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Fault Diagnosis in the Brushless Direct Current
Drive Using Hybrid Machine Learning Models

K. V. S. H. Gayatri Sarman'’, Tenneti Madhu?, and A. Mallikarjuna Prasad’®, Non-members

ABSTRACT

The brushless direct current (BLDC) motor drive is
gaining popularity due to its excellent controllability and
high efficiency. This paper introduces a fault diagnosis
method for open circuit (OC) and short circuit (SC)
BLDC motor drives using a hybrid classifier with hybrid
optimization. Features such as current, voltage, speed,
and torque are considered as the training data. The
features are extracted by discrete wavelet transform
(DWT) and then employed to train the classifiers to
distinguish between fault types and values of response
parameters using the support vector machine and Naive
Bayes classifier (SVM-NB). To further improve the per-
formance of the system, hybrid chaotic particle swarm
optimization (CPSO) algorithms and teaching-learning-
based optimization (TLBO) are used. This method
is capable of detecting and recognizing the type of
faults in the BLDC motor. The developed approach is
implemented on the MATLAB/SIMULINK for OC, SC,
and no-fault conditions. These hybrid algorithms provide
better performance compared to existing approaches
with respect to sensitivity, accuracy, and specificity. This
improved model achieves about 98.8% accuracy.

Keywords: Brushless Direct Current Moter, BLDC
Motor, Open Circuit, Short Circuit, Support Vector
Machine, Naive Bayes, Teaching-Learning-Based Opti-
mization, Chaotic Particle Swarm Optimization

1. INTRODUCTION

A motor is an electrical machine that converts elec-
trical energy into mechanical energy. Among the many
types of motors used in recent studies, the brushless
direct current (BLDC) has the advantage of not needing
a mechanical commutator [1]. It offers high dynamic
response, efficient controllability, and better efficiency
and can be used in various applications such as those
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involving electric vehicles, the chemical industry, and
aerospace systems [2]. In uncertain situations, it may
have a predominant effect on system safety, reliability,
and product efficiency. Therefore fault diagnosis and
localization are needed to monitor the operation of the
device.

Various faults may occur in BLDC motors due to
electromechanical defects [3]. The BLDC has a better
torque to speed ratio, high efficiency, noiseless operation,
electromagnetic interference in comparison to the exist-
ing DC motor, brushed DC motor, AC induction motor,
and conventional DC motor. However, the BLDC can fail
because of high current, high load, and demagnetization
[4]. The identification of faults in electrical machines and
power systems is a growing concern for academics as
well as industry [5]. Exposed to manufacturing defects,
the BLDC’s electrics can render it susceptible to incipient
faults or progressive decay, which, if left undetected,
can result in system failure. Most BLDC electrical
derivative failures disrupt processes, reduce output, and
can harm the machinery associated with them. Often a
minor failure may result in hours of work stoppage in
continuous processing industries and workplaces, where
the equipment mounted requires a stable and safe BLDC
electrical derivative operation [6].

There are many ways to fix the problem, such as
preventive and corrective maintenance, retention of
spare motors, protective devices, etc. In some industries,
very costly scheduled maintenance has been carried out
to avoid unexpected engine failures. Therefore, there is
increasing demand to reduce repair costs and avoid un-
planned downtime for electric motors and electrical drive
systems involving BLDC [7]. Early detection of faults or
proper identification and recognition of faults requires
a regular maintenance schedule to minimize failure and
downtime and increase the overall performance of BLDC
electrical drives [8].

There are three major stages in the fault diagnosis
process, the first being feature extraction, which is a
method of dimensionality reduction in primary data.
Many feature extraction methods have previously been
used as fast Fourier transform (FFT), Hilbert-Huang
transform (HHT), wavelet transform (WT), continuous
wavelet transform (CWT), and short-time Fourier trans-
form (STFT) [9-13]. However, all approaches have some
disadvantages. For instance, the FFT algorithm does not
work well in non-stationary and non-linear signals, WT
is ineffective for characterizing the non-linear signals,
and STFT has the disadvantage of a fixed-width window-
ing function [14].
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In the second stage, classification is carried out by
methods like the k-nearest neighbors (KNN), Naive Bayes
(NB), decision trees (DT), support vector machine (SVM),
and artificial neural networks (ANNs) [15]. When large
datasets are used, NB becomes ineffective, while the
minor variation in DT information can cause a major
difference in the DT structure. The KNN classification
should compute the distance and arrange all the training
data for every prediction. In addition, KNN is a lazy
learner [16]. Therefore hybrid classification can be em-
ployed to improve the efficiency of the system. Recently,
many metaheuristic approaches have mainly exploited
the fault diagnosis process to improve efficiency, such as
the artificial bee colony (ABC), teaching-learning-based
optimization (TLBO), particle swarm optimization (PSO)
algorithm, and genetic algorithm (GA). These methods
suffer from slow searching, slow convergence, and
balancing between exploration and exploitation [17-20].

