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Abstract—A transformer is one of the most important units in
power networks; thus, fault diagnosis of transformers is quite sig-
nificant. In this paper, the frequency-response analysis, deemed as
a suitable diagnostic method for electrical and/or mechanical faults
of a transformer, is employed to make a decision over a defective
phase. To deal with wideband frequency responses of each phase,
a synthetic spectral analysis is proposed, which augments low- and
medium-frequency components, and equalizes the frequency in-
tervals of a resulting combined curve by a log-frequency interpo-
lation. Furthermore, for discriminating a defective phase through
computing overall amounts of deviation with other phases, the two
well-known criteria and three proposed criteria are examined with
experiment data. The overall diagnosis results show that the pro-
posed criterion discriminates a defective phase with the highest av-
erage hit ratio among all of the provided criteria for selected faults.

Index Terms—Defective phase, discrimination criteria, fault di-
agnosis, frequency response analysis, power transformers, spectral
analysis.

I. INTRODUCTION

Ahigh-voltage power transformer is one of the most impor-
tant units in power networks; thus, the breakdown of a

transformer leads to an abrupt halt of an overall process and
costly repairs. To avoid this accident, monitoring systems for
fault diagnosis are necessary to the power transformers in pro-
portion to their importance.

Diagnostic methods that have been employed to the power
transformers include the partial discharge (PD) method, the dis-
solved gas in oil analysis (DGA), and the frequency-response
analysis (FRA). The PD method is applied to find the location
where a partial discharge occurs by means of acoustic sensors.
In this method, it is crucial how to configure the sensors and
eliminate ambient noises. DGA analyzes the percentages of in-
gredient gases in insulating oil, and provides the relation be-
tween the obtained data and the status of a power transformer.
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Due to a large amount of data base accumulated during the last
couple of decades, DGA has been widely used to periodically
monitor power transformers. However, DGA is not suitable for
detecting precise electrical and/or mechanical faults, because
they affect the dissolved oil in an indirect manner. FRA gener-
ates magnitude and phase responses in frequency domains with
measured input/output voltage/current signals, which are then
compared with reference responses. Since electrical changes
corresponding to mechanical deformations are notably observed
in those frequency responses, much research has been carried
out, during the last decade, on FRA [1]–[6] or the transfer func-
tion method (TFM) [7]–[11].

In FRA, the frequency responses of a test transformer are
usually compared with the fingerprints of former times. How-
ever, the fingerprints are rarely available, specifically for trans-
formers in service. Thus other information (i.e., comparison be-
tween identically constructed transformers and interphase com-
parison) has to be taken for diagnosis. The interphase compar-
ison may be the last alternative, but is still a reliable method
because it is based on the symmetric properties of the core-and-
coil assembly [10]. It was recently reported that through the in-
terphase comparison, any significant winding deformation is de-
tectable with the computed deviation of a defective winding sev-
eral times larger than normal deviations by the NEETRAC ob-
jective winding asymmetry (OWA) test [4], [5]. However, care
must be taken to the interphase comparison because there will be
differences between the FRA results owing either to differences
in the lead configurations or in the winding external clearances
[6]. In this paper, both the cases of with and without historical
data are addressed.

