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Motor fault diagnosis has gained much attention from academic research and industry to guarantee motor reliability. Generally,
there exist two major approaches in the feature engineering for motor fault diagnosis: (1) traditional feature learning, which
heavily depends on manual feature extraction, is often unable to discover the important underlying representations of faulty
motors; (2) state-of-the-art deep learning techniques, which have somewhat improved diagnostic performance, while the intrinsic
characteristics of black box and the lack of domain expertise have limited the further improvement. To cover those shortcomings,
in this paper, two manual feature learning approaches are embedded into a deep learning algorithm, and thus, a novel fault
diagnosis framework is proposed for three-phase induction motors with a hybrid feature learning method, which combines
empirical statistical parameters, recurrence quantification analysis (RQA) and long short-term memory (LSTM) neural network.
In addition, weighted batch normalization (BN), a modification of BN, is designed to evaluate the contributions of the three
feature learning approaches. .e proposed method was experimentally demonstrated by carrying out the tests of 8 induction
motors with 8 different faulty types. Results show that compared with other popular intelligent diagnosis methods, the proposed
method achieves the highest diagnostic accuracy in both the original dataset and the noised dataset. It also verifies that RQA can
play a bigger role in real-world applications for its excellent performance in dealing with the noised signals.

1. Introduction

An induction motor is one of the most critical components
in industrial processes due to its high reliability, low cost,
and robust performance. It has been widely used as the key
machine dynamical equipment to generate electromagnetic
torque. However, the mechanical degradation with natural
aging process, coupled with the fact that motors are often
exposed to multifarious harsh environments, makes motors
vulnerable to various sorts of faults [1]. Any unexpected
motor failure may lead to the unexpected downtime and
repair expense and even cause human casualties. .erefore,
accurate, effective, and reliable motor fault diagnosis ap-
proaches have received considerable attention from aca-
demic research to guarantee the enhancement of security
and avoid the downtime losses [2]. Various sensing tech-
niques for signals of vibration, noise, voltage, current, flux,
etc. [3–5] have been used in the motor fault diagnosis during
the past ten decades. Among those techniques, vibration-

based sensing is most frequently used due to its easier ac-
quisition of more detailed information [3].

Recently, owing to the significant development of the
computing ability [6], massive efforts for motor fault di-
agnosis have been devoted to the data-driven approaches.
For instance, Diazet provided an experimental comparative
evaluation of various classifiers including k-NN, Bagging,
AdaBoost, and SVM for motor fault detection [7]. Zhang
presented a motor fault identification method through
sparse representation and achieved good robustness to noise
[8]. Pan improved the reliability of motors with feature
extraction of entropy and SVM classifier [9]. Currently,
several deep learning algorithms, which are thought as ef-
fective tools for the high-level feature learning based on the
nonlinear transformations through multiple layers, are
widely used to discover the underlying feature representa-
tions [10]. Several deep learning techniques such as sparse
autoencoder (SAE) [11], deep stacking network (DSN) [12],
and convolutional neural network (CNN) [13] are used for
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identifying motor faults. Wang obtained the time-frequency
scale-down maps using short-time Fourier transform
(STFT) and classified the faulty motors using CNN [13]. Sun
proposed a fast diagnosis method through convolutional
discriminative learning of a BP network [14]. LSTM, as a
significant branch of RNN, capable of addressing data se-
quences of varying length, encoding temporal information,
and capturing long-term dependencies [6], has been suc-
cessfully used in several machinery fault diagnosis tasks
[15–18]. Recurrence quantification analysis (RQA) is a useful
tool to deeply investigate the mechanical vibration dynamic
properties, owing to its good capability in dealing with
nonstationary data sequences, especially the data sequences
involving continuous fluctuations and presenting nonlinear
characteristics [19]. RQA has proven its effectiveness in
bearing fault detections [20, 21].

