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Abstract

Fault diagnosis of induction motors in the practical industrial fields is always a challenging task due to the difficulty

that lies in exact identification of fault signatures at various motor operating conditions in the presence of

background noise produced by other mechanical subsystems. Several signal processing approaches have been

adopted so far to mitigate the effect of this background noise in the acquired sensor signal so that fault-related

features can be extracted effectively. Addressing this issue, this paper proposes a new approach for fault diagnosis

of induction motors utilizing two-dimensional texture analysis based on local binary patterns (LBPs). Firstly, time

domain vibration signals acquired from the operating motor are converted into two-dimensional gray-scale images.

Then, discriminating texture features are extracted from these images employing LBP operator. These local feature

descriptors are later utilized by multi-class support vector machine to identify faults of induction motors. The

efficient texture analysis capability as well as the gray-scale invariance property of the LBP operators enables the

proposed system to achieve impressive diagnostic performance even in the presence of high background noise.

Comparative analysis reveals that LBP8,1 is the most suitable texture analysis operator for the proposed system due

to its perfect classification performance along with the lowest degree of computational complexity.

Keywords: Fault diagnosis, Induction motors, Local binary pattern, Texture analysis, Background noise, Support

vector machine

1. Introduction
Induction motors are one of the most widely used ma-

chines on which industrial production processes depend

on. Faults of these vital equipments can cause massive

financial loss to the production plants which motivated

the researchers to investigate and develop efficient fault

diagnosis systems for this kind of rotary equipments

[1,2]. Numerous fault diagnosis methods for induction

motors have been proposed so far which can be classi-

fied in three main types depending on their diagnosis

procedure [1], namely model based, signal based, and

data based. However, signal processing is a crucial part

for all of these three types but with a different impact

and role. The most popular signal processing techniques

include time domain analysis, frequency domain techniques

like spectral analysis, and time-frequency domain methods

such as short-time Fourier transform (STFT) or wavelet

analysis. The main purpose of signal processing step in a

fault diagnosis system is to reveal the fault signatures

from the measured quantities which is a difficult task in

the presence of background noise.

Mechanical vibrations, obtained by the accelerometers

mounted on the motor body, are widely used for the

detection and diagnosis of induction motor faults. In a

practical industrial environment, motors are usually

coupled with other mechanical components of different

speeds which also contribute to the measured vibration

along with the motor of interest. As a result, the mea-

sured vibration signal contains unavoidable background

noise coming out from other coupled mechanical sub-

systems and sometimes from the sensor itself. This un-

expected noise component can mask the fault signature

within the acquired signal which will make the fault

diagnosis difficult. To separate or reduce noise compo-

nent from the signal of interest, several noise cancelation

methods have been proposed in the literature which in

fact utilized adaptive or wavelet-based filtering processes.

In [3], Lee and White proposed a two-stage adaptive line

enhancer to enhance the measured vibration signal.
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Application of self-adaptive noise cancellation algo-

rithm was illustrated in [4] by Antoni and Randall.

Again, a denoising algorithm for vibration signals incorp-

orating NeighCoeff shrinkage model with dual-tree

complex wavelet transform was proposed by Wang

et al. in [5]. However, all of these existing noise reduction

algorithms work as a preprocessing step of fault signature

extraction and increase computational complexity of a fault

diagnosis system.

To achieve higher diagnostic performance as well as

attain robustness to environmental noise, Do and Chong

in [6] proposed a fault diagnosis system using features

of vibration signal in two-dimensional domain. In

fact, it converted one-dimensional vibration data into

two-dimensional gray-scale image and extracted local

features utilizing scale invariant feature transform

(SIFT). The 128-dimensional keypoint descriptors,

produced by SIFT, were utilized for the classification

of motor faults. Robustness of this scheme was claimed

due to the fact that it converted signals into images, and

the added noise acts as illumination variation when

transformed into images. As SIFT is invariant to image

rotation, translation, and scale variation [7] and partially

invariant to illumination changes, so efficient diagnosis

of motor faults was expected even in the presence of

background noise. However, robustness of this SIFT-based

fault diagnosis system was not justified with necessary

experimental results; therefore, applicability of this kind

of system in a noisy industrial environment remained as

a question. Besides, there are some critical drawbacks of

applying SIFT, one of which is uncertainty in the number

of keypoints for different images and another one is high

computational cost for the processing of 128-dimensional

feature descriptors. To mitigate complexity of unequal

keypoint descriptors, adaptive clustering technique was

incorporated for the creation of ‘texton dictionary,’ and

later, it was utilized in distance-based pattern matching

for identifying a fault instance in [6]. However, limitations

caused by the application of SIFT in fault diagnosis system

can be avoided by replacing this method by a superior one

with illumination invariance capability. Such an option is

the local binary pattern analysis technique, introduced by

Ojala et al. [8,9], in which the local binary pattern (LBP)

