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	e fault diagnosis of hydraulic pumps is currently important and signi
cant to ensure the normal operation of the entire hydraulic
system. Considering the nonlinear characteristics of hydraulic-pump vibration signals and themodemixing problem of the original
Empirical Mode Decomposition (EMD) method, 
rst, we use the Complete Ensemble EMD (CEEMD) method to decompose the
signals. Second, the time-frequency analysismethods, which include the Short-TimeFourier Transform (STFT) and time-frequency
entropy calculation, are applied to realize the robust feature extraction. 	ird, the multiclass Support Vector Machine (SVM)
classi
er is introduced to automatically classify the fault mode in this paper. An actual hydraulic-pump experiment demonstrates
the procedure with a complete feature extraction and accurate mode classi
cation.

1. Introduction

Hydraulic systems have been widely used in aeronautics,
astronautics, automobiles, shipping, and so on. As the heart
of a hydraulic system, the performance of the hydraulic pump
signi
cantly a�ects the entire hydraulic system [1]. 	us,
achieving real-time fault diagnosis of the hydraulic pump is
essential and urgent to maintain the entire system [2]. For
the hydraulic pump, its structure is complex, the relationship
among its internal parameters is highly nonlinear, and there
are strong couplings among various fault features. As a result,
an accurate mathematical model is di�cult to establish.
	erefore data-driven diagnostic methods are commonly
used for hydraulic pumps based on their vibration signals.
Generally, the entire fault diagnosis process can be considered
a pattern identi
cation problem that mainly includes two
important procedures: feature extraction and mode classi
-
cation.

Many data-driven feature extraction methods have
emerged in recent years that are di�erent from the traditional

time-domain analysis and frequency-domain analysis meth-
ods. 	e Empirical Mode Decomposition (EMD), which
was developed by Huang et al., is a time-frequency analysis
method and has advantages in addressing nonlinear and
nonstationary signals [3]. 	e EMD can decompose any
signal into intrinsic mode functions (IMFs) based on the
local timescale of the data, without using a priori basis [4].
However, the EMD faces a serious problem, “mode mixing,”
where a notably disparate amplitude in a mode oscillates or
notably similar oscillations occur in di�erentmodes. Because
of this problem, a new method was proposed: Ensemble
Empirical Mode Decomposition (EEMD), which performs
the EMD over an ensemble of the signal plus Gaussian white
noise to obtainmore regularmodes.However, the EEMDalso
created new di�culties. 	e reconstructed signal contains
residual noise, and di�erent realizations of signal plus noise
may produce di�erent numbers of modes. To overcome these
di�culties, another EMD method has been proposed and
successfully applied to vibration signal analysis, complete
EEMD (CEEMD), which provides an exact reconstruction
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of the original signal and a better spectral separation of
the modes [5, 6]. Han and van der Baan used CEEMD to
analyze the synthetic and real seismic data and obtained a
good result [7]. In our study, CEEMD is selected to adaptively
decompose signals into a small number of IMFs or modes,
and the Short-Time Fourier Transform (STFT) algorithm and
time-frequency entropy analysis method are simultaneously
used to obtain the fault feature vectors composed by multi-
scale time-frequency entropy.	is feature extractionmethod
is de
ned as the CEEMD-STFT time-frequency entropy
method.

A�er the fault feature is extracted, a classi
er is exploited
to automatically achieve mode classi
cation. Support Vector
Machine (SVM) is a powerful machine learning method
based on the statistical learning theory and structural risk
minimization principle that has been successfully applied to
fault diagnosis and satisfactorily solved the over
tting and
local optimal solution problem [8]. However, there are no
elegant approaches to solve multiclass problems. A better
alternative is provided by the construction of multiclass SVM
[9], which is inherently two-class SVM classi
ers. In this
paper, we build amulticlass SVM classi
er to classify the fault
mode over the feature vectors, whose dimensions have been
compressed using the Principal Component Analysis (PCA)
algorithm because the original feature vectors are always too
large, complex, and variable for postprocessing.

	is paper is organized as follows: Section 2 intro-
duces the relevant feature extraction and mode classi
cation
methodology, which includes the CEEMD, STFT, time-
frequency entropy, and multiclass SVM method; Section 3
describes the case study to validate the entire method;
Section 4 presents the conclusions of this paper.

2. Methodology

As shown in Figure 1, the complete fault diagnosis scheme has
three elements: data preprocessing, fault feature extraction,
and fault mode classi
cation.More details are provided in the
following parts.