1.1 Motivation

BLDC motors provide various advantages over other
DC motors like reduced noise, high efficiency, reliability,
high torque to weight ratio, a prolonged lifetime by
reducing electromagnetic interference (EMI) and elim-
inating commutator erosion. However, these motors
often undergo open and short circuit faults. Since BLDC
motors are utilized in various applications, unexpected
faults such as open and short circuits will occur. When
a fault occurs, the motor can be operated without
breakdown, and it is therefore important to maintain
the motor to ensure it works continuously. Many fault
detection approaches have been introduced, and it is
important to be able to detect faults while they are still
developing.

Several feature extraction, classification, and opti-
mization techniques have previously been used to diag-
nose faults. To improve accuracy, sensitivity, specificity,
and efficiency, a hybrid classification technique is used.
Metaheuristic approaches suffer from slow convergence
and are trapped by local optima; hence, a hybrid opti-
mization algorithm is employed in this study. Therefore,
both OC and SC faults can be diagnosed using this
developed approach.

Contributions of the paper are:

« A new method for fault diagnosis in open and short
circuits is proposed. This method comprises feature
extraction, classification, and an optimal solution using
hybrid optimization methods.

« Features like current, voltage, speed, and torque are
considered as the training data.

« These features are extracted using discrete wavelet
transform and then used to train the classifiers to
distinguish between fault types.

« The classification of the system is improved by the hy-
brid support vector machine and Naive Bayes classifier
(SVM-NB) to achieve better classification accuracy.

« To further improve the performance of the system,
the hybrid algorithm chaotic particle swarm optimiza-

tion (CPSO) and teaching-learning-based optimization
(TLBO) and (CPSO- TLBO) are used.

The remaining structure of the research paper is
arranged as follows: the recent related research works
are presented in Section 2. Section 3 explains the
developed scheme. Section 4 provides a discussion of the
implemented results, and Section 5 presents the overall
conclusion.

2. RELATED WORKS

Zandi and Poshtan [21] introduced a method for the
demagnetization and bearing fault detection of BLDC
motors on the basis of hall sensors. Initially, the effect
of bearing faults on the speed of the BLDC motor were
studied, and the features then extracted from the speed
signal using DWT and CWT. Next, the demagnetization
of the fault effects on the hall sensors outputs were
studied, and the condition of the rotor categorized into
healthy or demagnetized using the kurtosis index of the
duty cycle signal.

Aker et al. [22] presented a model for the detec-
tion and identification of faults occurring in the shunt
compensated static synchronous compensator (STAT-
COM) transmission line. Here, feature extraction was
performed by DWT and classified using NB and faults
studied, such as line to line (LL), double line to ground
(LLG), line to ground (LG), and three-phase (LLLG). The
results proved that the developed classification approach
outperforms with respect to certain measures.

Hosseini et al.  [23] proposed a fault detection
technique for the stator inter-turn fault (SITF) in BLDCM.
Initially, the DWT was applied to five types of faults, two
of which were constant and varied over time. The third
fault was time variable, initiated by the stable phase of
stator time and current. The fourth fault was detected by
an algorithm checking load torque in the motor, while
the fifth fault involved a faulty condition in two phases
of the stator rather than one. Following the execution of
each case, DWT was applied, and the results reveal the
performance of the proposed method.

Shifat and Hur [24] proposed a fault detection and
identification method for use in BLDC motors using
ANN. The motor current signature detected the faults
and calculated the frequency and magnitude of the third
harmonic. The faults in the hidden state were extracted
from the current and vibration signals. The vibration
signal was decomposed using complete ensemble empir-
ical mode decomposition (CEEMD), while the PCA and
monotonicity score were used for fault classification. The
proposed decomposition method was found to generate
better accuracy of 98%.

Lu and Wang [1] demonstrated a BLDC motor rotating
phase using variable-speed conditions. Here, the noisy
current signal was eliminated by a zero-phase filter,
the current phase computed by Hilbert transform (HT),
and the signal alignment performed to improve the
angle estimation accuracy. The sinusoid similarity was
developed to evaluate the phase error of phase estimation
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Fig. 1: Architecture of the proposed methodology.

and guide the optimal filter. The accurate curve angle was
exploited for resampling to perform fault detection on
the basis of the order analysis. This methodology ensures
an accurate and simple solution for estimating the BLDC
motor rotating phase and is used in various applications.

