model based on
denoising autoencoder for car fault diagnosis.

Convolutional neural network (CNN) is an important
machine learning technique. CNN is a deep neural network
structure thatmainly focuses on image processing. Like other
neural network structures, CNN is formed by a number of
neurons, which are organized as the re�ection of di
erent
overlapping part in the whole �eld. CNN has been used
for image classi�cation and segmentation, and it already has
achieved e
ective results [29, 30].

In this paper, EMD and CNN are both applied as
feature extraction method, and a complete structure for
fault diagnosis of rolling-element bearing is designed and
trained. �e following parts of the paper are organized
as below. In Section 2, a literature review is given about
CNN and EMD applications. Details of CNN and EMD
methods and a complete structure of our approach are also
described and discussed. In Section 3, the validity of our
newly proposed approach for REB fault diagnosis is testi�ed
by di
erent experiments which we carried out. In addition,
the experiment results are compared with other analysis
methods. In the end, the conclusion of this paper is drawn
in Section 4.

2. Methodology

First of this section, details of CNN and EMD methods are
introduced, a�er which a complete structure of our approach
is described and discussed.

2.1. Convolutional Neural Network. Deep learning methods
have outstanding performances in image classi�cation, com-
puter vision, and nature language process. CNN structure is
a type of deep neural network. Neurons forming the CNN
structure have weights and biases which are changeable and
learnable through training.

A number of CNN structures are developed in recent
years such as LeNet, GoogleNet, and AlexNet. Figure 1 is
a typical structure of LeNet model. Applications in image
recognition, video analysis, and nature language process also
show the e
ectiveness of CNN model [31–35].

A CNN structure is made up of three types of layers,
which are convolutional layer, subsampling layer, and fully
connected layer with a loss function such as SVM or so�-
max classi�er [36]. Typical CNN structure can therefore be
divided into two parts. Convolutional layers and subsampling
layers work as the feature extractor, while the last layer works
as a classi�er.

A convolutional layer is the most important and fun-
damental component of a CNN structure. Each neuron in
a convolutional layer receives some inputs of a restricted
region in the whole signal. �e convolutional layer’s weights
and biases are considered as a group of convolution kernels
(or �lter). A kernel only takes a relatively small region of
the signal into consideration and projects the whole signal
to a brand new feature map, which means dot product is
calculated between the signal and each kernel repeatedly.
Since the replicated kernel shares the same parameter setup,
the number of the network parameters is relatively small.

A � × � × � signal vector is input to a convolutional
layer as the extractor part of CNN. � is the height and
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Figure 1: Typical convolutional neural network structure of LeNet.
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Figure 2: Structure of convolutional neural network.

width of the input signal, and in general cases the height
and width are the same. � is the number of channels of the
input. A convolutional layer has � �lters (kernels) in the size
of � × �, where � is usually less than half the size of the
input vector’s height �. Each of the �lters takes a relatively
small local region of the input signal into consideration and
projects the whole signal to a brand new feature map, which
means dot product is calculated between the signal and each
kernel repeatedly. � feature maps are generated with the size
of � − � + 1. Each feature map is then generally subsampled
in contiguous � × � areas. Types of subsampling techniques
include average pooling and maximum pooling depending
on the calculation of a restricted area. Also in the pooling
process, the pooling areas may be overlapped.

As we know, the convolution layer is used for extracting
signal features, and the pooling layer may reduce computa-
tion cost. A�er feature extraction, the extracted features are
usually put into a classi�er. In this paper, CNN is only used as
a feature extractor for fault diagnosis, and the classi�cation
part is done a�er combining other time-frequency domain
features.

Figure 2 presents the structure of the CNN structure used
in this paper. Consider vibration signals� as the input signals
and � as labels of the signal. In the convolutional layer, a
set of feature maps can be acquired by using di
erent �lters.
Subfeature maps are the result of convoluting multiple input
feature maps. �e process is calculated as follows:

	�� = 
( ∑
�∈��

	�−1� ∗ ���� + ���) , (1)

where �� represents the selection of input feature maps,� is the �th layer of a network, � is a convolutional �lter
connecting the �−1th layer to the �th layer, 
 is a nonlinearity

active function, and 	�� represents the feature map generated

from the �−1th layer. � is the additive bias given to each output
feature map.