Conventional FRA has been relying on a graphical analysis
for diagnosis of transformers, which requires trained experts to
interpret test results. To overcome this lack of objectivity, recent
research employs numerical indicators such as the weighted nor-
malized difference number [4] and the correlation coefficient
[6]. Considering that the frequency responses of a power trans-
former retain typically ill-scaled peaks and valleys (i.e., a slight
horizontal shift of a peak drastically affects a whole amount of
deviation between two measurements), an appropriate indicator
has to be carefully designed with justification. In this paper,
qualitative analyses are made to the two general-purpose criteria
and three proposed criteria considering the ill-scaled property.
The proposed criteria have been sequentially designed based on
the shortcomings of the former criteria. In order to verify their
appropriateness, all criteria are testified by a suite of experi-
mental data.
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Another important factor that affects FRA performance is
the quality of obtained transfer functions. As stated in [6],
short-circuited turns, circulating current loops, and unground
cores make changes in low-frequency responses. In addition,
medium-frequency responses are sensitive to the axial move-
ment of a winding and radial movement of the inner winding.
Therefore, in order for FRA to be able to detect those faults,
a synthetic spectral analysis (SSA) is proposed to generate
wideband high-quality frequency responses, which augments
low- and medium-frequency components by a cut-and-concate-
nation method (CCM). Afterwards, the resulting irregularity
of the combined curve is resolved by an interpolation with
respect to a logarithmic frequency scale (log-frequency inter-
polation hereafter), which leads to a well-balanced numerical
comparison over a whole frequency range for discriminating a
defective phase [4], [10].

The paper is organized as follows: Section II describes the
proposed signal processing technique. Section III explains the
conventional and the proposed criteria. Section IV explains de-
tailed test setup and experiments. Section V gives the diagnostic
results on simulated faults using all discrimination criteria. Sec-
tion VI concludes our work and discusses future work.

II. SIGNAL PROCESSING TECHNIQUE

In the area of system identification, parametric and nonpara-
metric methods are provided from the parameter point of view,
and the nonparametric method, which does not require the infor-
mation of a model (i.e, structure, state equation and number of
parameters), is more appropriate to identify such a large-scale,
nonlinear, and time-varying system as a power transformer. The
nonparametric method consists of transient analysis, frequency
analysis, correlation analysis, and spectral analysis [12], [13].
Since frequency responses of a high quality over a wide fre-
quency range are crucial for discriminating a defective phase,
the spectral analysis is employed using the swept frequency
input signal whose main advantages are better signal-to-noise
ratio, wider range of frequencies, and less measuring equipment
[6]. An ideal swept frequency waveform (or sweep signal) is de-
scribed as

(1)

where , , , and denote the constant gain, the pre-
scribed minimal and maximal frequencies, and the measurement
duration, respectively.

Discrete Fourier transform (DFT) in the conventional spectral
analysis divides a whole frequency range with a finite number
of points on a linear scale. Hence, obtained frequency responses
have higher statistical weights for high than for low frequencies,
which may disregard the faults relevant to the low-frequency re-
sponses. To overcome the problem, SSA is proposed to obtain
the improved frequency responses where the low- and medium-
frequency components are enhanced. The proposed signal pro-
cessing technique includes CCM and a log-frequency interpo-
lation which will be explained in what follows.

A. Spectral Analysis

The system model used in conventional spectral analysis is
written with the convolution of input and output signals as

(2)

where , , , and denote the impulse response,
input, output, and noise signals, respectively. Assume that the
input is a stationary stochastic process which is independent of
disturbances. Replacing with , multiplying , and con-
ducting expectation in both sides of (2) leads to

(3)

where and
. Through DFT, the following relation for spectral den-

sities can be derived from (3) as

(4)

where

(5)

(6)

(7)

Now, the transfer function can be estimated from (4)
as

(8)

where the periodograms in (8) are defined as

(9)

(10)

As the number of data points tends to infinity, the variances
of and increase. Thus, in general, (8) produces
a poor estimate of the real transfer function of a system. To
overcome this deficiency, Welch’s method [14] divides the input
and output time series signals into overlapping sections with the
number of

(11)
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Fig. 1. Conceptional diagram of the synthesis of subfrequency responses.

where and represent window length and the amount of
overlap, respectively. Then, each section is filtered by a Hanning
window, and its empirical transfer function is computed by (8).
Finally, a smoothed but well-suited transfer function is obtained
through averaging all of the temporary empirical transfer func-
tions. Welch’s method is implemented in the spectrum function
of MATLAB, and the details are found in [15].