2.1 Problem Statement

The hybrid models DWT and CWT ([21] provide
robustness while reducing system costs. They work
in both stationary and non-stationary BLDC operations
but suffer in information redundancy and orientation
selectivity. The method [22] offers better results in
classification with and without the STATCOM model, but
the precision factor decreases in small datasets. DWT
[23] removes faults caused by internal elements and is
also applied to the steady and transient states of the
current but produces high noise. It also has the ability
to find the source of the effect.

CEEMD-ANN [24] achieves high accuracy and three
health state classifications, but the number and amplitude
of the added noise need to be selected in advance. In cer-
tain cases, CEEMD requires empirical post-processing,
while HT [1] ensures a non-invasive and accurate solu-
tion for estimating the rotating phase of the BLDC motor.
However, in some cases, the system is affected by noise
and, therefore, the accuracy of the system. Therefore, the
proposed method is developed to diagnose OC and SC
faults by hybrid classification and optimization, thereby
achieving better accuracy, sensitivity, and specificity.

3. PROPOSED METHODOLOGY

This section explains the SC and OC faults in the BLDC
motor and feature extraction by DWT classification
using the SVM-NB. The appropriate fitness solution using
the hybrid method CPSO-TLBO is then subsequently
presented.

Fig. 1 illustrates the framework of the proposed
methodology. In this method, the input signal is given
to the feature extraction. Here, the feature extraction
is performed by DWT, which is more efficient. The

extracted features are given to classification. Here, the
classification is performed by the SVM-NB classifier to
improve the accuracy. Furthermore, the performance
of the system is improved by hybrid optimization tech-
niques called hybrid CPSO-TLBO.

3.1 OC and SC Faults in the BLDC Motor

Fault identification is considered to be important. As
a result, the two mechanisms of fault detection and
recognition are sometimes referred to as fault diagnosis.
In this section, two faults, namely OC and SC in the
BLDC motor, are analyzed. The BLDC motor is capable of
generating the necessary angular momentum and torque.
The mathematical model of the BLDC is very similar
to that of the traditional DC motor, with the notable
exception that the phases in the BLDC output have an
impact on the inductive and resistive characteristics of
this module structure. The stator winding in the coupled
circuit is given in Eq. (1).

I/llS_I/n Rs 0 0 Ia d Laa Lab Lac Ia
Ves=Va|=[ 0 R, 0[] +E Ly, Lyy Ly || 1y |+
I/cs_Vn 0 0 Rs Ic Lca ch Lcc Ic

(1)
where R; is the stator resistance phase, the stator current
phases of a, b, ¢ are I, I}, I, the electromotive forces of
each phase are represented as E,,, E,, E,, phase to phase
voltage is denoted as V,, Vj,, V,,, and V, is the voltage
at the neutral node.

Fig. 2 represents the electrical equivalent circuit of the
BLDC motor drive. If the three phases are symmetric,
self, and mutual inductances, and the variation in rotor
reluctance negligible along with the rotor position, Eq. (1)
can be written in Eq. (2) as

Vo [R O O[L] ,[L M M|[L] [E
Vb= ORSO Ib +d_MLM Ib+Eb
v.] Lo o rJlL] MM L]||1.] |E,

)
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Fig. 2: Electrical equivalent circuit of the BLDC.

where L and M denote the phase inductance and mutual
stator winding, respectively.

Simplifying Eq. (2) and the electromagnetic torque
Eq. (3) is written as

E I +E I, +E.I
Te= ata b'h cle (3)

w

and the induced emfs are

E,= f,0)lw
E, = f,(0)Aw
E = f.00)lo (4)

where the electromotive forces of each phase are repre-
sentedas E,, E,, E,.
The electromechanical torque for the motor is given in
Eq. (5).
dw

JE-FBCO:Te—TI (5)

where J is the moment of inertia, B is the coefficient of
friction, and 7; is the load torque.

The position and speed of the rotor are given in Eq. (6)
and p is the number of poles in the motor,

L -(8)e ©)
dt 2
By substituting Eq. (4) in Eq. (2), Egs. (7) to (9) are
obtained,

v R A
ilaz 2 - . Ia_ fa( ) @ (7)
dt L-M L-M L-M

v R A
iIb= b - — I, — 1Ok 8)
dt L-M L-M L-M

v R, 0)A
iIt: = . - . Ic_ fC( ) v (9)
dt L-M L-M L-M

Dividing Eq. (5) by J and substituting T, from Eq. (3)
and E,, E;, E, values from Eq. (4), we get Eq. (10),

dw_ B . JdOMy o0, (Ol

— w (10)
dt J J J J

Using Eqgs. (7), (8), (9), (10), and (6) from the state space
model,

%x(l) = Ax(t) + Bu(?) (11)
choosing states I,, I}, I.., w, and 0,
S i}
s 0 0 a(0)A 0
L-M J
-R
1, 0 2 0 ko) 01lr1,
I L-M J 7
d|’ R, (@4 b
71 |=] o 0 > of] e
o L-M J P
0 fa0) [0  f.0) -B olLe
J J J J
0 0 0 LA
| 2 |
! 0 0 0
L-M
0 ! 0 0
L-M v,
+ o 0 1 o ||
L—-M V.
0 0 0 -1
J
0 0 0 0
(12)

From Eq. (12) the values of A and B are obtained.