However, the abovementioned methods still have some
shortcomings. .e performances of the traditional methods
[7–9] generally depend on the manual feature extraction
techniques, which may be incapable of fully exploiting the
raw data and may omit some important information. Be-
sides, they have limited adaptability when facing the new
diagnosis issues or application objects. For the deep learning
methods [11–14], the black-box characteristics make the
intermediate representations hard to explain, and the lack of
domain expertise weakens the interpretability. In some
papers like [13, 18], the deep learning techniques only act as
classifiers, which are overqualified and constrain the deep
learning’s capability to discover the underlying features in an
end-to-end fault diagnosis. LSTM and RQA have proven
effective in machinery fault diagnosis, mainly aiming at
bearings [15–21]. So far, neither RQA nor LSTM has been
applied on motors. Furthermore, the deeper research about
RQA’s adaptability and robustness to different levels of noise
has never been considered.

To tackle those issues, a deep learning framework is
integrated with manual feature learning techniques to
preserve the advantages of both sides. RQA is seamlessly
embedded into the stacked LSTM architecture. RQA’s an-
tinoise capability is verified by a weighted BN layer. .e
major contributions of this paper are summarized as follows:

(i) Propose a new hybrid feature learning approach that
combines statistical parameters, RQA and LSTM
neural network, for motor fault detection. Neither
RQA nor LSTM has been applied on motors before.

(ii) A modification of BN named weighted BN is
designed to assign dynamic weights to the hybrid
feature set and then perform batch normalization. It
shares BN’s advantages and possesses the capability
to evaluate the contributions of the three various
feature learning approaches [22].

(iii) Two datasets, respectively, the original dataset and
the noised dataset, are acquired from tests to verify
the proposal’s adaptability and robustness to dif-
ferent levels of noise.

.e remainder of this paper is organized as follows.
In Section 2, tests of 8 three-phase induction motors with

different fault types on the drivetrain diagnostics simulator
platform are introduced. .en, the related theories of RQA
and LSTM are presented, and the specific procedures of the
proposed method are described in detail in Section 3..en, in
Section 4, the performance of the proposed method is il-
lustrated and discussed. Several other methods are tested and
contrasted. Finally, Section 5 provides concluding remarks.

2. Description of Motor Tests and Acquired
Data

2.1. Tests Description. In order to experimentally verify the
performance of this proposed approach, tests of 8 three-phase
induction motors with different fault types under a uniform
operation condition were carried out in a drivetrain di-
agnostics simulator platform. As shown in Figure 1(a), this
system is composed of a three-phase induction motor, a
magnetic brake for loading, a two-stage fixed-axis gearbox,
and a two-stage planetary gearbox. .is test rig meets the all
configuration’s requirement of vibration analysts and pro-
vides a practical and reliable test environment for motor
diagnosis. A data acquisition card NI-9234, shown in
Figure 1(b), is selected as the dynamic signal acquisition
(DSA)module for making high-accuracymeasurements from
sensors. .e ADC resolution is 24 bits, the dynamic range is
102 dB, and the sampling rate per channel is 51.2 kS/s. .e
selected acceleration sensor BW-BJ14530, shown in
Figure 1(c), belongs to the voltage-output type..e sensibility
(±5%) is 100mV/g, and the measurement range is 1–5 kHz.

Specifically, the tests were under the operating condition
of 33.90Nm (25 lbf. ft.) load..emotor frequency was set to
15Hz, and thus, the rotation rate was 900 r/min. Under this
uniform operating condition, 8 motors with different fault
types (1 healthy and 7 faulty) were used to generate the
required dataset. Data from the healthy motor are used as a
benchmark for comparison with the experimental data from
other faulty motors. .e faulty types are as follows: (1) built-
in broken rotor bars (BB), (2) built-in bowed rotor (BR), (3)
rotor misalignment (RM), (4) stator winding faults (SW), (5)
voltage unbalance and single phasing (VP), (6) built-in rotor
unbalance (RU), and (7) faulted bearings (FB). .e faulty
types and the corresponding causes are listed in Table 1.

.e acceleration sensor was used in the experiment and
installed at the shell of motors tomeasure the vibration signals
in radial direction. .e acceleration signals were collected by
the data acquisition card, and the sampling frequency was set
to 10.24 kHz. Each test lasted approximately 120 s, and thus,
the number of raw data points acquired from one motor is
approximately 1228800. Figure 2 displays a set of time
waveforms of the measured acceleration signals.