Traditional nonlinearity active function 
 used in neural
network is sigmoid function (
(	) = 1/(1 + �−�)), but due
to its problem in gradient vanishing, a new active function
called Relu (Recti�ed Linear Units) function is generally used
in deep learning methods. �e expression of Relu function
is 
(	) = max(0, 	). Besides solving the gradient vanishing
problem in back propagation steps of the neural network
training, the amount of calculation would be much less
using Relu function. �e outputs of some neurons would be
zero using Relu function, which leads to the sparsity of the
network and avoids the problem of over�tting.

A subsampling layer is calculated as follows:

	�� = 
 (��� ⋅ down (	�−1� ) + ���) , (2)

where � and � are multiplicative bias and additive bias.���� represents a subsampling function; common sub-
sampling functions are max pooling and average pooling
functions. In a max pooling process, the max of the restrict
region is chosen as the new feature, while, in an average
pooling, a mean value of the same region is calculated as
the new feature. Generally speaking, max pooling re�ects
the most signi�cant characteristic while average pooling
smoothens the region and selects the smoothed feature for
further use in the following layers.
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CNN method has the advantage of extracting feature
automatically due to the back propagation (BP) steps. �e
gradient of the loss function for all the weights in all the layers
is calculated by BP algorithm.�emean-squared error (MSE)
of the output layer is expressed as follows:

�� = 	∑

=1

(��
 − ��
)2 . (3)

�e objective is to minimize the error by reducing the
contributions of the network parameters. We calculate the
derivative of the MSE to perform gradient descent method

on weight ���� and bias ��� of the neuron. �e sensitivities of

the error are as follows:

� = ���� = ��� � �� , (4)

where  = ∑�∈�� 	�−1� ∗ ���� + ���.
�e sensitivities of higher layer are calculated using

chain-rule as

�� = ("�+1)� ��+1 ∘ 
� ( �) . (5)

�e updating of the weights is then calculated as follows:

Δ"� = −% ���"� = −%	�−1 (��)� , (6)

where % is the learning rate. �e calculations of sensitivities
for convolutional layers and subsample layers are di
erent, of
which we will not discuss the details in this paper.

In our purposed approach, the CNN structure consists
of 4 convolutional layers and 2 subsample layers; detailed
parameters are shown in Section 4.

2.2. Empirical Mode Decomposition. �e empirical mode
decomposition method was �rst developed by Huang et al.
in 1998 [37]. Unlike other signal analysis methods which
transform a signal into a certain mode, EMDmethod focuses
on the natural scale and character of the original signal.

In the EMD process, original vibration signal is always
decomposed into a certain number of di
erent components
which re�ect di
erent intrinsic character of the signal.
Entropy energy of IMFs contains information of the signal
and can be extracted as measurement for fault diagnosis.
EMD is superior to traditional signal analysis approach when
the signal to be analyzed has nonlinear or nonstationary char-
acters. In addition, EMD technique is self-adaptive analysis
processing method which means little manual operation is
needed.

A�er EMD was developed, it has been widely studied in
various domains, such as process control [38], voice recogni-
tion [39], and system identi�cation [40]. �e decomposition
result of a simple sample signal is shown in Figure 3.

�e fundamental assumption of EMD method is that a
sequence of signal is the combination of several di
erent
components. In EMDmethods, these components are known
as intrinsic mode functions. In each of the IMFs, the number
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Figure 3: Empirical mode decomposition of a sample signal.

of extrema and the number of zero-crossings are the same.
Another premise of EMD is that between two contiguous
zero-crossings, there is only one extremum [41].

As shown in Figure 2 andmentioned above, the following
conditions should be satis�ed for IMFs:

(1) In each complete IMF, the di
erence between the
number of extrema and the number of zero-crossings
should be less than or equal to one.

(2) In the process of EMD, two envelopes are de�ned in
which the upper envelope is de�ned by local maxima
and the lower envelope by local minima. For each
point of an IMF, the mean value of both envelopes
should be zero all the time.