3.1.1 Open circuit faults

In BLDC drive phases, three types of OC faults occur:
single phase A, two phase A and C, and two phase A and
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Fig. 3: BLDC-OC fault design.

B. These faults can affect the drive, as the motor faults
change from normal speed. The OC faults are mainly
caused by a broken conductor, improper installation,
high temperature, etc. In unloaded conditions, various
types of multi and single faults will occur. In the BLDC
drive, two or three phases will be affected if upper or
lower switch failure occurs. Fig. 3 shows the BLDC-OC
fault design.

3.1.2 Short circuit faults

SC faults occur in three-phase BLDC. The SC is
caused by mechanical damage, insulation, overheating,
installation, etc. The motor terminal will be affected
by faulty impedance. The BLDC output power drive is
then affected because of SC faults. Faults such as single
and three-phase are classified as SC faults. Three-phase
faults occur in inverter switches and single phase faults
in the BLDC drive. If the fault occurs among neutral and
terminal points, then it is known as a single phase fault.
The SC voltage is lower in comparison to the normal
voltage level. Fig. 4 presents the BLDC-SC fault design.

3.2 Feature Extraction by DWT

DWT [25] is a more efficient technique for solving
data redundancy problems and eliminating unnecessary
data.  Providing proper and adequate data for sig-
nal analysis, DWT significantly minimizes computation
time. In addition, it also has an advantage compared
to high and low pass filters in being able to decompose
the time-domain signal into large scales for different
frequency bands, varying the sampling rate in every step.
The DWT is created in binary form to choose the position
and scale based on the power of 2. The transformation
output is achieved by replacing @ = 2/ and b = k - 2/,
Eq. (13) can be written as

t—b

V%L[:xmw<77>m

(13)

wc(a, b) =

S

K

4K} K

-+ Phase Phase legfe
—1 A B =T o
—_ ® ]

ﬂi -4
S,

Fig. 4: BLDC-SC fault design.
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where we(a, b) is the wavelet coefficient with scale a and
time b, 1/ \/m is the normalization, y is the wavelet
function and (¢ — b) / a is the shift in time.

The high and low frequency components are approxi-
mate and detail coeflicients, where A and D are the low
and high frequency bands of the signal. This approach is
demonstrated by a series of a low and high pass filters as
given in Eq. (14)

x()=A;+ ) D,

j<J

(14)

where A; and D; are the low and high frequency bands
of the signal. The high frequency components are
used to analyze the signal during the transient state.
Furthermore, the DWT exhibits aspects of data like self-
similarity and breakdown point discontinuities and is
more effective than other signal processing approaches.

3.3 Classification by the Hybrid Support Vector
Machine and Naive Bayes Classifier

The SVM approach [26] works on the basis of super-
vised learning. It has become popular because of its
ability to solve nonlinear classification problems using
the kernel function. The algorithm has a hyperplane
which divides the data into classes. The SVM classifier
utilizes the hyperplane to isolate categories. Support
vectors are used to describe the margin of the hyperplane
by learning the examples nearest to it. As a result, the
approach also maximizes the margin.

The optimal hyperplane created by the SVM is given
in Eq. (15)

(w-x)+b=0 (15)

where, w is the weight vector, b the bias vector, and x the
input feature vector. (xi, y,-) is used to define the sample,
then x; € R? and y; € {—1,4+1}, where d is the vector
dimension if the sample set is divided by the hyperplane,
in which case Eq. (16) is then satisfied.
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[yiw-x)+b-120, i=1,2,....n  (16)

To increase the distance among these two sample sets,
Eq. (17) must be minimized,

(17)

The optimization problem is solved and given in
Eq. (18),

= L = L
pl@) = Sl[wl|” = Z(w - w)

n
Z y,»a?(xxi) +b=0 (18)
i=1

where a? is the Lagrange multiplier. If the training set
is not dividable, the relaxation and penalty parameters
€;> 0 and C are evaluated. The optimal function is
then converted into Eq. (19), and the constraints given
in Eq. (20),

H(w) = %(w~w)+C; g (19)
[viw-x)+b] —1+€>0, i=1,2,....n  (20)

SVM takes the sign of { y,-} to differentiate samples
from various sectors as given in Eq. (21),

I(x) = sgn<z y,»a? ((l)(x) . (j;(xi)) + b>z (21)
i=1

where ¢(x), x, and y are the high and low dimensional
vectors. Furthermore, x and y are related by the kernel
function K(x, y) and no high computational complexity
exists.