2.1. Feature Extraction Based on the CEEMD-STFT

Time-Frequency Entropy Method

2.1.1. Complete Ensemble Empirical

Mode Decomposition (CEEMD)

(A) Empirical Mode Decomposition (EMD). 	e EMD is
an adaptive signal analysis method based on the signal
characteristic local extrema, which separate a signal into a
certain number of IMF components. To be considered an
IMF, a signal must satisfy two conditions: (1) the number
of extrema and the number of zero-crossings must be equal
or di�er at most by one; (2) the mean value of the envelope
de
ned by the local maxima and the envelope de
ned by the
local minima is zero at any data location [10]. Assume that�(�) is the signal to be decomposed, the concrete steps of the
EMD are shown as follows.

Original signal Preprocessed data

CEEMD IMFs decomposed

STFT Time-frequency matrices 

Entropy Time-frequency entropies

PCA Features compressed

Training multiclass

SVM classi�er

Training data

Testing with

trained classi�er

Testing data

Classi�cation results

Data

Feature
extraction

Pattern
classi�cation

Fault diagnosis procedure of hydraulic pump

Figure 1: Entire fault diagnosis procedure.

Step 1 (Initialization). Set � = 0, where � indicates the mode,
and the residual component �0(�) = �(�).
Step 2. Calculate the mean envelope�(�)

� (�) = [�max (�� (�)) + �min (�� (�))]2 , (1)

where �max(��(�)) and �min(��(�)) are the upper and lower
envelopes, respectively, which are obtained through cubic-
spline interpolation on the localmaxima andminima of ��(�).
Step 3. Compute the IMF candidate

��+1 (�) = �� (�) − � (�) . (2)

Step 4. Does ��+1(�) satisfy the IMF properties?

(i) Yes. Set IMF�+1 = ��+1(�) and ��+1(�) = ��(�)−IMF�+1;
let � = � + 1, and go to Step 2.

(ii) No. Set ��+1(�) as ��(�), and go to Step 2.
Step 5. Continue Steps 2–4 until ��(�) becomes a monotonic
function.

Each obtained IMF through the EMD contains di�erent
frequency components of the signal from high to low fre-
quencies and represent the inherent mode characteristics of
the signal.

(B) Ensemble EMD (EEMD). To solve the “mode mixing”
problem, Wu and Huang proposed the Ensemble EMD
(EEMD) method [11], which de
nes the “true” modes as
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the mean of the corresponding IMFs that are obtained via
EMD over an ensemble of the original signal plus di�erent
realizations of 
nite variance white noise [12]. Considering �
as an example signal, the EEMD algorithm can be described
as follows.

Step 1. Generate

�(�) = � + �(�), (3)

where �(�) (� = 1, . . . , �) are di�erent realizations of white
Gaussian noise.

Step 2. Each �(�) (� = 1, . . . , �) is fully decomposed by EMD

to obtain the modes IMF(�)� , where � = 1, . . . , � indicates the
mode.

Step 3. Assign IMF� as the �th mode of �, which is obtained
by averaging the corresponding modes:

IMF� = 1�
�∑
�=1
IMF(�)� . (4)

However, the EEMDmethod has some disadvantages: (1)
the decomposition is not complete; (2) di�erent realizations
of signal plus white noise may generate di�erent numbers of
modes.

(C) Complete EEMD (CEEMD). To address the aforemen-
tioned reconstruction error, complete EEMD (CEEMD) was
proposed by Torres et al. in 2011 [5]. 	e procedure of
CEEMD is described as follows.

Step 1. 	e 
rst IMF is calculated in the identical method to
EEMD. First, addwhite noise to the original signal and obtain
the 
rst EMD component of the data with noise. Repeat
the decomposition by adding di�erent noise realizations, and
compute the ensemble average to de
ne it as the 
rst IMF1 of
the original signal �, that is,

IMF1 = 1�
�∑
�=1
�1 (� + �0��) , (5)

where ��(⋅) is de
ned as an operator and the �th mode can
be computed through EMD when it meets a new signal. � is

the raw signal,�� is the di�erent white noise, and �0 is a ratio
coe�cient.

Step 2. Calculate a unique 
rst residue as

�1 = � − IMF1. (6)

	en set �1 + �1�1(��) (� = 1, . . . , �) as the new signal
for decomposition. When the 
rst IMF component has been
obtained, we must calculate the ensemble average as the
second component IMF2:

IMF2 = 1�
�∑
�=1
�1 (�1 + �1�1 (��)) . (7)

Step 3. Repeat Steps 1-2, and we can obtain the (� + 1)th IMF
component IMF�+1:

IMF�+1 = 1�
�∑
�=1
�1 (�� + ���� (��)) . (8)

Step 4. Finally, obtain the last residual function �, until the
residue cannot be decomposed. 	en, � = � − ∑��=1 IMF�,
where � is the total number of IMF. 	e signal is described
as

� = �∑
�=1

IMF� + �. (9)

	e last step makes the proposed decomposition com-
plete and provides an exact reconstruction of the original
signal.