2.2. Datasets Generation. From the 120 s acceleration signals,
the middle 100 s stable signals are selected as the training and
test data. A sliding window is used to obtain the samples of the
same length. Suppose the length of window as l, the step size s,
and the number of data points N. One sample is generated for
every step. .us, the sample number n is
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Figure 1: .e test platform and data acquisition devices. (a) Test rig: drivetrain diagnostic simulator (DDS). (b) Data acquisition card NI-
9234. (c) Acceleration sensor BW-BJ14530.

Table 1: Motors with 8 fault types in tests.

Fault condition Abbreviations Class Description

Normal NO 1 Healthy state
Broken rotor bars BB 2 Fitted with an already broken rotor bar
Bowed rotor BR 3 Consists of a centrally intentionally bent rotor
Rotor misalignment RM 4 Caused by custom-machined end bells with asymmetric structure
Stator winding faults SW 5 Copper wires around the stator with shorted stator winding turns
Voltage unbalance and
single phasing

VP 6
Controlled by the control console to disrupt voltage balance and to disconnect one

phase

Rotor unbalance RU 7
Intentionally removing one of the balanced rotors from induction motor and

destroying the inner balance
Faulted bearings FB 8 Composed of one inner race faulted bearing and one outer race faulted bearing
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Figure 2: .e waveforms of the measured acceleration signals of 8 motors.
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n � N− l
s

+ 1. (1)

In this paper, the step size and window length are both
set to 1024. It means that every 0.1-second signal which
contains 1024 data points (10.24 kHz) represents a sample.
.us, there are 1000 samples of each fault type, and those
samples form the original dataset named dataset 1.

As the motor frequency is 15Hz, one sample consists of
1.5 cycle of motor periodic rotation signals. .erefore, the
difference between samples is more distinct, compared with
the samples containing integral cycles of signals in previous
works [11, 12, 14]. In this way, it can be demonstrated that
our proposed framework attains the goal of fault diagnosis
by revealing the underlying representative features instead of
overfitting and memorization of training samples when the
samples are almost the same.

For the sake of investigating the antinoise capability of
the proposed algorithm and verifying its effectiveness in
real-world fault diagnosis applications, Gaussian noise with
a signal-to-noise ratio of 5 dB is artificially embedded into
the dataset 1. .is noising method is based on the as-
sumption that the acceleration signals of motors in real
world contain a higher-level Gaussian noise [23]. .e
processed dataset is named as dataset 2, which obviously
elevates the difficulty level of fault diagnosis.

To obtain a precise diagnostic accuracy, a five-fold cross-
validation method is adopted to split the training and test
data. .e dataset is segmented into 5 subsets, and the
holdout method is repeated 5 times. Each time, one of the
subsets is used as the test set and the rest as the training set.

3. The Proposed Method

.is section describes the specific procedures of the pro-
posed fault diagnosis method, illustrates the basic principles
of the RQA, LSTM, and weighted BN, and presents the
details of the whole neural network architecture. .e flow
diagram of the proposal is shown in Figure 3..emain steps
are shown as follows:

(1) Manual feature learning: draw the recurrence plots
(RPs) of every sample and extract 10 RQA features
from RPs; extract 29 empirical statistical features
from time domain and frequency domain.

(2) Deep learning feature learning: construct three-layer
stacked LSTM of 0.25 dropout with hidden layer
sizes of 256, 128, and 64.

(3) Form the hybrid feature set with aforementioned
features and put it into the weighted BN block
which consists of a weight assignment layer and a
BN layer.

(4) Put the outputs of the previous step into a three-
layer fully connected neural network with layer sizes
of 64, 32, and 8, and the output is the diagnostic
result.