The Bayesian naive classifer [27] uses Bayes’ theorem,
and is appropriate when the input dimensionality is high.
Hence the classification problem can be written as in
Eq. (22),

C* = arg max p(c|d) (22)

The fundamental probability model can be defined as
an independent feature. NB exploits the Bayes’ rule as
given in Eq. (23)

p(e)p(d]c)

p(d)
where p(c) is the probability that a random sample falls
into category c¢. p(d) does not involve selecting C*.
To estimate the factor p(d|c), NB decomposes it by
considering f; to be independent to the d class in Eq. (24),
where m is the total number of features and f; is the
feature vector.

pleld) = (23)

p(c) <1_]l p(f; |c>“f<‘”>

p(d)

pnplcld) i= (24)

After feature extraction by DWT, the extracted fea-
tures are tested and trained using NB and SVM. The draw-
back with Naive Bayes is the assumption of independence
in the feature vectors extracted from the training sets. In
addition, SVM can determine a perfect hyperplane to split
the training samples into two stages. The aim of SVM is to
maximize the distance between the boundaries of the two
stages. The assumption of independence in the accuracy
and recall rate affects the classification based on NB.

To overcome this problem, SVM employs a trimming
approach to eliminate samples that are split into the
wrong categories by NB. Accordingly, the dependence of
the feature vector is minimized, and the independence
between the training samples increased. This hybrid
classification architecture is evaluated by combining the
merits of the NB (its simplicity, fast classification speed,
and the small amount of data required for estimating the
parameters) with the high classification accuracy of SVM.
By integrating these two methods into the diagnosis
of OC and SC faults in LCDC motors, this hybrid
combination can be effectively used for classification
with low computational complexity.

3.4 CPSO Algorithm

To determine the optimal parameters and maximize
device efficiency, the damping controller’s parameters
are optimized using CPSO [28]. The aim of this algorithm
is to increase the damping ratio of all modes to achieve
a defined value. The updated solution of the velocity is
given in Eq. (25)

Via(K +1) = @V;y(k) + Cyry [pbest;q(k) — x;4(k)]
+Cory [gbestid(k) — xid(k)] (25)

The updated solution of the position is given in Eq. (26)

Xiglk+1) = x;4(k) + Vg (K + 1) (26)

where x;,(k) and V;,; are the position and velocity of the
i for the d® dimension at &'® iteration, w is an inertia
weight, | and r, are random numbers ranging from 0
and 1. C; and C, are positive coefficients between 0 and
2, namely C; + C, < 4 and the i™ particle’s best position
while the entire swarm for the d'™ dimension is denoted
by pbest;;(k) and gbest;;(k), respectively. PSO suffers
from slow searching, slow convergence, and lack of a
balance between exploration and exploitation.
A logistic map is given in Eq. (27)

Zt = ocZ,_l(l - Zt—l) t= 1,2,...

where Z, is the " chaotic number, Z, is a ran-
dom number, while the interval is (0,1) and Z, ¢
{0.0, 0.25, 0.5, 0.75, 1.0}, set @ = 4 and is a control

parameter.

(27)

Xig = ax_1g(D( = x;_1)4(1))

Via = ax_pa(D( — x_1)q(1)) (28)
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when 1 < i < M; 1 < d £ D, where X;; and
V4 are initial velocities and positions for producing first
particle velocities and positions at the first iteration,
Vo;(1xg,;(1) & {0.0, 0.25, 0.5, 0.75, 1.0}. Likewise, the
logistic map utilizes the two independent random values
ry and r, to improve the diversity of the CPSO solution

space, as given in Eq. (29).

a)k aa)k_l (1 _a)k—l)
rie arpg—r (L=rpe_p) (29)
raue arp—y (L—ryp_q)

when 1 < k < n, where w, is the k™ chaotic
inertia weight, ry, and ry, are the two k™ inde-
pendent chaotic random sequences wq, riy, Foy &
{0.0, 0.25, 0.5, 0.75, 1.0} and random numbers in the
range of (0,1). The velocity update equation of the CPSO
algorithm can then be rewritten as Eq. (30).

Via(K +1) = @V (k) + Cyry y [pbest; (k) — x;4(k)|
+ C2r2’k [gbestid(k) - ‘xid(k)] (30)

3.5 TLBO Algorithm

TLBO [29] is based on the learner’s quality and
evolved from the mean value of the class. The learning
method in this optimization comprises two parts: teacher
and learner. The aim of this method is to ascertain
the impact of the teacher on the learner’s output in
a class and the interaction among learners. TLBO
needs parameters such as the size of the population and
generation numbers. The algorithm procedure is given
below:

Teacher Part: The teacher’s goal is to raise the class
mean to the appropriate level. However, to a certain
degree, this can be accomplished through practice,
depending on the class’s capacity for learning. Teacher
part is formulated in Eq. (31).

