
Received June 30, 2019, accepted July 12, 2019, date of publication July 16, 2019, date of current version August 7, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2929094

Fault Diagnosis Method Based on Principal
Component Analysis and Broad
Learning System

HUIMIN ZHAO 1,3, (Fellow, IEEE), JIANJIE ZHENG2, (Member, IEEE),

JUNJIE XU 1, (Fellow, IEEE), AND WU DENG 1,3,4,5, (Member, IEEE)
1College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China
2Software Institute, Dalian Jiaotong University, Dalian 116028, China
3The State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400044, China
4Co-Innovation Center of Shandong Colleges and Universities: Future Intelligent Computing, Yantai 264005, China
5Traction Power State Key Laboratory, Southwest Jiaotong University, Chengdu 610031, China

Corresponding author: Wu Deng (dw7689@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 51605068, Grant 61771087, Grant

51879027, and Grant 51579024, in part by the Open Project Program of State Key Laboratory of Mechanical Transmissions of Chongqing

University under Grant SKLMT-KFKT-201803, in part by the Traction Power State Key Laboratory, Southwest Jiaotong University, under

Grant TPL1803, in part by the Research Initiation Fund Project of Civil Aviation University of China under Grant 10701004, and in part by

the Liaoning BaiQianWan Talents Program.

ABSTRACT Traditional feature extraction methods are used to extract the features of signal to construct

the fault feature matrix, which exists the complex structure, higher correlation, and redundancy. This

will increase the complex fault classification and seriously affect the accuracy and efficiency of fault

identification. In order to solve these problems, a new fault diagnosis (PABSFD) method based on the

principal component analysis (PCA) and the broad learning system (BLS) is proposed for rotor system in

this paper. In the proposed PABSFD method, the PCA with revealing the signal essence is used to reduce

the dimension of the constructed feature matrix and decrease the linear feature correlation between data

and eliminate the redundant attributes in order to obtain the low-dimensional feature matrix with retaining

the essential features for the classification model. Then, the BLS with low time complexity and high

classification accuracy is regarded as a classificationmodel to realize the fault identification; it can efficiently

accomplish the fault classification of rotor system. Finally, the actual vibration data of rotor system are

selected to test and verify the effectiveness of the PABSFD method. The experimental results show that the

PCA method can effectively eliminate the feature correlation and realize the dimension reduction of the

feature matrix, the BLS can take on better adaptability, faster computation speed, and higher classification

accuracy, and the PABSFD method can efficiently and accurately obtain the fault diagnosis results.

INDEX TERMS Rotor system, fault diagnosis, principal component analysis (PCA), broad learning

system (BLS), dimension reduction.

I. INTRODUCTION

Rotor system as the core component of rotating machinery,

its running state plays an important role in the safe and stable

operation of the equipment. Most of the faults for rotating

machinery are caused by rotor system [1]–[3]. Its hazards

mainly include noise, rotor instability, and even damaged

mechanical structure, which are easy to cause serious acci-

dents [4]–[6]. Therefore, it is of great scientific significance
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and application value to effectively analyze and diagnose the

faults of rotor system [7]–[10].

At present, traditional feature extraction methods for

signal of rotor fault mainly include fast Fourier trans-

form (FFT), empirical mode decomposition (EMD), wavelet

transform (WT) and so on [11]–[21]. Bouzida et al. [22]

proposed a fault diagnosis method based on discrete wavelet

transform for induction machines. Yang et al. [23] proposed

a local rub-impact fault diagnosis method based on ensemble

local means decomposition. Li et al. [24] proposed a fault

diagnosis method based on statistical feature extraction and
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evaluation method. Cong et al. [25] proposed an intelli-

gent detection method using slip matrix construction method

based on singular value decomposition for rolling element

bearing. Lu et al. [26] proposed a novel feature extraction

method using adaptive multi-wavelets based on genetic algo-

rithm and the synthetic detection index. Zhang et al. [27]

proposed an intelligent fault diagnosis method based on sup-

port vector machine and ant colony algorithm. Xia et al. [28]