3.1. RQA. RQA is a kind of nonlinear analysis for the dy-
namical system based on the view of a phase space concept,

aiming at quantifying the recurrence plots (RPs) [19].
Supposing a series t1, t2, . . . , tn{ } with length n, it can be
reconstructed to a new phase space T according to the
Takens embedding theorem [24] and time-delay approach. T
can be described as a reconstructed matrix:

T(1) � t1, t1+τ , . . . , t1+(m−1)τ{ },
· · ·
T(i) � ti, ti+τ , . . . , ti+(m−1)τ{ },
· · ·
T(n−(m− 1)τ) � tn−(m−1)τ , tn−(m−2)τ , . . . , tn{ },


(2)

where m is the embedding dimension, τ is the time delay, T
is an m ×m matrix, and T(i) presents the ith row of T.
Consequently, the recurrence matrix and RPs can be cal-
culated as follows:

Ri,j � Θ(ε −T(i)−T(j))

�
1 : ε>T(i)−T(j),
0 : ε<T(i)−T(j),

{ i, j ∈ [1, n−(m− 1)τ],
(3)

where ‖ · ‖ denotes the L2 norm, Θ (·) represents the
Heaviside function, ε is the recurrence threshold parameter,
τ is the time delay, and Ri,j is a square matrix with
[n− (m− 1)τ] length. .is formula means that if the L2
distance between T(i) and T(j) is less than ε, then Ri,j � 0.
Otherwise, Ri,j � 1 and a black dot is located at the (i, j) in a
two-dimensional space. After all T(i) and T(j) are processed
through this function, the drawn graph is a RP. As a vi-
sualization tool, RP can graphically describe the dynamic
characteristics in a qualitative way and reveal the latent time-
correlated signatures. 8 RPs of 8 samples each with one fault
are selected as examples, which are shown in Figure 4.

In RQA, three major parameters, respectively, embed-
ding dimension m, time delay τ, and threshold ε, need to
be determined. m is set to 4 based on the false nearest
neighbours (FNNs), and τ is set to 5 based on the mutual
information [25]. ε is empirically set to 0.8.

It is highly impracticable to directly use RPs to classify
faulty types for their low resolution. .us, RQA appears as a
good tool to quantify RPs with recurrence statistics..e core of
RQA is to identify and quantify the transient recurrent patterns
which characterize the dynamic change behaviors. In this
paper, 10 recurrence parameters named R1−R10 are derived
from the distribution of points and vertical lines of the RPs.

.e recurrence rate (RR) is the simplest parameter of
cross-correlation sum. It is defined as

RR � 1

n2
∑n
i,j�1

Ri,j, (4)

where n is the number of RPs points and Ri,j is the binary
matrix. RR represents the density and trajectory of PRs
points and physically indicates the probability of recurring a
specific state.

Determinism (DET) is a criterion of the predictability of
a system. It is given by
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Figure 3: .e flow diagram of the proposed method.
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Figure 4: 8 RPs of 8 faulty motors. (a) NO. (b) BB. (c) BR. (d) RM. (e) SW. (f) VP. (g) RU. (h) FB.
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DET � ∑n
l�lmin(l)∑n

i�1∑n
j�1Ri,j

, (5)

where lmin is the minimum value of the diagonal line length
and P(l) denotes the distribution of the diagonal line length.
DET is used to distinguish the organized RPs points from the
dispersed ones. A high value of DET reflects a stable system
while a low value indicates a stochastic system.

Shannon entropy (LENTR) denotes the complexity of a
system. It is calculated as

LENTR � − ∑n
l�lmin

P(l) lnP(l), (6)

where lmin is the minimum value of the diagonal line length
and P(l) denotes the distribution of diagonal line length.
LENTR indicates the complexity of RPs and can be used to
estimate howmuch information is needed to recover the RPs.

Laminarity (LAM) corresponds with the number of
laminar phases of a system. It is defined as

LAM � ∑n
v�vminvP(v)∑n
v�1P(v)

, (7)

where vmin is the minimum value of the vertical line length
and P(v) denotes the distribution of the vertical line length.
LAM is related to the intermittency of RPs points.

Trapping time (TT) represents the average vertical line
length. It is given by

TT � ∑n
v�vminvP(v)∑n
v�vminP(v)

. (8)

TT estimates the average time in which a state of RPs is
trapped.