operator provides us with a binary code for each pixel of

an image calculated by thresholding the local neighbors at

the gray level of the pixel of interest. As the definition

states, local binary patterns are useful texture measure-

ment which are extremely robust against any monotonic

transformation of the gray scale and rotation of the image

while determination of these patterns require a low degree

of computational complexity [9]. Moreover, it facilitates

the generation of fixed and relatively small number of

feature descriptors which can be utilized for fault classifi-

cation. Considering these benefits of local binary pattern

analysis, in this paper, a fault diagnosis system for in-

duction motors is proposed where local image features,

related to image textures, are determined by the LBP

operator. Later on these feature descriptors are utilized

by the classifier to diagnose motor faults. In the pro-

posed system, multi-class support vector machine

(SVM) is employed for solving classification problems.

Performance of the proposed system has been evalu-

ated for eight different motor operating conditions in a

laboratory environment. Moreover, diagnosis capability

of the proposed scheme has also been measured in the

presence of different noise level to justify its effective-

ness in practical industrial application. In addition, a

number of LBP variants have been incorporated in the

experimental analysis to identify the most suitable texture

analysis operator in terms of diagnostic capability and

computational complexity.

2. Texture analysis by local binary patterns
The LBP texture analysis operator, introduced by Ojala

et al. [8], is defined as a gray-scale invariant texture

measure which is derived from a general definition of

texture in a local neighborhood. LBP operator labels

each pixel of an image by thresholding its P neighbor's

intensity values with the center value and converts the

result into a pattern code by (1):

LBPP;R xc; ycð Þ ¼
X

P−1

p¼0

s gp−gc

� �

2p; ð1Þ

where s xð Þ ¼
1 x ≥ 0
0 x < 0

; gc

�

denotes the gray value of the

center pixel (xc, yc), and gp corresponds to the gray values

of P equally spaced pixels on the circumference of a circle

with radius R as shown in Figure 1. The pixel values are se-

lected using bilinear interpolation whenever the sampling

point is not in the center of a pixel. This individual LBP

pattern is capable of describing the texture information at

the center pixel.

Being a highly discriminative texture operator, it records

the occurrences of various patterns in the neighborhood

of each pixel in a P-dimensional histogram. Signed differ-

ence gp − gc is not affected by changes in mean luminance.

Thus, a gray-scale shift does not affect the LBP code of an

image. This is achieved due to the consideration of just

the signs of the differences instead of their exact values.

Therefore, the LBPP,R operator is invariant against any

monotonic transformation of the gray scale, i.e., as long as

the order of the gray values in the image stays the same,

the output of the LBPP,R operator remains constant.

Figure 2 illustrates the generation of the basic LBP

code for a center pixel with P = 8.

After computing the LBP code for each pixel (xc, yc),

the input image I of size M × N (xc ∈ {0, 1, 2,…,N–1},
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yc ∈ {0, 1, 2,…,M − 1}) is represented by an LBP histo-

gram H using (2). The resultant histogram H is the

LBP descriptor of that image. Thus, each image is

represented by an LBP descriptor which is later used as

a feature vector for classification:

H τð Þ ¼
X

M−1

yc¼1

X

N−1

xc¼1

f LBPP;R xc; ycð Þ; τ
� �

; ð2Þ

where τ ∈ [0,K], f a; τð Þ ¼
1 a ¼ τ

0 else
;

�

and K is the

maximal LBP code value. For P = 8, τ will have 28 = 256

different labels; therefore, 256 histogram bins H(τ) will be

obtained which can be used as texture descriptors.