proposed a novel identification method based on key kernels-

PSO for Volterra series identification. Pan et al. [29] proposed

a new data-driven mono-component identification method

based on modified empirical wavelet transform and Hilbert

transform. Zheng et al. [30] proposed an adaptive parame-

terless empirical wavelet transform and normalized Hilbert

transform for rotor rubbing fault diagnosis. Mishra et al. [31]

proposed a novel diagnosis scheme based on envelope anal-

ysis and wavelet de-noising with sigmoid function based on

thresholding to extract the fault related symptoms. Saidi [32]

proposed an application of the bispectrum to detect rotor

faults in rotating machinery through detection of quadratic

phase coupling. An and Zhang [33] proposed a fault diag-

nosis method based on variational mode decomposition for

rotor system with a loose pedestal fault. Li et al. [34] pro-

posed an early fault diagnosis method based on differential

rational spline-based LMD and Kullback-Leibler divergence.

Cheng et al. [35] proposed a new fault diagnosis method

based on deep learning and Hilbert transform for the drive-

train gearboxes. Yu and He [36] proposed a fault diagnosis

method of planetary gearboxes based on data-driven valued

characteristic multigranulation model. Chen and Li [37] pro-

posed a fault diagnosis method using PCA and a deep neural

network based on stacked denoising autoencoder and the

dropout method. Yuan et al. [38] proposed a novel fusion

diagnosis method based on multi-mode convolutional neural

network and t-distributed stochastic neighbor embedding.

Lu et al. [39] proposed a fast and online order analysismethod

for permanent magnet synchronous motor bearing fault diag-

nosis. Zhang et al. [40] proposed a feature selection and fault

diagnosis framework based on hybrid Filter, Wrapper frame-

work and SVM. Pang et al. [41] proposed a novel evaluation

index named characteristic frequency band energy entropy

to extract the defective features of rotors. Lu et al. [42]

summarized recent advances in the development of tacholess

speed estimation methods for order tracking with its appli-

cations to fault diagnosis. Qian et al. [43] proposed an edge

computing-based method for real-time fault diagnosis and

dynamic control of rotating machines. Cheng et al. [44] pro-

posed a fault diagnosis method based on a semi-quantitative

information model. Yu et al. [45] proposed a fault severity

identification method of roller bearings using flow graph and

non-naive Bayesian inference. The other intelligent methods

are proposed in recent year [46]–[56]. They can be applied in

the field of fault diagnosis.

However, after the feature extraction of fault signal is

reviewed, the formed feature matrix has complex structure,

high feature correlation and redundancy. This will increase

the complexity of fault classification and reduce the accuracy

of fault identification. Therefore, it is crucial to improve the

accuracy and efficiency of fault identification. In order to

eliminate the redundant information of feature matrix, reduce

linear correlation between data, and improve the fault identi-

fication efficiency, a simple and efficient dimension reduction

method needs to be used in this study. The PCA is a classic

dimension reduction method. Because it is simple and easy

to understand and the process is completely parameter-free,

it has beenwidely used in various fields, such as image, voice,

communication and so on [57]. The essence of the PCA is to

calculate the direction of the dimension reduction projection

by calculating the covariance matrix of the process data set

and then using the feature vector matrix. In addition, the PCA

can reveal a simple structure hidden behind complex data,

reduce the linear correlation between data, and obtain the

best description of the fault state. More importantly, the PCA

can reduce the redundancy of fault data under the premise

of losing information as little as possible, so as to achieve

the purpose of dimension reduction. Therefore, the PCA is

used to reduce the dimension of the fault feature matrix in

this paper.

Broad learning system(BLS) is an effective and efficient

incremental learning system without the need for deep archi-

tecture [58]. It is constitutionally designed for fast universal

approximation for various applications. In order to realize the

fast recognition, the PCA with revealing the signal essence

and BLS with low time complexity and high classification

accuracy are introduced into fault diagnosis to propose a new

fault diagnosis (PABSFD) method for rotor system. In the

PABSFD method, the vibration signal is performed by FFT

to construct feature matrix, the PCA with revealing the signal

essence is used to reduce the dimension of the constructed

feature matrix and the linear correlation between data, and

eliminate redundant attributes to obtain the low-dimensional

matrix with retaining the essential features. Then the BLS

is used to regard as a classification model, and the reduced-

dimensional feature matrix is input into the BLS model to

realize the fault identification. Finally, the actual vibration

data is selected to test and verify the effectiveness of the

PABSFD method.