�e decomposition process of a vibration signal 	(&) is
described as below:

(1) For a sequence of vibration signal 	(&), local extrema
are �rst selected.An envelope is created by connecting
the local maxima with cubic spline technique. �is
envelope is called upper envelope.

(2) Another envelope is created as in (1). All the local
minima are connected using the same technique, and
the new envelope is called lower envelope. All the
points in the signal must be in the range of two
envelopes.

(3) �e mean value of both envelopes’ values is de�ned
as �1, and we could get ℎ1 by subtracting the mean
value�1 from the original signal 	(&) as follows:

	 (&) − �1 = ℎ1. (7)

We validate ℎ1 to see if both conditions as an IMF are
satis�ed. If both conditions are satis�ed, ℎ1 is de�ned
as the �rst composition of 	(&).

(4) If either of the conditions is not satis�ed, we treat ℎ1
as the former signal 	(&) and then repeat the process
from step (1) to step (3), which means a new mean
value�11 is calculated and then we have

ℎ1 − �11 = ℎ11. (8)
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�e process is repeated for � times, until we have ℎ1

which satisfy both premises. We have

ℎ1(
−1) − �1
 = ℎ1
, (9)

and ℎ1
 is chosen as the �rst IMF composition of the
signal 	(&). *1 is de�ned as the �rst IMF as

*1 = ℎ1
. (10)

Normally, *1 ought to have themost signi�cant feature
of the original signal.

(5) �en the IMF is subtracted from signal 	(&), and the
residue is acquired as

�1 = 	 (&) − *1. (11)

A�er that, we consider �1 as the original signal and
repeat the process from step (1) to step (4) until we
obtain a new IMF *2 of 	(&).

(6) �e whole procedure described above is repeated for� times until we stop the decomposition process. We
have

�1 − *2 = �2
...

��−1 − *� = ��.
(12)

A set of IMFs from *1 to *� are acquired. If the residue�� becomes monotonic, it can re�ect the main trend of the
original signal. Also no more IMFs could be obtained. In
summary, the original signal can be presented as

	 (&) = �∑
�=1

*� + ��. (13)

�rough the EMD process, a combination of � empirical
modes is got from decomposing the signals, plus a residue
term ��. Intrinsic mode functions each contain unique
frequency bands.

�e energy entropy of EMD is calculated and measured
as features for fault diagnosis. A�er decomposing rolling
bearing signals into IMFs, energies of the � IMFs are�1, �2, . . . , ��. �e energy for one IMF is calculated as

�� = 	∑
�=1

-----*��-----2 , (14)

where � is the number of sample data points. And the total
energy of all IMFs is calculated as

� = �∑
�=1
��. (15)

EMD energy entropy of the signal is calculated as

2� = − �∑
�=1
�� log (��) , (16)

Table 1: Time domain features.

Feature Formula

Mean value 	 = 15
�∑
�=1
	�

Standard deviation 6 = √ 15
�∑
�=1

(	� − 	)2
Kurtosis 8 = 15

�∑
�=1

(	� − 	)464
Skewness 9 = 15

�∑
�=1

(	� − 	)363
Root mean square RMS = √ 15

�∑
�=1

	�2

where �� = ��/� is the percentage of the energy entropy of
the :th IMF.

In our approach, the energies of the �rst �ve IMFs�1, �2, . . . , �5 and the energy entropy2� are chosen as fault
features.

2.3. Fault Diagnosis Structure. In this section, the implemen-
tation of our proposed fault diagnosis approach is introduced.
Figure 4 represents the �owchart of the fault diagnosis
process.

In the feature extraction process, �ve statistical time
domain features are selected as fault features, includingmean
value, standard deviation, skewness, kurtosis, and root mean
square (RMS). �e formulas of the �ve features are listed in
Table 1.

Fourier transform is applied to vibration signals of
rolling-element bearing to obtain the frequency spectrum. A
CNN model is designed to extract the spatial information of
the frequency spectrum. Eighty features are gained based on
CNNmethods for classi�cation phase.