Again, for a central pixel gc and its P circularly and

evenly spaced neighbors gp, p = [0, P − 1], the difference

between gc and gp can be expressed as a combination of

two components dp = gp − gc = sp*mp, where sp = sign

(dp) and mp = |dp|. Guo et al. [10] argued that dp can be

more accurately approximated using the sign component

sp than the magnitude component mp. This implies

that sp will preserve more information of dp than mp,

and hence, it is more likely to result in better pattern recog-

nition performance. However, it was also observed that the

information contained in the magnitude difference mp

can provide a significant performance enhancement [10].

Hence, CLBP_S and CLBP_M operators were proposed in

[10] to encode the sign and magnitude components of local

differences respectively (Figure 3).

The CLBP_S operator takes sp to encode the pattern

which is essentially the same as the original LBP operator.

As the magnitude component mp is of continuous values

instead of binary ‘1’ and ‘−1’, so it cannot be directly

encoded as that of sp. To ensure consistency with CLBP_S,

the CLBP_M operator is defined as follows:

CLBP−MP;R ¼
XP−1

p¼0
t mp; c
� �

2p; ð3Þ

where t x; cð Þ ¼ 1
0

x≥c
x<c

�

, and c is a threshold to be deter-

mined adaptively [10]. Here, c is taken to be the mean

value of mp over the whole image.

To build a CLBP descriptor, histograms of the CLBP_S

and CLBP_M codes are calculated separately and then

the two histograms can be concatenated together [10].

This CLBP scheme can be represented as ‘CLBP_S_M’

which is utilized in the proposed fault diagnosis system

for the purpose of feature extraction.

Two common extensions for LBP as well as for CLBP

are ‘uniform patterns’ and ‘rotation invariant patterns’

[9]. An LBP code is called uniform if the binary pattern

contains at most two bitwise transitions from 0 to 1 or

vice versa when the bit pattern is traversed circularly. For

example, the patterns 00000000 (0 transitions), 01110000

(2 transitions), and 11001111 (2 transitions) are uniform,

whereas the patterns 11001001 (4 transitions) and

01010011 (6 transitions) are not. In rotation invariant

patterns, each LBP binary code is circularly rotated into

its minimum value. Hence, both the patterns 00111100

and 00001111 are mapped to 00001111. The notion of

uniform pattern was proposed to take account of and

give importance to those patterns which are most com-

mon and significant in texture classification. Rotation

invariant patterns help to classify rotated texture image

by applying rotation invariant mapping.

P=8, R=1 P=16, R=2 P=8, R=2

Figure 1 Neighborhood set for different P and R values.

Figure 2 Code generation by the basic LBP operator.
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3. Proposed fault diagnosis system
In the proposed fault diagnosis method, vibration signals,

acquired from a running induction motor, are first

converted to gray-scale images from which discriminating

texture features are determined and fault classification is

performed. Processing steps of the proposed fault diagnosis

system are shown in Figure 4.

3.1. Signal-to-image conversion

The signal-to-image conversion scheme converts a time

domain signal into a gray-scale image. The size of the

image is dependent on the signal duration t. The choice

of t is application specific, and it has to be set such that

all possible fault vibrations are accommodated more

than once in each of the signal images. Therefore, a large

value of t may be desired for higher performance in

diagnosis, but an extremely large value of t would not be

practical as it will not only increase the computational

burden but also decrease early detection property of the

diagnosis method. Considering the abovementioned

facts, it is reasonable to set the minimum value of t at

tmin = 2 / fmin, where fmin is the lowest possible vibration

frequency in hertz. Now, let us consider that the mea-

sured vibration signal of t second duration contains the

L number of samples. The first step of conversion pro-

cesses is to normalize the L number of samples so that

their values are between 0 and maximum gray-scale

pixel intensity. Then, this block of L number of samples

is converted into an M × N gray-scale image where both

M and N are integer numbers and M × N = L. For ensuring

optimum utilization of the image pixels in texture analysis,

less number of pixels is desired at the image border.

Therefore, to keep the summation of M and N low, we

have to set their values closest to √L. Among the L

number of samples, the first N samples construct the

first row of gray-scale image; similarly, the next N samples

construct the second row and so on. This conversion

process is illustrated in Figure 5.

A vibration signal in time domain and corresponding

signal image, after conversion, are shown in Figure 6. In

this case, the vibration signal contained 7,680 samples,

and it is converted into a 96 × 80 gray-scale image.