Average diagonal length (ADL) is the average diagonal
line length. It is the mean length of diagonal parallel lines.
Similarity, longest diagonal length (LDL) is the longest
diagonal parallel line length, longest vertical length (LVL) is
the longest vertical line length, and average vertical length
(AVL) is the average vertical line length. Besides these 9
parameters from the distribution of RPs, recurrence time is
chosen as the 10th parameter, which evaluates the com-
plexity of RPs though the calculation time.

3.2. LSTM. Recurrent neural network (RNN) is one of the
deepest neural networks, which can address the data series
with arbitrary length and has been applied successfully in
many end-to-end tasks [26]. For the sake of avoiding the
gradient vanishing or exploding problem, a modified RNN
architecture named long short-term memory (LSTM) which
involves a memory cell is created [27]. A concept of forget
gates is introduced in LSTM to deal with the long-term
dependency problem. .ese forget gates can screen the
useful information of the historical network cells to capture
more meaningful and distinct information in data series.

At time step t, the hidden state ht of the LSTM cell is
updated with the following terms: the input data xt, the input
gate it, the output gate ot, the forget gate ft, the memory cell
ct, and the hidden state ht−1 of the previous LSTM cell at time

step t− 1. .e schematic diagram of the architecture of a
LSTM cell is shown in Figure 5. .ose parameter-updating
formulas are expressed as follows:

it � σ wixt + viht−i + bi ),
ft � σ wfxt + vfht−i + bf( ),
ot � σ woxt + voht−i + bo ),
ct � ft ⊙ ct−1 + it ⊙ tanh wcxt + voht−i + bc ),
ht � ot ⊙ tanh ct ),

(9)

where σ is the activation function of sigmoid and ⊙ rep-
resents the element-wise product. W, V, and b are, re-
spectively, a d× k matrix, a d× d matrix, and a d-dimensional
vector, where d is the input series length and k is the hidden
layer size.

In order to establish a better LSTM architecture with
higher diagnostic accuracy, several parameters, such as layer
number, time steps, and learning rate, need to be de-
termined. .e quantification of these parameters is mainly
based on a comparative evaluation of the performances of
various optional values in dataset 1. .e accuracy and cost
time at different layer numbers are shown in Figure 6, with
the layer size set to 64. It can be observed that as the layer
number increases from 1 to 5, the accuracy curve has a
distinct rise at first 3 layers and then tends to be stable, while
the cost time always increases as the layers get deeper. By
comprehensive consideration of both accuracy and effi-
ciency, the optimal layer number is selected as 3.

During the construction of the stacked LSTM, the
backpropagation is used for the update of weights, of which
the learning rate is the main parameter. Different learning
rates and corresponding results of 10 times of repeat tests are
visualized in the boxplot in Figure 7(a). It shows that the test
accuracy is relatively low as the learning rate is too small or
too big. .us, 0.001 is selected as the learning rate. .en, the
selection of time steps is investigated. Figure 7(b) shows that it
attains the highest accuracy as the number of time steps is 4
and the performances vary little when the number of time
steps is 2 and 4. It means that a sample with 1024 data points is
segmented into 4 parts and converted to a tensor S∈R4×256.

.e hidden layer size of each stacked layer is empirically,
respectively, 256, 128, and 64 in a descending order, and thus,
the output size of each layer is 4× 256, 4×128, and 4× 64.

.e max-pooling function is used to eliminate the di-
mensionality curse and retain the most useful information of
a region by returning the maximum value. In this method, a
max-pooling layer is added after the stacked LSTM layers to
convert the 4× 64 output to a flatten 64-dimensional vector.
To prevent model form overfitting, dropout based on early
stopping mechanism is adopted in the training process [28].
Probability of dropping out neurons in the convolution
layers is set to 0.25.

3.3. Statistical Features. Twenty-nine statistical features, in-
cluding 16 time-domain features and 13 frequency-domain
features, are extracted [29]. It is shown in Table 2, where fm is
the frequency of the mth spectrum component; M is the total
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number of spectrum components; and F(m) is a spectrum
function atm� 1, 2, ...,M. 16 popular empirical statistical time-
domain features TF1−TF16, including maximum, minimum,
variance, skewness, kurtosis, and root mean square, are
extracted. Features TF1−TF10 describe the vibration amplitude
and energy distribution. For example, RMS represents the
magnitude of varying values, and kurtosis denotes the spik-
iness degree of time series. 6 dimensionless parameters
TF11−TF16 reflect the distribution of time sequence. In fre-
quency domain, feature FF1 represents the average vibration
energy; features FF2−FF5 and FF10−FF13 indicate the con-
vergence of the spectrum power; and features FF6−FF9 reflect
the magnitude of position shift of the dominant frequencies.