Empirical mode decomposition is also applied to vibra-
tion signals. Vibration signals in real rolling-element bearing
system may be divided into more than 10 IMFs; however the
energy of IMF decreases swi�ly. In this paper, we only select
the �rst �ve IMFs.�eir energies �1, �2, . . . , �5, as well as the
energy entropy2�, are chosen as fault features.

In summary, the vibration signals of rotating machinery
are analyzed and a total of 91 features are extracted based on
two di
erent methods. In the following classi�cation phase,
two e
ective models, support vector machine (SVM) and
so�max classi�er, are trained for fault diagnosis of rolling-
element bearings.

3. Experiment Results and Analysis

To testify the e
ectiveness of our approach, experiments were
performed on the bearing vibration signal database of Case
Western Reserve University (CWRU). CWRU database con-
tains a large amount of data acquired from the experimental
setup introduced below.

3.1. Experimental Setup. Figure 5 shows the test platform
used in this paper. �e experiment apparatus consisted of a
motor with horse power of two, a torque transducer, and a
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Figure 4: Representation of proposed fault diagnosis structure.

Figure 5: Experiment apparatus for vibration signal acquiring.

dynamometer. Accelerometers are attached to the magnetic
bases of the apparatus and vibration signals are acquired
under di
erent working conditions which include normal
and faulty situations.

3.2. Data Selection and Preprocess. �ree bearing compo-
nents, the inner race (IR), the outer race (OR), and the ball

of rolling bearing (BA), are under study in the database of
CWRU. In order to verify this performance of our approach,
a set of experiments were conducted. Fault categories of the
experiment apparatus include IR faults, BA faults, and OR
faults located at three o’clock, six o’clock, and twelve o’clock.
In addition, vibration signals under di
erent motor loads
and fault diameters are collected for analysis. �e sampling
frequency of the platform is twelve kHz.

�e data set of the bearings used in this paper is arranged
in Table 2.

As shown in Table 2, 52 categories of vibration signals are
chosen from CWRU database. 1000 samples containing 5000
points each are selected for every category, and 800 samples
are randomly selected as training data while 200 samples are
le� as test data. Two vibration signals and their frequency
spectrum are shown in Figures 6 and 7.

3.3. Feature Extraction. As we can see from the vibration
signals shown in Figures 6 and 7, original vibration data
are disordered and messy, while no recognizable patterns are
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Figure 6: Vibration signal and its frequency spectrum under inner race fault with fault diameter of 0.007 inches and motor load of 0.
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Figure 7: Vibration signal and its frequency spectrum under outer race fault at 6 : 00 with fault diameter of 0.014 inches and motor load of 3.

Table 2: Bearing fault data arrangement.

Fault position
Motor load
/horse power

Fault diameter
/inch

IR 0, 1, 2, 3
0.007, 0.014,

0.021

BA 0, 1, 2, 3
0.007, 0.014,

0.021

OR(at 3:00) 0, 1, 2, 3 0.007, 0.021

OR(at 6:00) 0, 1, 2, 3
0.007, 0.014,

0.021

OR(at 12:00) 0, 1, 2, 3 0.007, 0.021

presented. On the other hand, the frequency spectrum may
have more notable features, which illustrates that the analysis
process using CNN is promising on the side. �e original
vibration signal contains 5000 points while the frequency
spectrum of a signal is a data set of 2500 points. In our
approach, the spectrum is reshaped into a 50 × 50 vector
as the input of the CNN model designed above for feature
extraction.

In this experiment, mini-batch stochastic gradient
descent algorithm was used as approximation method. �e
batch size was �xed on 100, and the CNN learning rate varied
from 0.01 to 0.001. In the training process, we can see the
signi�cant ability of CNN in extracting features from the
original vibration signals of rotating machinery.

As shown in Figure 8, the training error reduced to almost
zero in three epochs, while the test error remained 1.10% a�er
15 epochs.
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Figure 8: Training and test error of CNN feature extraction model.