B. Principles of SSA

In using FRA, one should keep in mind that the sampling
resolution of frequency responses affect the computation result
as pointed out in [2]. A sampling resolution is calculated by

(12)

where and represent the sampling frequency and the max-
imum number of samples in DFT, respectively. To raise the
sampling resolution, should be lowered and/or should be
raised. However, to avoid the phenomenon of aliasing, suffi-
ciently high sampling frequency is crucial to meet the Nyquist
sampling theorem, which recommends should be larger than
the Nyquist frequency by at least two times [16]. On the other
hand, if is raised, due to the increased variance of power spec-
trum signals, the resulting frequency responses contain more
noisy components. Thus, DFT and the spectral analysis inher-
ently retain lower bounds of the sampling resolution. This may
cause an unexpected fail to catch the meaningful information
which exists in low-frequency regions of frequency responses.

To overcome this limitation, SSA based on CCM and log-fre-
quency interpolation is proposed. Fig. 1 provides a conceptional
diagram of CCM, where , , and denote predefined
boundary frequencies, and , , represent the corre-
sponding sampling frequencies. One can obtain three subfre-
quency responses from a set of input and output signals by only
adjusting the sampling frequencies. For more reliable and infor-
mative frequency responses, separate experiments with different
frequency bands of input sweep signal are recommended as in
[6], which are carried out in this paper as well.

Once the subfrequency responses are obtained, three regions
of interest are cut from them without overlap and concatenated
into a new frequency response. If comparisons are made in
separate frequency bands, the concatenation may be unnec-
essary. However, considering that the discrimination of a

Fig. 2. Comparison of the conventional DFT and SSA results.

defective phase requires an overall measure of differences, a
representative curve covering a whole frequency range has to
be constructed by the concatenation.

Thereafter, the resulting irregularity of the sampling frequen-
cies in the combined response is corrected by the log-frequency
interpolation prior to a numerical comparison. Since most sig-
nificant deviations are best detected on a logarithmic scale, the
interpolation process makes an amount of agreement or dis-
agreement between the two sets of measurements quite close
to what is observed with naked eyes in logarithmic frequency
responses.

Fig. 2 illustrates the frequency component densities of the
proposed signal processing technique against frequency indices.
The solid line represents frequency components versus each
index , processed by the conventional DFT
with, for example, MHz and . Note that
low-frequency components under 100 kHz are plotted by eight
points, while 166 frequency components exist above 1 MHz.
Hence, the conventional DFT inevitably overemphasizes high-
frequency components of frequency responses.

The dashed line in Fig. 2 plots the frequency components
of a synthesized curve combined with the following boundary
frequencies:

kHz MHz MHz (13)

which were empirically selected considering typical poles and
zeros of magnitude responses. An initial frequency component
of the synthesized frequency response is lowered to 500 Hz,
whereas that of the conventional DFT is 10 kHz. The number
of low-frequency components under 100 kHz is 108, and that
of high-frequency components above 1 MHz is 50. It means
that the fidelities of low- and medium-frequency components
are enhanced as much by CCM.

However, the concatenated curve shows neither linear nor
logarithmic increase versus frequency indices. This irregular fre-
quency component distribution gives rise to a partially weighted
measure of deviation between two frequency responses that
are being compared. In order to improve the reliability of the
numerical comparison, frequency components must be equally
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Fig. 3. Interpolation of two frequency-response points.

distributed over a whole frequency region. This can be readily
implemented by a simple interpolation with a reference series
where each interval is equidistant on a logarithmic scale as
represented with a dash-dotted line in Fig. 2.

Fig. 3 shows the interpolation process, where and
are two adjacent frequency components of the th and th in-
dices, respectively, and and are the corresponding
magnitude values. An interpolated magnitude value at the th
frequency component lying between and is approx-
imated by the following equation:

(14)

An additional merit of the interpolation process is that the effect
of boundary frequencies in (13) on a synthesized frequency re-
sponse is minimized owing to its readjustment capability.

After the abovementioned signal processing, deviation mea-
sures are computed by a numerical criterion to discriminate a
defective phase.