3.4. Weighted BN. BN is a popular type of normalization
method which can transform the distribution of any neu-
ron’s input during a batch of iterations to Gaussian dis-
tribution in deep NNs [22]. BN has displayed its impressive
impact on reducing overfitting and avoiding gradient dis-
persion. .e weighted BN is a modification of the BN layer,
which consists of a weighting layer and a BN layer. It is
designed to assign dynamic weights to the hybrid features
and then perform batch normalization. It targets not only on
reducing overfitting and eliminating the phenomenon of

internal covariate shift but also introducing an assessment
mechanism of feature importance and facilitating evaluation
of the contributions of the three feature learning approaches.

.eweighting layer can be regarded as a customized neural
network layer before BN layer and optimized during the whole
training process. .e role of the weighting layer is to assign
dynamic weights to the hybrid features. For the RQA feature
set R1, R2, . . . , R10{ } and statistical feature set TF1, . . . ,{
TF16, FF1, . . . , FF13}, a one-by-one corresponding weighting
vectorW � w1, w2, . . . , w39{ } is employed, which is expressed
in equation (10). For the 64-dimensional LSTM output, due to
the facts that no general consensus has been reached about the
specific meaning of each dimension of LSTM output and there
already exists a large amount of intrinsic weights and biases in
LSTM, we assign a unique weight w40 to the 64-dimensional
vector, which is expressed in equation (11).

Fli � w
l
iF
l−1
i , i �(1, 2, · · · , 39), (10)

Llj � w
l
40L

l−1
j , j �(1, 2, . . . , 64), (11)

where Fi is the ith term in the combined feature set
R1, R2, . . . , R10,TF1, . . . ,TF16 , FF1, . . . , FF13{ }, Lj is the jth
number of the LSTM output, and l denotes the lth iteration.
Note that the update of weights in the weighting layer is a

×

×

+

tan hσσ σ

tan h

X (t)

×

h (t)

c (t)

c (t – 1)

h (t)h (t – 1)

Figure 5: .e schematic diagram of LSTM architecture.
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part of the optimization in the training process based on the
batch gradient descent algorithm.

3.5. Fully Connected Neural Networks. .ree fully connected
layers with the size of {64, 32, 8} is added. In these layers, the
neurons at different layers are all connected to each other;

activation functions of ReLU are used at the first two layers,
and SoftMax is used at the last layer.

.e whole architecture is constructed through mini-
mizing the following cross-entropy loss function between
the predicted values and real labels [30]:

L � − 1
n

∑
x

ŷ lny +(1− ŷ)ln(1−y), (12)

where y is the model output and ŷ is the real-label value.
.e batch gradient descent and backpropagation algo-

rithm are used for optimization and to minimize the cost
function L. .us, the weights and biases can be updated
through the following equations:

w � w− λ
zL

zw

,

b � b− λ
zL

zb

,

(13)

where w denotes the weight, b represents the bias, and λ is
the learning rate.

In addition, the programs are performed on a GeForce
GTX TITAN X graphics card and a E5-2630 processor with
126GB memory, using TensorFlow as backend.

4. Results and Discussion

In this section, the performance of the proposed method is
illustrated and discussed. Several other methods are tested
and contrasted.

4.1. 8e Diagnostic Accuracy of the Proposed Method.
Figure 8 displays the training process during 100 epochs
with the training and test accuracy and losses from the
original dataset 1 and the noised dataset 2. It can be seen that
a significant convergence trend occurs in both datasets.
Besides, there are less fluctuations in the accuracy and loss
curves of dataset 1 compared with the curves of dataset 2.
.e distinction can be explained by the fact that the difficulty
level of fault diagnosis for dataset 2 with 5 dB noise is ob-
viously higher than that of dataset 1. Figure 9 illustrates the
visualized outputs of every step using the established model
with 8 test samples of different fault types.
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Figure 7: Diagnostic accuracy at different optional values. (a) Learning rate. (b) Time steps.