Texture property of this image can be quantified by

the LBP operators through appropriate analysis. The

texture descriptors, obtained by analysis, are then utilized

for fault classification. Thus, signal-to-image conversion

scheme facilitates diagnosis of motor faults through classi-

fication of the image textures.

3.2. Texture feature extraction

The local binary pattern analysis technique is an ex-

tremely powerful gray-scale invariant texture analysis

tool which confirms its suitability in the proposed sys-

tem. Vibration signal images, obtained from different

fault situations, usually exhibit rich texture properties

Figure 4 Proposed fault diagnosis system for induction motors.

Figure 3 The 3 × 3 sample block (a), local differences (b), sign

components (c), and magnitude components (d).
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due to the existence of fault-related frequencies in the vi-

bration signals. Again, external noise, induced in the signal

from other coupled equipments, appears as gray-scale

variation in the converted image. Therefore, powerful tex-

ture analysis capability as well as the gray-scale invariance

feature of the local binary pattern analysis technique can

be exploited in the proposed fault diagnosis systems to

achieve optimum diagnostic performance as well as ro-

bustness of the system in the noisy industrial environ-

ment. To identify the most suitable LBP operator, we

analyzed the performance of LBPP,R operator along with

its other uniform and rotation invariant variations, namely

LBPu2P;R , LBP
ri
P;R , and LBPriu2P;R [9]. To investigate the contri-

bution of magnitude component along with the sign com-

ponent in the case of accurate classification, we applied

the following CLBP operators, i.e., CLBP _ SP,R _MP,R,

CLBP Su2P;R Mu2
P;R , CLBP Sri8;1 Mri

8;1 , and CLBP Sriu2P;R Mriu2
P;R

for the extraction of texture features in the proposed

fault diagnosis system. The objective of this incorpor-

ation of different operators is to discover discriminating

features which are most efficient for texture analysis in

the proposed system. Finally, based on the classification

performance and computational complexity consideration,

the optimum texture analysis operator is determined for

the proposed fault diagnosis system.

3.3. Fault classification

The feature descriptors, obtained by texture analysis, are

then utilized by the classifier for the diagnosis of motor

faults. Among the classifiers, SVM is suitable for the

proposed system as it has the capability of solving learn-

ing problem with a smaller number of samples. More-

over, SVM supports multi-class classification by

adopting the one-against-all (OAA) or one-against-one

(OAO) strategy. In the proposed system, classification is

performed using linear kernel by exploiting OAA tech-

nique. In the case of OAA technique, a binary classifier

is trained for each fault instance to discriminate one

fault case from all others and outputs the class with the

largest outputs. This OAA technique is elaborately

explained by Hsu and Lin in [11], whereas its accuracy

issue is addressed in [12] by Rifkin and Klautau.

4. Experimental setup and signal database
The experiments were set up under a self-designed test

rig (Figure 7) [6] which consisted of motor, pulleys, belt,

shaft, and fan with changeable blade pitch angle. In the

experiments, six 0.5-kW, 60-Hz, two-pole induction

motors were used to produce the vibration data under

full-load condition. One motor was operated under

normal condition as a benchmark for comparison with

Figure 5 Signal-to-image conversion scheme.

Figure 6 A vibration signal converted into a 96 × 80 gray-scale image.
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other faulty motors. The other faulty motors were represen-

tatives of the following faults: bowed rotor, broken rotor

bar, bearing outer race fault, rotor unbalance, adjustable

eccentricity (misalignment), and phase unbalance (Figure 8).

Thus, eight categories of vibration signals were acquired

from the motors, namely angular misalignment (AMIS),

bowed rotor shaft (BRS), broken rotor bar (BRB), faulty

bearing (outer race) (FBO), rotor unbalance (RUN), normal

motor (NOM), parallel misalignment (PMIS), and phase

unbalance (PUN). Fault dimensions of the faulty induction

motors are described in Table 1. Three accelerometers

were attached to the motors to acquire vibration signals

generated in horizontal, vertical, and axial directions. The

maximum frequency of interest of the measured signals

was 3 kHz which was adequate to include possible mech-

anical vibrations [13]. In the experiments, the sampling

frequency of the data acquisition unit was 7.68 kHz which

was higher than the required Nyquist rate.