III. DIAGNOSTIC CRITERIA

In the literature of diagnosis with the artificial neural network
(ANN) [17], the correlation coefficient and the standard devia-
tion are adopted as the fingerprints of deviation between two
frequency responses. However, the correlation coefficient has a
serious problem under a certain condition, and the standard de-
viation is dominantly affected by a small number of peaks whose
magnitude orders are relatively high. Thus, more proper crite-
rion immune to such an ill-scaled property needs to be devel-
oped for further improvement. In this section, the conventional
criteria and three proposed criteria are presented and investi-
gated with qualitative analyses.

A. Sum Squared Error (SSE)

The standard deviation in [17] or the root-mean-square (rms)
error in [18] can be classified as SSE

(15)

where and are the th elements of frequency responses
to be compared, and is the number of samples. When the
magnitudes of and are of the same order for all , SSE
will compute a reasonable difference. However, if the orders of

and differ in some region, which often occurs at peaks
or valleys in magnitude responses of a power transformer, a
minute horizontal shift of a peak containing no significant indi-
cation of faults will dominate SSE, while a large horizontal shift
of a valley rarely affects SSE owing to its small-valued prop-
erty. Therefore, the meaningful information scattered around the
valley or lower values in a magnitude response is often under-
estimated with SSE.

B. Correlation Coefficient (CC)

CC is designed to approach 0 if the shapes of and are
uncorrelated, and to approach 1 if their shapes are similar to
each other. CC is computed by the following equation:

(16)

which is normalized by the denominator terms unlike the SSE.
Under a particular condition of in the region

, where is a constant, equals 1 by the following
reasoning:

This property may lead to a seriously mistaken decision. For
example, assume (i.e., for all in a cer-
tain region). Despite such a large discrepancy between and

, one is unaware of the deviation by CC, and subsequently
fails to catch the present abnormality. Therefore, CC is consid-
ered as inadequate for the comparison of frequency responses
which may include the patterns similar in shape but different in
magnitude.

C. Sum Squared Ratio Error (SSRE)

SSRE is developed to normalize SSE as follows:

(17)
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where the ill-scaled property of SSE is ameliorated to some ex-
tent by dividing with a compared response . Moreover, the
problem of CC is removed with SSRE as

(18)
However, SSRE contains a defect which can be overlooked.

Assume that the compared magnitude responses have the rela-
tion and , where is the th ratio of the
two signals. If is larger than 1, the th term in summation of
(18) equals . On the contrary, if
is smaller than 1, approaches 1 as tends to zero.
Thus, SSRE is subject to the frequency-response components
of . Moreover, the position of in also affects the
values of SSRE.

D. Sum Squared Max-Min Ratio Error (SSMMRE)

The SSMMRE is a modified version of SSRE, which is de-
scribed as

(19)

Although the aforementioned defect of SSRE is now amended,
an intrinsic weakness still remains in the SSMMRE. Despite
the careful signal processing techniques, a few wedge-shaped
components, which contain little diagnostic information,
exist in the high-frequency region of frequency responses.
The effect of those meaningless components should be min-
imized in a well-designed criterion. To clearly illustrate the
weakness of SSMMRE, consider the two compared values
of and (i.e., absolutely small but
relatively different in terms of their orders). In this case, the
term equals , which is
considerably large. Hence, the deviation of high-frequency
components hard to capture with naked eyes deteriorate the
objectivity of SSMMRE.

E. Absolute Sum of Logarithmic Error (ASLE)

After examining the above criteria, a more advanced criterion
is proposed as

(20)

which is designed to realize the fully log-scaled comparison. Be-
cause ASLE is based on the comparison on a logarithmic ver-
tical axis as shown in (20), the ill-scaled property of the SSE,
the relativity problem of SSRE, and the problem at high-fre-
quency components of SSMMRE are resolved simultaneously.
Since the frequency responses have already been modified to be
equidistant on a logarithmic horizontal axis, the underlying prin-
ciple of ASLE is “what is seen (in spectrum analyzers) is what is
calculated.” This property is quite appealing because traditional

Fig. 4. Setup for the 2-MVA transformer.