II. BASIC METHODS

A. PRINCIPAL COMPONENT ANALYSIS

The PCA is a dimension reduction technique for data [57].

Since it is simple and easy to understand and does not have

limitations of parameters, the PCA has been widely applied

in all kinds of fields. The main idea of the PCA is to map n-

dimensional features to k-dimensional features (k ≤ n). The

k-dimensional features are new orthogonal features, called

principal components, which are reconstructed from the orig-

inal n-dimensional features. The essence of the PCA is to

reduce the redundancy of data under the premise of losing

information as little as possible, so as to achieve the purpose

of dimension reduction.
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The steps of the PCA are described in detail as follows:

Step 1: Calculate the sample mean of the n-dimensional

data set X, where X = {x1, x2, . . . , xm.

α =
1

m

m
∑

i=1

xi (1)

where m is total number of samples, i = 1, . . . ,m, α is the

obtained sample mean.

Step 2: Use the generated sample mean to calculate the

covariance matrix of the sample set.

C =
1

m

m
∑

i=1

(xi − α)(xi − α)T (2)

where C is covariance matrix of the sample set.

Step 3: Calculate the feature values and feature vectors of

the sample covariance matrix.

C = Q ·
∑

·QT (3)
∑

= diag(λ1, λ2, . . . , λn)λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 (4)

Q = [q1, q2, . . . , qn] (5)

where
∑

is the arranged diagonal matrix of n feature values

of the covariance matrix in descending order, λi is the cor-

responding feature values of covariance matrix, and Q is the

feature matrix composed of the corresponding feature vector

qi of the feature value λi, i = 1, . . . , n.

Step 4: Use the obtained feature values and feature vectors

to calculate the cumulative variance contribution rate of the

first k-row principal elements.

θ =

k
∑

i=1

λi

/

m
∑

j=1

λj (6)

where θ is cumulative variance contribution rate of the former

k-row principal elements, and the value of θ is usually greater

than or equal to 0.9. In theory, the value of θ should be as

large as possible. From a practical point of the view, the value

of θ should be reasonably selected according to the specific

solving problem. When the value of θ is reasonably selected,

the information of the summarized original sample set of the

k-row principal elements can be determined.

Step 5: Realize the dimension reduction using the obtained

k-row feature vector.

P = Qk (7)

Y = P · X (8)

where P is a featurematrix, which is composed of correspond-

ing feature vectors of the first k-row feature values (k ≤ n).

Qk is a feature matrix, which is composed of the first k-row

feature values (k ≤ n). And Y is the k-dimensional data.

The transformation of data set X to Y also realizes the linear

transformation of data from n-dimension to k-dimension in

order to achieve dimension reduction.

B. BROAD LEARNING SYSTEM

The BLS proposed is built in a flat manner by Profes-

sor C. L. Philip Chen. It is design by the idea of using

mapping features as a random vector function link neural

network (RVFLLNN) input [59]–[61]. The BLS performs

feature extraction and dimension reduction for big data by

establishing feature nodes and enhancement nodes in order to

maintain the validity of the system. In addition, all mapped

features and enhancement nodes are directly connected to

the output, and the corresponding output coefficients can be

obtained by Pseudo, which effectively eliminate the short-

coming of long training time. More importantly, the BLS can

also extend the network structure through fast incremental

learning without the need of full network retraining. At the

same time, when the network is established, the BLS can

be combined with a low rank approximation to simplify the

system and avoid structural redundancy.

The BLS structure is shown in Figure 1.

FIGURE 1. The BLS structure.

Assume that we present the input data X and project

data ϕi (XWei + βei), which become the ith mapped fea-

tures Zi, where Wei and βei are the random weights with

the proper dimensions. Denote Z
i = [Z1, . . . , Zi], which

is the concatenation of all the first i groups of mapping

features. Similarly, the jth group of enhancement nodes ξj
(ZiWhj+ βhj) are denoted as Hj, and the concatenation of

all the first j groups of enhancement nodes are denoted

as Hj = [H1,. . . , Hj].