Meanwhile, EMD technique is applied to the original
vibration signals as well. �rough EMD process, a combi-
nation of � empirical modes is got from decomposing the
signals, plus a residue term ��. Intrinsic mode functions each
contain unique frequency bands. Figures 9 and 10 show two
di
erent vibration signals and their decomposition.Vibration
signal from the real platform can be decomposed into about
10 IMFs, and we can get from the functions that the energy
decreases rapidly. �e sixth IMF usually has an energy level
of less than 1, which is less than 1% of the �rst IMF. So, only
the energies of the top �ve IMFs are chosen as fault features.
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Figure 9: Vibration signal and its �rst 9 IMFs under inner race fault with fault diameter of 0.007 inches and motor load of 0.

Table 3: Training accuracy of both classi�ers on di
erent features.

Features SVM So�max

11 time-domain and EMD features
88.72%

(36908/41600)
89.47%

(37220/41600)

80 CNN features 100% 100%

91 combined features 100% 100%

3.4. Result Comparison. A�er extracting 91 new features of
the vibration signal, a classi�er model needs to be trained for
fault diagnosis. In this paper, both SVM model and so�max
classi�er are trained to testify the e
ectiveness of the feature
extraction.

We split the 91 features into 2 groups, 80 CNN features
and 11 time domain and EMD features, and trained classi�ers
separately and at last all together. As mentioned in former
part, 800 samples of each condition are trained and 200
samples are used as test database, that is, a set of 41600
training data sets and 10400 test data sets. �e results are
presented in Tables 3 and 4.

�e training accuracy of both methods is rather high as
shown in Tables 3 and 4 which represented that both classi-
�ers trained on 91 combined features achieved an outstanding

test accuracy. 10374 of 10400 samples are classi�ed correctly
using SVM while 10346 samples are correct using so�max
classi�er. Two classi�cation methods are both competitive
and e
ective, and SVMmethod shows a slight superiority.

�e results also demonstrate the powerful feature extrac-
tion ability of CNN. As we can see, features fromCNNmodel
alone can reach a relatively high performance; however, fea-
tures from CNNmodel have limitation in fault classi�cation.
E
orts have been done trying to alter the parameters or even
structures of the CNN model, but features extracted can
only get a classi�cation accuracy around 99%. Time domain
features and EMD features are easier to obtain compared
with CNN, and they are also useful in many situations. By
combining features from both methods, we can achieve a
superior result compared to using them separately.
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Figure 10: Vibration signal and its �rst 9 IMFs under outer race fault at 6 : 00 with fault diameter of 0.014 inches and motor load of 3.

Table 4: Test accuracy of both classi�ers on di
erent features.

Features SVM So�max

11 time-domain and EMD features
83.14%

(8647/10400)
82.93%

(8625/10400)

80 CNN features
99.05%

(10301/10400)
98.90%

(10286/10400)

91 combined features
99.75%

(10374/10400)
99.48%

(10346/10400)

�e results of our proposed approach are also compared
with works in some other papers. Table 5 below shows
classi�cation accuracy of some other works.

As shown in Table 5, traditional ANN combined with
EMD method already has a high accuracy in [13]. CNN has
been applied in fault diagnosis in [14–17]. CNN structures in
[15, 16] show great performance in classi�cation. However,
with a small number of categories, CNN would not always
have better results than traditional methods as shown in
[17]. Most works only dealt with a small number of cate-
gories, which is not adequate in practical situations, while
our approach deals with 52 fault categories. Our proposed
approach with 91 features has the best performance in the
table.

3.5. Parameter Selection for CNN. In our purposed approach,
the CNN structure consists of 4 convolutional layers and 2

subsample layers; detailed parameters are shown in Table 6.
In a CNN structure, usually bigger number of �lters shows
better ability of representation. As there are 52 fault cate-
gories, �lter numbers should be bigger than 52. Convolutional
layers show di
erent kinds of characteristics, and the later
convolutional layer represents more delicate details than
former layers. �erefore, in layer C3, we select 300 �lters for
better representation.

�e number of features extracted from CNN model is
very important. Experiments are implemented with di
erent
number of features. �e results are shown in Figure 11.
As we can see, di
erent numbers of features have di
erent
accuracies. 80 features show the best representation ability
while more features may lead to the problem of over�tting.