TABLE I
SPECIFICATIONS OF SUBFREQUENCY BANDS

approaches for fault diagnosis have been relying on the graph-
ical information of the poles and zeros.

The phase discrimination performance of all the criteria is
verified by experimental data in Section V.

IV. TEST SETUP AND EXPERIMENTS

Experimental tests are carried out on a three-phase 300-kVA
3300/440-V delta-wye transformer and a 2-MVA 3150/460-V
wye-delta transformer. The instruments for data collection and
typical test connections are illustrated in Fig. 4. The setup con-
sists of an input signal generator, a data-acquisition system, a
computer, and test transformers.

The Agilent 33 120 A is used as an input signal generator.
Since it has insufficient output power to magnetize a trans-
former, an amplifying circuit including wideband operational
amplifiers is implemented. By the function generator and the
amplifying circuit, the input sweep signal is magnified to the
range of –30 V and 0–4 A, and is injected to the available
low-voltage bushing of the transformer during 10 ms. The
whole frequency range is determined to be from 100 Hz to 3
MHz, and three subfrequency ranges for SSA are specified in
Table I. Note that the sampling frequencies are ten or more
times larger than upperbound frequencies in each range to meet
the Nyquist theorem.

A data-acquisition system consists of four 40 Ms/s/ch (mega
samples per second/ channel) analog-to-digital converters
(ADCs), a main board, a current probe, and two voltage probes.
The whole task of data acquisition, especially by a GPIB
card and diagnostic analysis are automated on a Pentium-III
800-MHz computer.
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Fig. 5. Overall process of SSA. (a) Three separate subfrequency bands. (b) Log-frequency interpolation.

At a data-acquisition step, input voltage , and input cur-
rent , of the low-voltage side are measured to estimate input
impedance magnitude response (IIMR), which is calculated by
replacing with in (9) and with in (10).
In addition, the output voltage of a high-voltage side of the
transformer is measured to estimate a voltage transfer magni-
tude response (VTMR), which is calculated by replacing
with in (9) and with in (10). The measure-
ments of signals , , and are repeated three times with
changing frequency ranges of the input sweep signal as sched-
uled in Table I.

At a signal processing step, three sets of IIMRs and VTMRs
for each subdivided frequency range are estimated by conven-
tional spectral analysis based on (8), and they are synthesized
and interpolated as described in the previous section. Since the
test transformers are of a three phase type, three sets of IIMR
and VTMR are estimated for each phase. Fig. 5 illustrates the
overall process of SSA concerning the VTMR of the uv phase.
The subplots in Fig. 5(a) represent VTMRs of the three separate
subfrequency bands depicted along with arrows, which are ob-
tained with the abovementioned specifications and cut and con-
catenated into a combined curve shown in the upper plot of 5
(b). The lower plot in Fig. 5(b) represents the interpolated result
whose interval is constant on a logarithmic frequency scale. Note
that the shape of the original magnitude response (upper plot) is
preserved in the interpolated response (lower plot) except for a
sharp valley at about 2 MHz. This disagreement is due to the fact
that both curves are drawn with the same (250) points, and can
be corrected with higher reference points for interpolation.

At a discrimination step, if reference IIMRs and VTMRs of
each phase are given a priori, the currently obtained IIMRs and
VTMRs of each phase are directly compared with them. How-
ever, considering the case of no historical data, the interphase
comparison is also adopted.