= X" 4+ randT® - TFx M) (31)
The learning factor TF is randomly found with the
probability of 1 and 2. T is the best fitness value with
the student selected as teacher of the present iteration

t and M® is the mean value. X i(r) and X i(lzew are the
old and new student positions. The individual’s position
is replaced by a new solution when the new solution is

better than the old.

Learner Part: The learners develop their skills in
two distinct ways: teacher interaction and learning by
themselves. The formulation of the learner part is given
as follows. Individuals n; and n, are chosen for the i
learner in the class, in such a way that when ny; # n, # i,
the new equation can be written as in Eq. (32).

(32)
X i(t) + rand (Xr(ltl)) -(X 52) if X r(ltl) is better than Xr(1t2)

X 4 rand(X9) - (x") else
(33)

The new solution can be accepted if it has a better
function value.

3.6 The Procedure of the CPSO-TLBO

The aim of the hybrid CPSO and TLBO methods
is to overcome the individual drawbacks of CPSO and
TLBO and utilize their advantages to improve the search
quality, ultimately achieving a better solution. The
major disadvantage of the PSO is that the parameter
tuning is trapped by local optima, while TLBO has
low-speed convergence. In the searching process, the
whole population is combined, and for the next iteration,
the best solutions are chosen as the initial population.
The parameter is initialized using Eq. (33), where is the
random number range from [0,1]

P=X_ i, +rand(X ,,—X (34)

Each individual is evaluated and updated using Eq. (32),
and the better solution chosen.

Here, the CPSO with the best solution is selected
as gbest, and the related population situation is then
updated. The new population for each solution is
compared to the relevant pbest. Considering TLBO,
in this process, the population with the less favorable
solution is chosen as the class teacher. If the final
condition of CPSO-TLBO is satisfied, then the process is
terminated; otherwise, the algorithms will again evaluate
the individual and repeat the process until the criteria are
met.

max min)

3.7 Time Complexity

The computational complexity of the proposed and
existing methods is based on parameters such as the
number of iterations N, population size P, and accuracy
A. It can be written in big O notation as O(P X N X A).

4. RESULTS AND DISCUSSION

All the processes were carried out using a system
with an Intel Core i5 CPU, 3.0 GHz speed, and 8 GB
RAM. The developed approach was implemented on
the MATLAB/SIMULINK. Initially, the current, volt-
age, speed, and torque under OC and SC faults and
no-fault conditions are determined. Measures such as
accuracy, sensitivity, and specificity of classifiers like
(SVM-TLBO, SVM-CPSO, SVM-TLBO-CPSO, NB-TLBO,
NB-CPSO, NB-TLBO-CPSO, SVM+NB-TLBO, SVM+NB-
CPSO) are compared with the proposed SVM-NB-CPSO-
TLBO method. Finally, the step response parameters are
calculated, such as rise time, settling time, overshoot,
undershoot, and peak time.
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Fig. 5: Simulink model of the BLDC motor under no-fault conditions.

4.1 Performance Measures

The number of accurately classified data instances
compared to the total number of data instances is given
in Eq. (34), where FP, TP, FN, and T N refer to false
positive, true positive, false negative, and true negative,
respectively.

TP+TN
TP+ FP+TN+FN

Accuracy = (35)
Sensitivity is defined as the ratio of positives identified
by the classifier, as given in Eq. (35).

TP

Sensitivity = m—m

(36)

Specificity is defined as the ratio of negatives identi-
fied by the classifier, as given in Eq. (36).

TN

Spec1f1(:1ty = m—m

(37)

Rise time is the time needed for the response to rise
from 0 to 100% of its final value, as given in Eq. (37), where
w, is a damped frequency.

T—0
Wy

rise time =

(38)

Peak time is the time needed for the response to reach
the peak value for the first time, as in Eq. (38).

peak time = z
D

(39)

Overshoot can be calculated using the formula given
in Eq. (38).

on

overshoot = e_< v 1—52> x 100

(40)

4.2 Simulation Setup of the BLDC Motor

The simulation setup of the BLDC motor under OC,
SC, and no-fault conditions is explained in this section.

Fig. 5 shows the simultation setup of the BLDC drive
model under no-fault conditions. A 1kW three-phase
BLDC motor has been designed to test the operation. A
speed of about 3000 is applied to the PI device to find
the speed, voltage, torque, and current under three faults
conditions.

4.3 Performance of the BLDC Motor under No-
Fault Conditions

In this section, the speed, current, torque, and voltage
performance of the BLDC motor under no-fault condi-
tions is provided.