2.1.2. Short-Time Fourier Transform (STFT). 	e time and
frequency information in each IMF relates to the sampling
frequency and changes with the signal itself, so research on
the time-frequency domain characterization of signals has
been a key component of signal analysis [13]. 	e STFT is a
popular method to analyze nonstationary signals. 	e STFT
of the signal �(�) is de
ned as

�(�, �) = ∫∞
−∞

� (�) ℎ (� − �) ⋅ �−�2�	
 �, (10)

where ℎ(�) should be a low-pass 
lter, and ‖ℎ‖2 = 1. Note
that ℎ(� − �) ⋅ ��2�	
 has its energy concentrated at time � and
frequency �. 	us, |�(�, �)|2 can be considered the energy
in �(�) at frequency � and time �. Generally, one displays the
energy at each time and frequency pair, that is,

" (�, �) = ####� (�, �)####2 . (11)

"(�, �) is known as the spectrogram (SP) of �(�) [14].
	e spectrogram algorithm is an analysis algorithm that

produces a two-dimensional image representation of vibra-
tion signals. 	e Power Spectrum Density (PSD) function"(�, �) is expressed as a Pseudo ColorMap (PCM), which is a
spectrogramwith a time axis and a frequency axis.	is time-
frequency spectrum, which can be called the “visual lan-
guage,” shows the modulation characteristics of the signals.

2.1.3. Time-Frequency Entropy. 	e time-frequency distri-
bution of the vibration signal obtained through the STFT
method presents modulation characteristic, that is, the
energy distribution changes at di�erent moments. 	erefore,
a fault can be detected by comparing the energy distribution
of the signals with and without fault conditions in the time-
frequency domain, which indicates that the energy variation
in the time-frequency plane may indicate a fault occurrence
[15]. Because the spectrogram can provide an accurate
energy-frequency-time distribution, the information entropy
theory, which measures the uniformity of the probability
distribution, can be introduced to the time-frequency distri-
bution to quantitatively describe the divergence in di�erent
operating conditions [16].
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Figure 2: Illustration for data classi
cation using a 2-class SVM.

Let a time-frequency plane have $ blocks with equal
areas, where the information source for the entire plane is %
and for each block is&� (� = 1, . . . , $), so the probability that
each information source appears in the entire system is

�∑
�=1
'� = 1, '� = &�% , (� = 1, . . . , $) . (12)

According to the information entropy calculation [17], the
time-frequency entropy is de
ned as

* (') = − �∑
�=1
'� ln '�. (13)

Now, we can consider the time-frequency entropy of each
IMF as the extracted feature vectors, which will be the input
of the mode classi
cation.

2.2. Mode Classi	cation Based on the Multiclass SVM

2.2.1. Support Vector Machine (SVM). Support Vector
Machine (SVM), which originated from the statistical
learning theory and an optimal separating hyper-plane in the
case of linear separation, was developed by Cortes and his
coworker [18]. 	rough some nonlinear mapping functions,
the originalmode space ismapped into the high-dimensional
feature space Z. 	en the optical separating hyper-plane is
constructed in the feature space. Consequently, the nonlinear
problem in the low-dimensional space corresponds to the
linear problem in the high-dimensional space.

2.2.2. Two-Class SVM. SVMs are primarily designed for 2-
class classi
cation problems. To illustrate the basic principle,
a schematic diagram of 2-class SVM is shown in Figure 2,
where two di�erent classes (circles and triangles) are classi-

ed by a linear boundary -, and the distance between the
boundary and the nearest data point in each class is maximal.

Assume that the input vector is �, which is mapped into
high-dimensional space Z through the nonlinear mapping
function /(�), and the linear function (3 ⋅ /(�)) + 4 = 0 in
the high-dimensional feature space can be used to construct
the optimal classi
cation hyper-plane. 	e training data are
set as {��, 5�}, � = 1, 2, . . . , 6; �� ∈ ��, 5� ∈ {−1, +1}, 5� is
the corresponding label of ��. 	en, 3 is a weight vector, and

the margin is 1/‖3‖. 	e following constraint optimization
problem is the solution of maximizing the margin 1/‖3‖:

min
12 ‖3‖2 + 9

∑
�=1
:�

s.t. 5� (3 ⋅ / (��) + 4) ≥ 1 − :�, � = 1, . . . , 6
:� ≥ 0, � = 1, . . . , 6,

(14)

where coe�cient 9 is a penalty factor and :� is a slack factor
[16].