The phase whose deviation is computed as the largest among
three phases is determined as a defective phase in the case with

Fig. 6. Interphase comparison results when the uv phase is defective.

reference data. However, in the case of the interphase compar-
ison, the phase excluded by two most-similar phases is the de-
fective phase. Fig. 6 illustrates the case when the uv phase is
defective, where each side length of a triangle represents the
amount of deviation between two phases depicted as its terminal
vertexes. Since the magnitude response of the uv phase is most
different from those of the other phases, a deviation value be-
tween magnitude responses of the vw and wu phases is, con-
versely, the smallest among all of the pairs

(21)

where denotes a measure of difference, and MR represents
IIMR or VTMR of a corresponding phase. Consequently, it is a
defective phase that is excluded in the phase pair computed to
be most similar.
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Fig. 7. Magnitude responses of a normal 300-kVA transformer. (a) Input impedance magnitude responses. (b) Voltage transfer magnitude responses.

Fig. 8. Magnitude responses of various faults inflicted to a 300-kVA transformer. (a) Input impedance magnitude responses. (b) Voltage transfer magnitude
responses.

V. DIAGNOSTIC RESULTS

Artificial faults are inflicted at selected phases to simulate the
faults that often occur to the transformers in service at POSCO,
and are classified as

• short between HV bushing and tank (F1);
• short between LV bushing and tank (F2);
• short between tap and tank (F3);
• intertap short (F4);
• short between turn and tank (F5);
• interdisc short (F6).

IIMRs and VTMRs of a normal 300-kVA transformer are
plotted in Fig. 7. The VTMR of the vw phase slightly departs

from those of the other phases, because the 300-kVA trans-
former is particularly manufactured with seven taps drawn out
from discs in this phase for the purpose of measurement. That is,
the mechanical difference of the vw phase leads to an electrical
change. Fig. 8 depicts several magnitude responses of artificial
faults, which show apparent deviations from those of a normal
phase, while the calculation of them is an another task.

The diagnostic results of two transformers are arranged in Ta-
bles II–V. Since this paper provides how to select a defective
phase among three phases of power transformers (i.e., compar-
ative method), estimating hit or miss in the phase discrimination
is quite straightforward in contrast to the general fault diagnosis
technique which requires threshold values between hit and miss.
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TABLE II
DIAGNOSTIC RESULTS OF THE 300–kVA TRANSFORMER WITH REFERENCE DATA (O:HIT, X:MISS)

TABLE III
DIAGNOSTIC RESULTS OF THE 2-MVA TRANSFORMER WITH REFERENCE DATA (O:HIT, X:MISS)

In the case of having reference data, the phase whose amount of
deviation from each reference data is computed as the largest
is selected as a defective phase by SSE, SSRE, SSMMRE, and
ASLE, while the smallest is selected as a defective phase for
CC. This is due to the fact that CC is designed to yield 1 (max-
imum value) for normal phases, and to yield near 0 (minimum
value) for defective phases. On the other hand, in the case of the
interphase comparison, the phase excluded in the most similar
pair (i.e., the measured difference of the pair is smallest) is de-
termined as a defective phase by the four criteria. For instance, if
the difference of the uv and vw phases is smallest, the wu phase
is appointed as a defective phase as mentioned above with Fig. 6.
The only difference with CC in the interphase comparison is that
the most similar pair is chosen as the pair whose measured dif-
ference is nearest to 1. Then, the defective phase selected by
each criterion is compared with the real defective phase where
the simulated fault is inflicted. If the two phases coincide, “hit”
is assigned with “O,” otherwise “miss” is assigned with “X” in
Tables II–V.

In Table II, the diagnostic results of the 300-kVA transformer
with reference IIMRs and VTMRs for each phase are shown,
where II and VT represent input impedance and voltage ratio,
respectively, and U, V, and W represent the corresponding HV
phases, whereas u, v, and w, are the corresponding LV phases.
It is observed that if a fault occurs at the U or u phase, the IIMR
and VTMR of the uv phase are the most peculiar. Similarly,
in the case of a defective V or v phase, those of the vw phase
deviate notably. This is straightforward if a transformer is wired
as a wye-type. In a delta-type wiring, however, the u phase is
an upper part in measuring the uv phase, while it is a lower part
in measuring the wu phase. Thus, in terms of measurement, the
fault of the u phase dominantly affects the frequency responses
of the uv phase.