In the BLS, in order to take the advantages of sparse auto-

encoder features, the linear inverse problem is applied and

the initialWei is fine-tuned to obtain better features. Assume

the input data set X, which equips with N samples, each with

M dimensions, and Y is the output matrix, which belongs to

RN×C . For n feature mappings, each mapping generates k

nodes, can be represented as follow.

Zi = ϕ(XWei + βei), i = 1, . . . , n (9)

whereWei and βei are randomly generated. Denote all feature

nodes isZn ≡ [Z1,. . . , Zn], and themth group of enhancement

nodes is denoted as follow.

Hm ≡ ξ (ZnWhm+ βhm) (10)
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Hence, the BLS can be represented as follow.

Y = [Z1, . . . ,Zn|ξ (ZnWh1+βh1), . . . , ξ (ZnWhm+βhm)]Wm

= [Z1, . . . ,Zn|H1, . . . ,Hm]W
m

= [Zn|Hm]Wm (11)

where theWm = [Zn|Hm]+Y.

The steps of the BLS is described as follows:

Step 1: The input data is linearly transformed to form a

feature node of the BLS.

Step 2: The feature node randomly generates an enhance-

ment node through nonlinear transformation.

Step 3: All mapping features and enhancement nodes are

directly connected to the output.

Step 4: The weights of corresponding output can be

obtained by Pseudo. After the output weight is obtained,

the BLS is constructed.

III. FAULT DIAGNOSIS METHOD BASED ON PCA AND BLS

A. A NEW FAULT DIAGNOSIS METHOD

The rotor system is the core component of rotating machine,

and its operating state determines the working state. There-

fore, the effective identification fault of rotor system has

important scientific significance and application value.

At present, for the fault data, the obtained feature matrix

has complex structure, high feature correlation and redun-

dancy, which will affect the performance of the classification

model. Therefore, in order to eliminate the redundancy of

feature matrix and improve the accuracy of fault classifica-

tion, the PCA and BLS are introduced into fault diagnosis

to propose a new fault diagnosis(PABSFD) method. In the

proposed PABSFD method, the vibration signal is performed

by FFT to construct feature matrix, then the PCA is used to

reduce the dimension of the constructed feature matrix and

decrease the linear correlation between data, and eliminate

redundant attributes in order to obtain the low-dimensional

feature matrix with retaining the essential features. Next,

in the BLS, the feature nodes and the enhancement nodes can

implement feature extraction and dimension reduction. At the

same time, all nodes of the BLS model are directly connected

to the output, and the corresponding output coefficients by

Pseudo can be obtained, which can greatly shorten the com-

puting time. The BLS is used to regard as a classification

model, and the reduced-dimensional feature matrix is input

into the BLS model in order to realize the fault identification.

The proposed PABSFD method can efficiently accomplish

the fault diagnosis for rotor system. And it has higher diag-

nosis accuracy and lower time complexity.

B. FAULT DIAGNOSIS MODEL

In the PABSFD method, the fault vibration signal of rotor

system is collected, and the FFT is used to process the fault

vibration signal to construct the fault feature matrix. Then the

PCA is used to reduce the dimension of feature matrix, and

the BLS is used to classify the reduced-dimensional features.

The proposed PABSFD method can reduce the redundancy

FIGURE 2. The flow of the PABSFD method.

of fault features, shorten the classification time, and improve

the efficiency of fault identification. The flow of the PABSFD

method is shown in Figure 2.

The specific steps of the PABSFDmethod are described as

follows:

Step 1: The FFT is used to deal with the fault vibration

signal in order to transform the vibration signal from time

domain to frequency domain.

Step 2: Select initial parameters for the PABSFD method,

including the number of feature nodes and enhancement

nodes, regularization parameter, node scaling scale value, and

so on.

Step 3: Reasonably select the cumulative variance contri-

bution rate to achieve dimension reduction using the PCA

method.

Step 4: Construct a feature node by reducing the dimen-

sioned data.