Fig. 6 shows the BLDC no-fault conditions; (a) current,
(b) voltage, (c) speed, and (d) torque performance by
varying the time. A 40 A current and 450V voltage are
maintained in BLDC no-fault conditions. When the time
increases, the torque and speed are maintained within
a particular range because no faults occur. The best
output EMF voltage from the BLDC motor is provided
by CPSO-TLBO, thus reducing fault instances while
maintaining a healthy motor.

4.4 Performance of the BLDC Motor under SC Fault
Conditions

In this section, the speed, current, torque, and voltage
performance of the BLDC motor under short circuit fault
conditions are presented.

Fig. 7 shows the BLDC performance with SC fault
conditions; (a) current, (b) voltage, (c) speed, and (d)
torque. The current, voltage, speed, and torque will
be calculated by varying the time for BLDC-SC fault
conditions. Here, in the BLDC design, a short circuit fault
occurs at switch Sy, as shown in Fig. 4. Thus, the current
and voltage are not within the exact range at the time
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Fig. 7: BLDC-SC fault conditions; (a) current, (b) voltage, (c) speed, and (d) torque.

interval because of the SC fault. The extracted frequency
from the DWT relates to the fault frequency range. Also,
the speed and torque of the motor will not be in a constant
range when the SC fault occurs in the BLDC drive.

4.5 Performance of the BLDC Motor under OC
Fault Conditions

In this section, the performance of the speed, current,
torque, and voltage of the BLDC motor under OC fault
conditions is presented.
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Fig. 8: BLDC-OC fault conditions; (a) current, (b) voltage, (c) speed, and (d) torque.

Table 1: Performance of no-fault, SC, and OC faults with
respect to speed.

Table 2: Performance of no-fault, SC, and OC faults with
respect to torque.

Fault Rise | Settling | Overshoot | Undershoot | Peak Fault Rise Settling | Overshoot | Undershoot | Peak
type time time time time time type time time time time time
No-Fault | 0.0062 | 5.0000 | 454.1863 | 1.2216 x 10° | 0.0254 No-Fault|  0.0085 50000 | 72.9446 33.4184 |0.0243
SC Fault | 0.0052 | 4.7995 | 1.4244 x 10° | 2.3754 x 107® | 3.100 SC Fault 0 2.6980 |1.5133 x 10% |3.9161 x 10% | 2.6000
OC Fault | 0.1580 | 0.7450 |9.2146 x 10® | 1.6289 x 10° | 0.5000 OC Fault | 2.9957 x 1078 | 0.7450 | 1.0405 x 107 |2.4416 x 10'° | 0.5000

Fig. 8 shows the BLDC under OC fault conditions; (a)
current, (b) voltage, (c) speed, and (d) torque performance
by varying the time. The current and voltage are not
within the exact range at the time interval because of
an OC fault. Here, in the BLDC design, the switch S
occurs in an OC fault, as shown in Fig. 3. The extracted
frequency from the DWT relates to the fault frequency
range. The speed and torque of the motor will not be
in the constant range because the current flowing from
the source to the switch .S is open, and thus, an OC fault
occurs in the BLDC drive. In the BLDC, when the current
flow is not within the normal range, the speed and torque
fluctuate.

Table 1 shows the performance under no-fault, SC,
and OC fault conditions with respect to speed. Here,
the speed rise time is at the minimum level (0.0052) for
SC faults, while the settling time is at the minimum
level (0.7450) for OC faults. The overshoot time is at

the maximum (9.2146 x 108) for OC faults, while the
undershoot time is at the maximum level (1.6289 x 10°)
for OC faults and at the minimum level (2.3754 x 107°) for
SC faults. The speed peak time is at the minimum level
(0.0254) under no-fault conditions.

Table 2 shows the performance of the no-fault, SC,
and OC faults with respect to torque. In this case, the
rise time is at the minimum level (2.9957 x 107%) for OC
faults and the settling time at the minimum level (0.7450)
for OC faults. The overshoot time is at the maximum
level (1.5133 x 10%%) for SC faults, while the undershoot
time is at the maximum level (3.9161 x 10%) for SC faults.
Finally, the peak time is at the minimum level (0.0243) in
no-fault conditions.