Table 2: Statistical features.

Domain Features Expression

Time

TF1 (∑N
n�1t(n))/N

TF2
�����������∑N
n�1t

2(n)/N
√

TF3 (∑N
n�1

�����
|t(n)|

√
/N)2

TF4 (∑N
n�1|t(n)|)/N

TF5 (∑N
n�1(t(n)−TF1)3)/N

TF6 (∑N
n�1(t(n)−TF1)4)/N

TF7 max(t(n))
TF8 min(t(n))
TF9 (∑N

n�1(t(n)−TF1)2)/(N− 1)
TF10 TF7 −TF8
TF11 TF2/TF4
TF12 TF7/TF2
TF13 TF7/TF3
TF14 TF7/TF4
TF15 TF5/(TF2)3
TF16 TF6/(TF2)4

Frequency

FF1 (∑M
m�1F(m))/M

FF2 (∑M
m�1(F(m)− FF1)2)/(M− 1)

FF3 (∑M
m�1(F(m)− FF1)3)/(M(

���
FF

√
2)3)

FF4 (∑M
m�1(F(m)− FF1)4)/(M(FF2)3)

FF5
�����������������������
(∑M

m�1(fm − FF1)2F(m))/M
√

FF6 (∑M
m�1fmF(m))/(∑M

m�1F(m))
FF7

������������������������
(∑M

m�1f
2
mF(m))/(∑M

m�1F(m))
√

FF8
���������������������������
(∑M

m�1f
4
mF(m))/(∑M

m�1f
2
mF(m))

√
FF9

(∑M
m�1f

2
mF(m))/

(
��������������������∑M
m�1F(m)∑M

m�1f
2
mF(m)

√
)

FF10 (∑M
m�1(F(m)− FF5)3F(m))/(m(FF6)3)

FF11 (∑M
m�1(F(m)− FF5)3F(m))/(m(FF6)4)

FF12 (∑M
m�1(F(m)− FF5)1/2F(m))/(m

���
FF6

√
)

FF13 FF5/FF6
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Figure 10 shows the diagnostic accuracy of each faulty
type using confusion matrix. .e diagnostic accuracy is
calculated as the rate of the correctly classified test sample
number to the total test sample number. It can be seen that
average classification accuracy reaches 99.3% in dataset 1
and 98.9% in dataset 2.

Figure 11 displays the proportions of the RQA features’
weights to the sum of all weights. .ese proportions are
calculated by

P � wi∑40
j�1wj

, (14)
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where wi is the weight of Ri. It shows that the proportions of
RQA features’ weights from dataset 2 are generally higher
than dataset 1. It proves that RQA plays a bigger role in
dealing with the noised data and indicates its potentials in
real-world applications which require strong antinoise
capability.

4.2. Visualization at Different Layers. In order to illustrate
how the proposed method executes the classification task
step-by-step, the different layers’ outputs are visualized with
3-dimensional sketches using a nonlinear dimension re-
duction method, t-distributed stochastic neighbour
embedding (t-SNE) [31]. t-SNE is employed to convert
the high-dimensional outputs at different layers to 3D
representations, which are shown in Figures 11-12. It can
be observed that the 8 groups of point clouds are heavily

overlapped at the first few layers, and as the layer goes
deeper, they become more separable. Although the di-
mension reduction by t-SNE involves inevitable errors
for the loss of information, it demonstrates the effec-
tiveness of the proposal in datasets 1 and 2 in a qualitative
manner.