Step 5: Generate an enhancement node according to the

feature nodes.

Step 6: Generate the output weights of the BLS to com-

plete the construction of the BLS model and obtain an ideal

classification model.

Step 7: Test effectiveness of the PABSFDmodel by the test

sample.

Step 8: Fault diagnosis results are obtained and output.

IV. EXPERIMENT AND ANALYSIS

A. EXPERIMENT DATA AND ENVIRONMENT

In order to verify the effectiveness of the proposed PABSFD

method, the QPZZ-II rotary machinery experiment platform

is used to obtain experiment data in here. The experiment

platform can simulate many kinds of fault states of rotating

machinery. The fault vibration signals are collected under

different rotating speeds. The shift range is 75-1450 r/min.

The experiment platform is shown in Figure 3.

The experiment uses the USB-4431 data acquisition card,

vibration acceleration sensor and LabVIEW software pro-

duced by National Instruments of the United States for vibra-

tion signal acquisition. The sampling frequency is 12kHz

and the sampling time is 100s. The rotating speed of motor

is 1000r/min, 1250r/min and 1500r/min, respectively. Nine

kinds of fault vibration signals and one normal vibration
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TABLE 1. Description of the fault type.

TABLE 2. Comparison of various dimension reduction methods (1000r/min).

FIGURE 3. The experiment platform of QPZZ-II.

signal are collected under no-load. The intercept length of

vibration signal is 1024. The fault types and classification

label are shown in Table 1. The experiments were performed

on a computer equipped with an Intel(R) Xeon(R) Bronze

3104 CPU @ 1.70GHz, 16GB memory on the MATLAB

2018b software platform.

The vibration signal under different rotating speeds were

divided into the same data, that is, 936 sets of data were used

as training samples and 234 sets of data were used as test

samples. Among these data, each set contains all vibration

signals in Table 1.

The FFT is used to transform the collected vibration signals

from time domain to frequency domain in order to construct

feature matrix. After the FFT transformation is realized,

the length of data is changed from 1024 to 512.

B. COMPARISON AND ANALYSIS RESULTS

OF DIMENSION REDUCTION

In order to test the effectiveness of the PCA method,

the PABSFD based on PCA and BLS is compared with other

dimension reduction methods, including the BLSFD based

on BLS, LEBSFD based on local linear embedding (LLE)

and BLS, LABSFD based on local tangent spatial align-

ment (LTSA) and BLS, LLSABSFD based on linear local

tangent spatial alignment (LLTSA) and BLS. After the data

is reduced by different methods, the dimensions are kept at

150 dimensions. At the same time, the BLS model is used

to classify the data of the dimension reduction. The structure

of BLS model (feature node-enhancement node) is 500-500.

In addition, the experimental results are obtained after 10

times. The experiment results under 1000r/min, 1250r/min,

and 1500r/min are shown in Tables 2, 3, and 4, respectively.

As can be seen from Table 2, for rotating speed of

1000r/min, compared with the data without dimension reduc-

tion, these dimension reduction methods are used to reduce

the dimension of data, and all dimension-reduced data can

effectively reduce the training time and test time. Espe-

cially for dimension-reduced data using the PCA method,

the test accuracy is 99.95% and the variance is 0.024. The

results are best in these methods. Therefore, the experiment

results show that the PCA method takes on better ability of

dimension reduction. And it can maintain extremely high

stability, which is superior to other dimension reduction

methods.

As can be seen from Table 3, for rotating speed of

1250r/min, although the dimension-reduced data using LTSA

can effectively improve the training time, the test accuracy

is lower value. This indicates that the LTSA method is not

ideal. For dimension-reduced data using the PCA method,

the training accuracy and test accuracy are 100% and the

variance is 0. The experiment results are better than 99.93%

and 99.87% of LLTSA. At the same time, the PCA method

can also speed up the training time and test time. Compared
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TABLE 3. Comparison of various dimension reduction methods (1250r/min).

TABLE 4. Comparison of various dimension reduction methods (1500r/min).

with the data without dimension reduction, the dimension-

reduced data using the PCA method can effectively reduce

the training time and test time, and improve the stability of

the PABSFD method. The experiment results show that the

PCA method has better dimension reduction effect and the

PABSFD method takes on best diagnosis accuracy.