Table 3 presents a performance comparison of the pro-
posed method with respect to sensitivity, accuracy, and
specificity. Here, the performance of the hybrid classifier
using the hybrid optimization approach achieves the
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Table 3: Performance comparison of the proposed method on the basis of accuracy, sensitivity, and specificity.
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Methods ‘ Sensitivity ‘ Specificity ‘ Accuracy
SVM-TLBO 91.6 95.8 93.7
SVM-CPSO 91.1 95.5 92.6
SVM-TLBO+CPSO 97.2 96.3 95.2
NB-TLBO 79.6 89.8 84.7
NB-CPSO 83.1 91.4 87.2
NB-TLBO+CPSO 83.8 91.9 87.8
SVM+NB-TLBO 98.3 98.4 97.9
SVM+NB-CPSO 98.2 97.2 98.4
SVM+NB-TLBO+CPSO 99.5 98.2 98.9

Table 4: Benchmark function comparison of the CPSO-TLBO with other optimization algorithms for D = 10.

Functions PSO TLBO CPSO-TLBO
Mean ‘ SD Mean ‘ SD Mean ‘ SD
Sphere 9.9x107 | 59x1071 | 7.0x107 | 1.0x107? | 6.87x1072 | 2.1x107%°
Rosenbrock 4.2 6.8 x 10’ 7.4 5.6x 107" 6.8 4.8x107"
Schwefel P1.2 115 4.8 1.0x1071% | 29x107% | 41x107 | 1.7x107'®
Rastrigin 1.4 x 10! 5.3 1.43x 10! 1.5 x 10! 55x 107! 2.6
Ackley 92x1072 | 2.8x1071 | 22x107 | 1.1x1077 1.2x107° 1.4x107°

Table 5: Benchmark function comparison of the CPSO-TLBO with other optimization algorithms for D = 30.

Functions PSO TLBO CPSO-TLBO
Mean ‘ SD Mean ‘ SD Mean ‘ SD
Sphere 49x10" | 13x100 | 1.7x107% | 22x1071% | 3.4x107Y | 1.3x10718
Rosenbrock | 2.3 x 10! 35 2.7 % 10! 7.4x107! 2.4 x10! 56x 107!
Schwefel P1.2 | 33x10° | 95x10% | 59x107'2 | 1.0x107"" | 58x107 | 1.2x107%®
Rastrigin 9.4x10' | 2.9x10! 3.1x 10! 7.0x10" | 8.02x107 | 3.9x107°
Ackley 35 27x1070 | 37x107 | 31x107 | 12x107° | 9.7x107°

best accuracy (98.9%), sensitivity (99.5%), and specificity
(98.2%). Thus, the proposed methodology offers the best
overall performance.

Table 4 shows a benchmark function comparison of
the CPSO-TLBO with other optimization algorithms for
dimension 10. The mean and standard deviation of
PSO, TLBO, and CPSO-TLBO with respect to benchmark
functions such as Sphere, Rosenbrock, Schwefel P1.2,
Rastrigin, and Ackley are discussed. The proposed
method demonstrates the best performance in all func-
tions.

Table 5 shows a benchmark function comparison of
the CPSO-TLBO with other optimization algorithms for
dimension 30. The mean and standard deviation of PSO,
TLBO, and CPSO-TLBO with respect to the benchmark
functions such as Sphere, Rosenbrock, Schwefel P1.2,
Rastrigin, and Ackley are discussed. The proposed
method demonstrates the best performance in all func-
tions.

4.6 Convergence Analysis

The convergence analyses of the proposed method and
conventional methods such as TLBO and CPSO are given
below.

Fig. 9 represents the convergence analysis of the
proposed method and existing methods such as TLBO
and CPSO. At the 100" iteration, the fitness of TLBO
is in the range of 22, while CPSO has a fitness value
in the range of 28, and the proposed CPSO-TLBO a
fitness value in the range of 21. In all iterations,
CPSO-TLBO demonstrates a higher fitness value than the
other methods. Therefore, the proposed CPSO-TLBO is
proven to converge faster, while the other two methods
take more time.

5. CONCLUSION

This work introduces the diagnosis of OC and SC
flaws in BLDC using a hybrid classifier with hybrid
optimization, evaluated by MATLAB/SIMULINK under
OC, SC fault, and no-fault conditions. Features such
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as current, voltage, speed, and torque are considered
as the training data.  Here, feature extraction by
DWT and classification by SVM-NB were successfully
performed. Furthermore, the performance of the system
is improved through the employment of the hybrid
algorithm TLBO-CPSO. The proposed design is capable
of detecting and recognizing the type of faults in the
BLDC motor. These hybrid algorithms provide better
performance when compared with other approaches
with respect to sensitivity, accuracy, and specificity. This
improved model achieves an accuracy of about 98.8%.
The performance of the CPSO-TLBO is compared with
CPSO and TLBO with respect to the benchmark function
for dimensions 10 and 30. In the convergence analysis,
CPSO-TLBO also proved its superiority. The reliability
and robustness of the BLDC can be further enhanced at
a lower cost. In future, this methodology will be applied
to other types of faults and tested in various conditions.
Furthermore, the classification can be carried out by deep
learning models.
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