In addition, using the duality theory of optimization
theory and Kernel function, the 
nal decision function is
described by

� (�) = sgn( ∑
��∈���

5�>� (/ (��) ⋅ / (�)) + 4)

= sgn( ∑
��∈���

5�>��(��, �) + 4) ,
(15)

where �(��, �) is the kernel function, which satis
es Mercer
condition; the constants >� are named Lagrange multipliers
and are determined in the optimization procedure. 	e typ-
ical kernel functions are the polynomial kernel, Radial Basis
Function (RBF) kernel, sigmoid kernel, and linear kernel. In
many practical applications, the RBF kernel has the highest
classi
cation accuracy rate compared to the other kernel
functions, sowemainly consider the RBF kernel in this paper.

	e SVMwas originally designed for binary classi
cation
and had good performance, but it still faced many di�culties
in addressing multiclass classi
cation problems. 	e SVM is
not su�cient to handle a practical situation.

2.2.3. Multiclass SVM. Currently, several methods based on
the SVM have been proposed for multiclass classi
cation,
such as “one-against-all,” “one-against-one,” and Directed
Acyclic Graph (DAG). Experiments indicate that the “one-
against-one” and DAG-SVM methods are most suitable
for practical situation. In this paper, the “one-against-one”
method is selected for classi
cation [19].

Let us suppose that the training data set is @ ={(�1, 51), (�2, 52), . . . , (�, 5)}, �� ∈ �� and the “one-against-

one” method constructs 92� = �(� − 1)/2 classi
ers, each of
which is trained using the data from two classes. For example,
we should solve the following binary classi
cation problem
for the training data from the �th and �th classes:

min
��,�,��,� ,��,�

12 AAAAA3�,�AAAAA2 + 9[∑
�=1
:�,�� ]

s.t. [(3�,� ⋅ ��) + 4�,�] − 1 + :�,�� ≥ 0, if 5� = �
[(3�,� ⋅ ��) + 4�,�] + 1 − :�,�� ≤ 0,

if 5� = �, :�,�� ≥ 0.

(16)
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Table 1: Six-dimensional fault features.

Fault pattern No. Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6

Normal

1 4.9681 3.9921 4.0155 3.6082 3.2670 2.6576

2 4.9732 3.9936 4.0145 3.6031 3.2395 2.6541⋅ ⋅ ⋅
20 4.7565 3.9406 4.1075 3.6274 3.3763 2.6567

Rotor wear

21 3.8933 4.2478 3.5822 3.7066 3.2937 2.5966

22 3.8923 4.1903 3.5846 3.7407 3.2990 2.5675⋅ ⋅ ⋅
40 3.8991 3.9456 3.5417 3.6743 3.3190 2.5426

Swash plate wear

41 4.1123 3.4824 3.4975 3.6294 3.2926 2.5332

42 4.1285 3.4886 3.5151 3.6196 3.3310 2.5820⋅ ⋅ ⋅
60 4.1782 3.4949 3.5132 3.5932 3.3496 2.6182

When testing is performed for the unknown sample �,
we construct all �(� − 1)/2 classi
ers to realize the class
discrimination andmake decisions using the following voting

strategy: if sgn((3�,� ⋅ ��) + 4�,�), � is in the �th class, then, the
vote for the �th class is increased by one; otherwise, the �th
class is increased by one. Finally, we predict that � is in the
class with the largest vote [20].

3. Experimental Verification

3.1. Experiment Setup. 	e plunger pump test-rig is shown
in Figure 3; from this test-rig, the original vibration signals
were obtained to verify the proposed method. 	e vibration
data were obtained from the front side of the hydraulic pump
with a stabilized motor speed of 528 r/min and a sampling
rate of 1000Hz. In this experiment, two commonly occurring
faults were set: swash plate wear and rotor wear. Under three
conditions (two faulty conditions and the normal state), 20
groups of samples (1024 sampling points for each group) were
selected for the analysis.

3.2. Model for Fault Diagnosis of Hydraulic Pumps

3.2.1. Feature Extraction Based on the CEEMD-STFT

and Time-Frequency Entropy

(1) CEEMD Model. 	e parameters of the CEEMD model
were set as follows: the noise standard deviation (Nstd) was
0.2, the Number of Realizations (NR) was 600, and the
maximumnumber of si�ing iterations allowed (MaxIter) was
5000.	e original signals of each state were decomposed into
a series of IMFs; the 
rst six IMFs were selected for further
analysis, as shown in Figure 4.