As can be seen from Table 4, for rotating speed of

1500r/min, the obtained training accuracy and test accu-

racy for dimension-reduced data using the PCA method

are 99.98% and 99.97%, respectively. The test accuracy is

best in these methods. In addition, the variance using the

PCA method is 0.024, which show that the PCA method

is also superior to several other reduction methods in the

stability. Compared with the data without dimension reduc-

tion, the dimension-reduced data using the PCA method

can reduce the training time and test time, and improve the

test accuracy and stability. The experiment results show that

the PCA method takes on better the ability of dimension

reduction.

In summary, the dimension-reduced data using all reduc-

tionmethods can reduce training time and test time. However,

it can find that the dimension-reduced data using the PCA

method can better improve the test accuracy and stability.

This shows that the PCA method can better remove data

redundancy and preserve the validity of the data. In addition,

the PCA method can improve the classification efficiency of

the BLS model.

C. COMPARISON AND ANALYSIS OF CUMULATIVE

CONTRIBUTION RATES OF PRINCIPAL COMPONENTS

In order to analyze the influence of the cumulative vari-

ance contribution rate on the classification effect, in this

experiment, the classifier of the BLS is used in here, and

the structure (feature node-enhancement node) of BLS is

set to 500-500. The initial cumulative variance contribution

rate is set 0.95, which is increases by 0.005 for each time,

up to 0.995.

FIGURE 4. Influence of cumulative variance contribution rate on
training time.

The experiment comparison includes the test accuracy and

training time. At the same time, the experiment results are

obtained after average value for 10 times. The experiment

results are shown in Figure 4 and Figure 5.

As can be seen from Figure 4, the training time of all data

will increase significantly with the increasing of the cumula-

tive variance contribution rate. This is because the cumulative

variance contribution rate is higher, the PCA method has less

dimension reduction for data, the training time of the BLS is

longer.

As can be seen from Figure 5, within a certain range, with

the increasing of the cumulative variance contribution rate,

the test accuracy under different speeds takes on the trend of

increasing first and then stabilizing. The cumulative variance

contribution rate of the test accuracy is 0.98 under 1000r/min

and 1500r/min, and the cumulative variance contribution rate

of the test accuracy is 0.965 under 1250/min. The cumulative

variance contribution rate of the test accuracy under 1250/min

is lower than that under other two speeds. The results show

that the cumulative variance contribution rate is different for
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TABLE 5. Classification comparison of datasets after PCA (1000r/min).

TABLE 6. Classification comparison of data sets after PCA (1250r/min).

FIGURE 5. Influence of cumulative variance contribution rate on test
accuracy.

the data under different working conditions. The experiment

results show that the PCAmethod can reduce the redundancy

of data under different speeds. Therefore, the cumulative

variance contribution rate can be flexibly selected for the

specific data under different working conditions in order to

reasonably and effectively extract the fault features.

In summary, with the increasing of the cumulative variance

contribution rate, the test accuracy of three kinds of data takes

on the trend of increasing first and then stabilizing, but the

required time of modeling takes on a continuous increasing.

This shows that the PCAmethod can effectively preserve data

features and reduce the required time of modeling for three

kinds of data.

D. COMPARISON AND ANALYSIS OF

CLASSIFICATION MODELS

In order to prove the effectiveness of the PABSFD based

on PCA and BLS, the PAEMFD based on PCA and

extreme learning machine (ELM), the PAHMFD based on

PCA and multilayer extreme learning machine (HELM),

the PARMFD based on PCA and regularized extreme

learning machine (RELM) are selected in here. Among them,

the number of hidden layer nodes of the ELM is set as1000,

the structure of the HELM is set as 100-100-1000, the number

of nodes of the RELM is set as 1000, and the number of

nodes of the BLS is set as 500-500. The activation func-

tion selects the Sigmoid function for the hidden layer of

the ELM, HELM, and RELM, and the activation function

also selects the Sigmoid function for the enhancement layer

of BLS. At the same time, the weights and offsets of the

feature node layer and the enhancement node layer in the

BLS are extracted from the standard uniform distribution on

the interval [−1, 1]. In addition, the experiment results are

described in detail by the obtained average values of 10 times

for each method.