As stated above, seven different fault types were studied

in our experiments. The minimum possible fault frequency

for the mentioned faults was the pole passing frequency

which is equal to the slip times the number of poles. For an

induction motor, the typical slip is 4% [14]; therefore, we

can get a minimum value of signal duration tmin = 0.4167 s.

To accommodate tolerance of the slip, a reasonable choice

of the signal duration t was made as t = 1 s. Through the

laboratory experiments, we obtained 12 signal samples for

every fault category, each of them having 1-s duration and

7,680 number of samples. Each of the vibration signals was

converted into a 96 × 80 gray-scale image. As the number

of signal category was eight, so we obtained a database

containing a total of 96 vibration signal images. As we

obtained data from three different sensors, therefore,

we had 96 signal images for axial sensor, 96 for vertical

sensor, and 96 for horizontal sensor. In Figure 9, vibration

signals, acquired from the axial sensor, for the eight signal

categories and their corresponding signal images are

shown. These signal images are later utilized for the

diagnosis of motor faults.

5. Performance analysis and discussion

Four LBP operators, i.e., LBPP,R, LBPu2
P;R , LBPriP;R , and

LBPriu2
P;R , and four CLBP operators, i.e., CLBP_SP,R_MP,R,

Figure 7 Experimental setup.

Figure 8 Faults of induction motors.
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Table 1 Description of induction motor faults

Fault type Fault description Others

BRB Number of broken bar (12 ea) Total number of 34 bars

BRS Maximum bowed shaft deflection (0.075 mm) Air gap (0.25 mm)

FBO A spalling on the outer raceway #6203

RUN Unbalance mass on the rotor (8.4 g) -

Eccentricity (AMIS, PMIS) Parallel and angular misalignments Adjusting the bearing pedestal

PUN Added resistance on one phase 8.4%

Figure 9 Vibration signals and corresponding gray-scale images for the eight signal categories.
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CLBP Su2P;R Mu2
P;R , CLBP SriP;R Mri

P;R , and CLBP Sriu2P;R Mriu2
P;R ,

were employed for extracting local texture patterns

from the signal images. Then, histogram of these

patterns was calculated and the histogram bins were con-

sidered as feature descriptors. Although texture analysis

based on local binary patterns could be performed for

different values of P and R, to ensure minimum computa-

tional complexity and lowest number of feature descrip-

tors, we kept our analysis limited to P = 8 and R = 1.

Feature descriptors, obtained from axial, vertical, and

horizontal sensor data, were concatenated to form a com-

bined feature vector. The feature vectors were then intro-

duced to the multi-class SVM to perform the classification

process using OAA method and linear kernel. To measure

exact classification performance, cross validation approach

was adopted in our experiments. Using a fourfold cross-

validation, the input feature vectors were randomly

partitioned into four subsets for training data and

testing data. Therefore, we had 72 training data and 24

testing data for any iteration. Sequentially, one of the sub-

sets was tested using the SVM classifier while trained on

the remaining three subsets. Thus, each instance of the

whole training set is predicted. The cross-validation accur-

acy, obtained in this process, is the percentage of data that

are correctly classified.

In this laboratory experiments, a self-designed test rig

was used to acquire vibration data which contained pulleys

and fan as additional mechanical subsystem coupled to

the testing motor. However, in a practical industrial

environment, motors may be coupled with many other

rotating components which are usually not phase locked to

the motor speed. Thus, these subsystems generally provide

random contribution to the measured vibration signals

which can be reasonably modeled by a Gaussian distribu-

tion. Therefore, for proving the robustness of the proposed

system to high background noise of an industrial environ-

ment, we introduced additive white Gaussian noise to the

vibration signals at different signal-to-noise ratio (SNR).

Then, the texture features were extracted from those noisy

signal images by the abovementioned LBP operators, and

classification performance is measured accordingly. In this

case, training of the classifier was performed by the feature

vectors obtained from the original vibration signals, and the

noisy signals were regarded as test samples. Therefore, 96

training and 96 testing samples were available while

evaluating the diagnostic performance in the presence

of background noise.

5.1. Identification of optimum LBP operator based on

classification performance

A comparison between overall classification results obtained

for LBP, CLBP, and their variants along with SIFT and

wavelet-based methods [6] are provided in Table 2.