4.3. Performance Comparisons. To verify the superiority of
the proposed method, several state-of-the-art intelligent
fault diagnosis methods are employed for comparison:

(1) RQA+ SVM [19]: independent use of RQA for
feature learning and optimal binary tree SVM for
classification

(2) LSTM: independent use of the proposed LSTM ar-
chitecture on raw data
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(3) MLP [7]: multilayer neural network on statistical
features

(4) CNN [32]: one-dimension CNN on raw data

(5) SIFT+CNN [13]: short-time Fourier transform for
feature learning and CNN for classification

(6) CDFL [14]: convolutional discriminative learning of
a BP network

In (1) and (2), the separate use of RQA and LSTM aims at
proving its indispensability in the hybrid method. In (1),
10 RQA features mentioned in Section 3 are extracted and
7 optimal binary tree SVMs with RBF kernels are employed
as the binary classifiers. In (2), the same three-layer stacked
LSTM architecture is adopted. In (3), since MLP is incapable
of addressing sequential raw data, the 29 statistical features
mentioned in Table 2 are taken as the input. .e hidden
layers with layer size {64-128-64} are adopted. In (4), a

1D-CNN architecture, comprised of 3 convolutional and
pooling layers, one flatten layer, and 3 fully connected layers,
is used (Figure 13).

.e kernel length of the convolutional layers is set to 64,
and the max-pooling function is utilized in the pooling
layers. In (5), 1D data are converted to a 2D time-frequency
maps through short-time Fourier transform..en, the maps
are compressed into 100∗100 squares and fed into a deep
CNN. In (6), discriminative learning based on BPNN is
incorporated into the unsupervised CNN. .e training of a
BPNN takes the place of the training of a CNN, with the
input size equal to filter number 32 and the hidden layer size
equal to filter size 64..e classification results of all methods
on datasets 1 and 2 are shown in Figure 14.

Several conclusions can be drawn from Figure 14. (1) .e
proposed hybridmethod outperforms the othermethods with
diagnostic accuracies of 99.3% and 98.9% in the two datasets.
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Besides, the difference value 0.04% is the smallest, which
indicates its stronger noise resistance. (2) .e separate use of
RQA and LSTM obtains lower diagnostic accuracy compared
with the proposal. It indicates that both RQA and LSTM
neural network are indispensable in the hybrid method. In
addition, RQA+SVM performs worst, and it can be
explained by the limitation of the inadequate number of
features and the dependence of manual feature learning. (3)
Generally, the deep learning techniques, including CNN,
SIFT+CNN, LSTM, and CDFL, perform better than
the traditional methods. It can be explained by the fact that
the deep learning methods, with stronger feature learning and
representation capacity, always present a superior perfor-
mance to the methods that require manual feature extraction
[33]. (4) .e major shortcoming of the proposal is the
computational cost. .e average cost time of 100 epochs is

530 s, only faster than SIFT+CNN’s 690 s and slower than
most of the comparative methods. It can be interpreted by the
hybrid complex architecture which is embedded with three
different feature learning approaches. A part of the compu-
tational space is occupied by drawing the RPs and extracting
various statistical features. Besides, the LSTM neural network
contains the deepest layers among those methods.

5. Conclusions

In this paper, a novel fault diagnosis framework with high
accuracy for three-phase induction motors is presented. A
hybrid feature learning approach that combines empirical
statistical parameters, RQA and LSTM, is proposed to in-
tegrate the state-of-the-art deep learning techniques with the
manual feature learning approaches to gain a superior and
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robust performance. In addition, a modification of BN
named weighted BN is designed to evaluate the contribu-
tions of each feature learning approach and facilitate vali-
dating the noise resistance performance.

.e tests of 8 motors (1 healthy and 7 faulty) are carried
out to form datasets 1 and 2. It verifies that the proposed
method, with the highest accuracies of 99.3% and 98.9% in
fault recognition, performs better than other methods and
possesses good noise resistance. More specifically, it yields
18.5% and 8.1% average performance improvements com-
pared with RQA+ SVM andMLP; it yields 3.6%, 4.7%, 9.2%,
and 2.1% average performance improvements compared
with the four deep learning methods, LSTM, CNN,
SIFT+CNN, and CDFL. .e weight distribution of the
weighted BN illustrates RQA is more effective in dealing
with the real-world noised data.

In future research, our effort will be devoted to two
aspects. (1) Make the proposed method reliable for practical
use, which demands a large amount of accumulated industry
data. (2) Make attempts to figure out the connections be-
tween the intermediate representations of deep learning
networks and traditional manual features.
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