With reference magnitude responses, it seems simple and
obvious to detect a defective phase, and even the conventional
SSE can produce almost correct results as shown in Table II.
Moreover, since the 300-kVA transformer is newly constructed
and not used at factory sites, small faults can be readily
distinguished.

Table III shows the diagnostic results of a 2-MVA transformer
30 years in service at POSCO. Unlike the 300-kVA transformer,
all of the criteria with IIMRs, except the ASLE, produce hit
ratios of at most 50%. At this point, it should be noted that
IIMR is more reliable for the 300-kVA transformer, but VTMR
is more reliable for the 2-MVA transformer. Thus, both IIMR
and VTMR need to be considered at the same time for correct
diagnosis. The 2-MVA transformer is considerably aged and,
therefore, only an elaborate criterion such as the ASLE can dis-
tinguish the defective phases.

Tables IV and V provide diagnostic results without reference
IIMRs and VTMRs of each phase. The results of a 300-kVA
transformer are similar to those with reference data, but the re-
sults of a 2-MVA transformer without reference data, shown in
Table V, degenerate compared with Table III. Nevertheless, the
ASLE is assured to have the best discrimination capability.

The diagnostic results of two transformers are summarized
in Table VI. Among various criteria, including the conventional
and proposed criteria, the ASLE is thought of as the most
suitable criterion via average hit ratios, in comparing such
ill-scaled magnitude responses. This fact also supports our
postulation that the defective phase will be best discriminated
by logarithmic horizontal and vertical axes.

VI. CONCLUSION

In determining which phase has a fault in a power trans-
former, FRA is adopted as a basic diagnostic tool. The frequency
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TABLE IV
DIAGNOSTIC RESULTS OF THE 300-kVA TRANSFORMER WITHOUT REFERENCE DATA (O:HIT, X:MISS)

TABLE V
DIAGNOSTIC RESULTS OF THE 2-MVA TRANSFORMER WITHOUT REFERENCE DATA (O:HIT, X:MISS)

TABLE VI
SUMMARY OF DIAGNOSTIC RESULTS OF THE TEST TRANSFORMERS

responses estimated by spectral analysis using the conventional
discrete Fourier transform (DFT) have insufficient low- and
medium-frequency components. To overcome the problem,
SSA is proposed, which is based on CCM for high-quality
frequency responses and the log-frequency interpolation for a
balanced comparison over a whole frequency range.

For discriminating a defective phase, two conventional and
three proposed criteria are analyzed, and benchmarks are under-
taken through various experimental data. Among them, ASLE
is proved to be the most pertinent criterion for selected faults
via overall hit ratios. To deal with the situation of no-reference
magnitude responses, three phases are compared in pairs alter-
natively as the interphase comparison, and even in this unfortu-
nate case, ASLE produces satisfying results with a final hit ratio
over 90%.

The fault types adopted in this paper are somewhat different
from the faults for which FRA is usually employed (i.e., the
faults concerning winding displacements). However, ASLE is
generally designed to be the most suitable for such badly scaled
responses as of transformers irrespective of fault types, unlike
the blind mapping with the ANN. Therefore, we conjecture that

whatever faults occur to transformers, the most deviating phase
detectable by the naked eye will also be discriminated by ASLE.

In order to verify the effectiveness and scalability of the
proposed method including SSA and ASLE, large power trans-
formers up into the hundreds of megavolt-amperes, besides
the kilo- and megavolt-ampere transformers, have to be tested
by the proposed method for the detection of damages on large
power banks and winding displacements without shorted turns.

Though the proposed method is devoted to the discrimination
of a defective phase using a whole set of magnitude responses, it
can also be applied to the fault diagnosis of transformers by se-
lecting specified subfrequency bands and comparing them with
corresponding fingerprints as in [6]. In addition, since histor-
ical data are usually not available in service transformers, more
work has to be done on how to interpret the interphase compar-
ison results.
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