Besides, Table 3 illustrates the scenario of individual

classification accuracy for the different fault categories.

According to the obtained results, SIFT and wavelet-based

methods are proved to be less accurate than most of the

LBP-based techniques as they demonstrate misclassification

in different categories including the ‘NOM’ category.

Inability to distinguish the normal operation mode

from other fault types can drain out the purpose of a

fault diagnosis system. Another observation obtained

from the classification result is that the so-called uniform

patterns, failed to account all the discriminating patterns.

This happened due to the fact that texture patterns

exhibited by the motor fault signal images were of unusual

nature compared to typical images; therefore, many of the

discriminating patterns contained more than two spatial

transitions (bitwise 0 to 1 change or vice versa). As a result,

when the non-uniform patterns were also considered, bet-

ter classification results were obtained which is confirmed

by the accuracy of LBPri
8;1 operator in Table 2. This operator

considers the rotation invariant binary patterns regardless

of the uniform definition; therefore, it can discover more

discriminating texture features with less number of descrip-

tors compared to LBPu2
8;1 operator. Considering inappropri-

ateness, we disregarded LBPu28;1 and CLBP Su28;1 Mu2
8;1 in our

remaining analysis. On the other hand, accuracy obtained

by CLBP Sriu28;1 Mriu2
8;1 operator shows that magnitude com-

ponent can add discriminating information, but this state-

ment requires appropriate judgment for different noise

levels to quantify its advantage.

Moreover, noise was introduced at different SNR

values in the measured signal, and performance was

evaluated to prove robustness of the proposed system

Table 2 Overall classification accuracy for LBP, CLBP, SIFT, and wavelet-based fault diagnosis schemes

LBP-based scheme CLBP-based scheme SIFT- and wavelet-based schemes [6]

Feature extraction
operator

Classification
accuracy (%)

Feature extraction
operator

Classification
accuracy (%)

Feature extraction
method

Classification
accuracy (%)

LBP8,1 100 CLBP_S8,1_M8,1 100 SIFT 97.916

LBPu28;1 97.9167 CLBP�Su28;1�Mu2
8;1 98.9583 Wavelet variance 89.582

LBPri8;1 100 CLBP�Sri8;1�Mri
8;1 100 Wavelet cross-correlation 79.165

LBPriu28;1 98.9583 CLBP�Sriu28;1 �Mriu2
8;1 100
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against the background noise. A comparative illustration

of classification accuracies, achieved by the operators at

different noise level, is provided in Table 4. As men-

tioned before, the added noise acts as illumination vari-

ation when converted to image, whereas the operators

we used for feature extraction are gray-scale invariant

which enables to achieve higher classification accuracy

at reasonably higher noise level. This robustness is

extremely useful for a fault diagnosis system to be

applicable in a real industrial environment. It should be

mentioned here that vibration measured from the motor

of interest would be at least three times stronger than

the induced background noise [15]; therefore, lower

SNR value up to 10 dB would be adequate to simulate

practical industrial situation. However, at extremely high

noise level (SNR < 10 dB), lower accuracy is observed

for some operators because the uneven illumination pro-

duced by the induced noise almost modified the local

texture patterns of the entire image. Therefore, texture

patterns, obtained from those noisy images, held little

correlation with corresponding patterns without noise.

From Table 4, it is also evident that at moderate noise

level rotation invariant operators ( LBPri
8;1 and LBPriu2

8;1 )

cannot exhibit higher accuracy as rotation invariance

disregards many alternative patterns which would con-

tribute for achieving discrimination between the fault

types. On the other hand, consideration of magnitude

components can increase classification accuracy as far as

noise level is not extremely high as observed by the
classification accuracy of CLBP Sri8;1 Mri

8;1 and CLBP Sriu28;1

Mriu2
8;1 at noise levels of up to 15-dB SNR. It is caused by

the fact that additional information provided by magni-

tude component remained discriminative as long as it is

not considerably modified by the noise disturbance and

thus boosted the classification accuracy. However, when

the noise level is excessively high (SNR = 5 dB), less

accurate classification results are observed in the case of
CLBP Sri8;1 Mri

8;1 and CLBP Sriu28;1 Mriu2
8;1 compared to corre-

sponding LBP operators. However, similar observation can

be obtained for classification accuracy of CLBP _ S8,1 _M8,1

as compared to LBP8,1 at SNR values less than 15 dB.