The experimental results at 1000r/min, 1250r/min, and

1500r/min are shown in Tables 5, 6, and 7, respectively.

As can be seen from Table 5, for rotating speed of

1000r/min, the ELM shows great stability during the training

and test, but its training time and test time are muchmore than

other classification models. The training accuracy and test

accuracy are 99.98% and 99.95%, respectively. Therefore,

the BLS model is superior to other classifiers in training

accuracy and test accuracy. At the same time, the training

time of the BLS model only needs 1.19s, which is better than

training times of the ELM, RELM, HELM. The experiment

results show that the BLS can better complete the task of fault

classification.

As can be seen from Table 6, for rotating speed

of 1250r/min and the dimension-reduced data using the PCA

method, all classification models can obtain the optimal

training accuracy and test accuracy, and the test accuracy

maintains extremely high stability. This also proves that the

PCA method is extremely stable. From the perspective of

time, the training time and test time of the BLS only needs

1.33s and 1.42s, respectively. Therefore, the time complexity

is lower than those of ELM, HELM and RELM. The exper-

iment results show that the BLS is competitive with other

classificationmodels and the PABSFDmethod takes on better

fault diagnosis accuracy.
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TABLE 7. Classification comparison of datasets after PCA (1500r/min).

As can be seen from Table 7, for rotating speed of

1500r/min, the HELM and RELM can faster realize the fault

diagnosis. At the same time, the HELM and RELM canmain-

tain excellent stability. When the BLS model is applied to

classify the faults, the training accuracy and test accuracy are

99.98% and 99.97%, respectively. The accuracy is better than

other classification models. From the perspective of training

time, the training time of the BLSmodel is the shortest, which

only need 1/10 training time of the ELM. The experiment

results show that the BLS model can efficiently realize fault

classification. And the PABSFD method can obtain high

diagnosis accuracy.

In summary, for BLS classification model, the test time

under1500r/min is shorter than the test time under 1000r/min

and 1250r/min. The test time under1250r/min is shorter than

the test time under 1000r/min. This means that the rotating

speed is faster, the test time is shorter for fault diagnosis of

the collected data. For the fault data under different speeds,

compared with the ELM, HELM and RELM, the BLS can

fastest complete the classification, it can realize the fault

diagnosis with the best test accuracy under different fault

data. Therefore, the test accuracy and test time of the BLS

model are best than other comparison methods, and the sta-

bility of the BLS model is similar to the stabilities of the

ELM, HELM and RELM. In addition, the experiment results

show that the BLS model takes on stronger generalization

ability.

V. CONCLUSION

In this paper, a new fault diagnosis(PABSFD) method based

on the PCA and BLS is proposed. Firstly, the FFT is used

to transform the vibration signal from time domain to fre-

quency domain. Then the PCA method is used to reduce

the dimension of the constructed feature matrix and decrease

the linear correlation between data in order to form the low-

dimensional feature matrix. And the reduced feature vector is

input into the BLS model in order to obtain a new fault clas-

sification model for realizing the purpose of fault diagnosis.

The main conclusions are summarized as follows:

(1) The dimension reduction method of PCA can effec-

tively eliminate the correlation of feature vectors in the fea-

ture matrix and realize the dimension reduction of the feature

matrix, so as to reduce the redundancy of the feature matrix.

(2) In practical applications, the PCA method can select

the cumulative variance contribution rate according to the

specific solving problem in order to reasonably reduce the

dimension of the feature matrix, which reflects the flexibility.

(3) The BLS performs feature extraction and dimension

reduction by establishing feature nodes and enhancement

nodes in order to maintain the validity of the system. The BLS

model is introduced into the field of fault diagnosis and can

broaden its applicability.

(4) Compared with other classification models, the PAB-

SFD method can efficiently realize fault diagnosis. The

experiment results show that the BLS model takes on good

superiority. And for multi-classification problems under dif-

ferent speeds, the PABSFD method takes on good adaptabil-

ity and strong stability.
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