�e optimization of parameters of CNN is always impor-
tant to obtain an e
ective CNN model. In general, learning
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Table 5: Classi�cation accuracy of di
erent methods.

Method Classi�cation accuracy Number of categories

80 features—so�max 98.90% 52

80 features—SVM 99.05% 52

91 features—so�max 99.48% 52

91 features—SVM 99.75% 52

EMD-ANN [13] 96.24% 3

Wavelet-ANN [13] 88.54% 3

CNN with 2 pipelines [14] 93.61% 8

CNN with statistical feature [15] 98.02% 12

CNN with statistical feature [15] 98.35% 8

Hierarchical ADCNN [16] 98.13% 3

SVRM [16] 94.17% 3

1D-CNN [17] 97.40% 2

WP-SVM [17] 99.20% 2

FFT-SVM [17] 84.20% 2

Table 6: Parameters of the purposed CNN structure.

Layer C1 S1 C2 S2 C3 C4

Length 5 2 5 2 4 2

Strides 1 2 2 2 1 1

Filter numbers 60 / 80 / 300 80

Parameter numbers 1560 / 124800 / 408000 120000

Epochs

10 12 14 16 18 20

E
rr

o
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Figure 11: Error rate with di
erent numbers of CNN features.

rate, number of kernels, number of weights in each layer, and
batch size are all parameters to be optimized.

In our purposed CNN model, as shown in Table 6, a
total number of 654360 weights and bias parameters need to
be calculated in each step, which results in a relatively long
training time. Training time of the CNN model in this paper
is shown in Figure 12, and the average training time is about
240 seconds.

�e selecting of learning rate of the mini-batch SGD
algorithm is also considered. An appropriate learning rate is
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T
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in
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g 
ti

m
e 

(s
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220

230

240

250

260

270

280
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300
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Figure 12: Training time of CNN model.

important to the �nal results. Higher learning rate leads to
faster descent, while lower rate may cause the optimization
to be local but not global.

A series of experiments were done trying out di
erent
learning rate, and some of the results are shown in Figure 13.
As shown in the �gure, training error collapses to nearly zero
in no more than four epochs, except the one with learning
rate of 0.001. Due to the small learning rate, the CNN model
cannot get a satis�ed result. �e results in this paper and
other CNN parameter-adjusting algorithms indicate that the
variational learning rate is the best choice here.
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Generally, the numbers of weights and �lters a
ect the
feature explanation capacity of CNN. Larger number of
parameters usually suggest a better representation ability
along with a larger computing expense. We conducted exper-
iments with fewer weights and �lters, and the performance
indicated that e
ect on the �nal result is not signi�cant. �e
parameters in our designed CNN are suitable for application
of fault diagnosis.

4. Conclusions

In this paper, a novel approach for rotating machinery fault
diagnosis was proposed, in which CNN and EMD were
applied to extract features from raw vibration signals. A
SVM model and a so�max classi�cation model are trained
using combined features. With rolling-element bearing data
collected from CWRU experimental setup, experiments are
implemented under di
erent situations. Fi�y-two thousand
samples under 52 working conditions are arranged for the
experiment in this paper.

Experiment results also demonstrate the powerful feature
extraction ability of CNN. Classi�cation based on features
extracted from CNN model alone can reach a relatively high
accuracy. However, features from CNN model have a limi-
tation in fault classi�cation due to its generalization ability.
To improve the performance of classi�cation, time domain
features andEMD features, which are easier to calculate, work
as complementary features for CNN model. �e proposed
approach represents its superior ability of extracting features
from original vibration signals self-adaptively, and it is prac-
tical and e
ective in fault diagnosis for rotating machinery.

Deep learning algorithm shows an excellent expression
capacity while increasing the expense of computing; on the
contrary, traditional signal analysis methods are generally
more convenient to calculate. It is important to analyze
the ability of feature explanation for both deep learning

algorithms and traditional methods. Further exploration
about the e
ectiveness of other deep learning structures will
be investigated in future work.
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