(2) Procedure of the STFT and Time-Frequency Entropy
Acquisition.	e parameters of STFT were selected as follows:
the length of the window, number of overlaps, and sampling
frequency (fs) were 256, 254, and 1000, respectively, and
the length of the discrete Fourier transforms was equal to

Figure 3: Plunger pump test-rig.

the window length. 	en, the time-frequency matrices or
spectrograms of each state were obtained in Figure 5.

	e time-frequency entropy of each state can be cal-
culated based on the time-frequency matrices. 	e time-
frequency block was set as length = width = 64, and both
the lateral and longitudinal slip steps were 32. 	en, a six-
dimensional time-frequency entropy was obtained for each
group, which is one of the fault feature vectors. All of the fault
features are listed in Table 1.

(3) Feature Dimension Reduction Based on PCA. To improve
the accuracy and robustness of the fault diagnosis, dimension
reduction is necessary for the high dimensional fault feature
vectors. PCA, which is an important and powerful methods
to extract the most signi
cant information from data and
compress the size of the data [21], was used to acquire the
three-dimensional feature vectors in Table 2.

	e clustering result of the fault features is visually
displayed in Figure 6, which obviously shows a good perfor-
mance of the hydraulic-pump fault mode classi
cation.

3.2.2. Fault Mode Classi	cation Based on Multiclass SVM.
	e extracted fault feature sets were divided into training
data and testing data (the 
rst ten groups were set as the
training data and the remainder was set as the testing data for
every state). First, the training multiclass SVM classi
er was
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Figure 4: First 6 IMFs of each state.

Table 2: Feature vector set a�er dimension reduction.

Fault pattern No. Feature 1 Feature 2 Feature 3

Normal

1 4.1284 2.9741 5.6483

2 4.1327 2.9729 5.6553⋅ ⋅ ⋅
20 3.9954 2.9829 5.5353

Rotor wear

21 3.7289 2.0520 5.2589

22 3.6789 2.0772 5.2629⋅ ⋅ ⋅
40 3.5266 2.1772 5.1467

Swash plate wear

41 3.2972 2.4613 5.1078

42 3.3079 2.4822 5.1103⋅ ⋅ ⋅
60 3.3408 2.5041 5.1157

trained as previously proposed with the training data. 	en,
the trained classi
er was used to classify the fault mode of
the testing data and calculate the recognition accuracy. 	e
classi
cation results of the testing data are shown in Table 3
and Figure 7. 	ese testing results verify that the recognition

performance is absolutely good, and the multiclass SVM
method is notably e�ective for mode classi
cation.

Combining the clustering 
gure and multiclass SVM
classi
cation results, the e�ectiveness and feasibility of this
method for hydraulic-pump fault diagnosis were proven,
and a high classi
cation performance was also obviously
obtained.

4. Conclusion

An e�ective method for the feature extraction and mode
classi
cation of vibration signals has been performed in this
paper, and this algorithm was successfully veri
ed on practi-
cal signals fromahydraulic pump.	eCEEMDmodel, which
is an improvement of EMD and can solve the “mode mixing”
problem, was combined with the STFT analysis method and
time-frequency entropy calculation to extract the robust and
signi
cant fault feature. Meanwhile, the multiclass SVM clas-
si
er was selected to process the small sample and multiple-
fault situation, and it obtained a perfect classi
cation result.
	en, the accuracy and feasibility of this hydraulic-pump
fault diagnosis method were demonstrated. Future work will
concentrate on the application of thismethod to other objects
or 
elds for signal analysis and fault diagnosis.
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Figure 5: Spectrograms of the 
rst IMF of each state.

Table 3: Classi
cation results of the testing data.

Fault pattern Actual label Index No. Feature 1 Feature 2 Feature 3 Predicted label

Normal 1

1 11 4.0906 2.9178 5.5591 1

2 12 4.0961 2.9253 5.5036 1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

10 20 3.9954 2.9829 5.5353 1

Rotor wear 2

11 31 3.7442 2.0107 5.1790 2

12 32 3.6416 2.1110 5.1027 2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2

20 40 3.5266 2.1772 5.1467 2

Swash plate wear 3

21 51 3.3093 2.5163 5.1968 3

22 52 3.3018 2.4982 5.2170 3

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3

30 60 3.3408 2.5041 5.1157 3



8 Shock and Vibration

4.24.143.93.83.73.6
1st PC3.53.43.33.21.8

22.22nd PC

2.42.62.8
3

3.2

Normal

Rotor wear

Swash plate wear

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

3r
d

 P
C

Figure 6: Clustering result of the fault features.
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Figure 7: Classi
cation results of the testing data.
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