Moreover, individual fault classification results at SNR value

of 10 dB are provided in Table 5 to identify the most

efficient texture analysis operator. From the illustration, it is

evident that, although both LBP8,1 and CLBP _ S8,1 _M8,1

exhibit better performance than other operators in the case

of accurate detection of the normal case (‘NOM’), LBP8,1 is

superior to CLBP_S8,1_M8,1 while considering classification

Table 3 Individual classification accuracy for each of the fault categories

Feature extraction method Classification accuracy (%) for different fault categories

AMIS BRB NOM FBO RUN PMIS PUN BRS

LBP8,1 100 100 100 100 100 100 100 100

LBPu28;1 100 100 83.33 100 100 100 100 100

LBPri8;1 100 100 100 100 100 100 100 100

LBPriu28;1 91.67 100 100 100 100 100 100 100

CLBP_S8,1_M8,1 100 100 100 100 100 100 100 100

CLBP�Su28;1�Mu2
8;1 100 100 91.67 100 100 100 100 100

CLBP�Sri8;1�Mri
8;1 100 100 100 100 100 100 100 100

CLBP�Sriu28;1 �Mriu2
8;1 100 100 100 100 100 100 100 100

SIFT 98.33 98.33 86.67 100 100 100 100 100

Wavelet variance 83.33 100 83.33 100 83.33 83.33 83.33 100

Wavelet cross-correlation 83.33 83.33 83.33 66.67 100 83.33 83.33 50

Table 4 Overall classification accuracy achieved by the operators at different noise levels

Feature extraction operator Classification accuracy (%) at different SNRs (dB)

40 35 30 25 20 15 10 5

LBP8,1 100 100 100 100 100 100 89.5833 84.375

LBP8,1
ri 100 100 100 98.9583 94.7917 89.5833 81.25 52.0833

LBP8,1
riu2 100 100 98.9583 89.5833 81.25 76.0417 72.9167 53.125

CLBP_S8,1_M8,1 100 100 100 100 100 100 88.5417 69.7917

CLBP_S8,1
ri _M8,1

ri 100 100 100 100 100 100 78.125 50

CLBP_S8,1
riu2_M8,1

riu2 100 100 100 100 93.75 87.5 85.4167 41.6667
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accuracy of the ‘RUN’ category. Besides, at a higher noise

level (SNR = 5 dB), LBP8,1 performed considerably well

among these two operators (Table 4). Therefore, we can

reach at a conclusion that, as far as classification perform-

ance is concerned, LBP8,1 operator should be the best

choice for texture feature extraction in the proposed sys-

tem. However, in the next section, computational perform-

ance of the operators will be evaluated to reach a more

rigid conclusion.

5.2. Computational complexity evaluation

The complexity of calculating LBP code for a gray-scale

image is O(n), where n is the number of pixels of the

image. However, execution time required for calculating

LBP code varies for different operators as mapping

operations have to be performed for specific operators to

determine rotation invariant and uniform patterns. More-

over, classification time also varied depending on the LBP

operator used as the number of feature descriptors was dif-

ferent. To get a comprehensive measurement of the overall

system execution time, calculation time was determined for

each of the processing steps of the proposed fault diagnosis

system which is presented in Table 6. It should be

mentioned here that, in this performance analysis, we used

MATLAB implementation of LBP and CLBP operators

which were obtained from [16,17] and [18], respectively.

All the measurements were taken in MATLAB 7.10

platform running on a personal computer with Core

i7-2600, 3.40-GHz processor and 4 GB of RAM. Along

with the classification performance, this computational

measurement would enable us to decide the most suitable

feature extraction operator for the proposed system. It

is observed that classification time varies for different

operators as the number of features varies. The total

execution time reveals that feature extraction with

LBP8,1 operator can provide us with the lowest compu-

tational time. It is because of the fact that, like other

LBP or CLBP operators, it does not require any mapping

or determination of magnitude component.

From the above analysis of classification performance

and computational complexity, it is evident that, in the

case of fault diagnosis using signal images, each of the

available local binary patterns is crucial as it contains

some discriminative information. This statement becomes

more evident as the noise level in the measured vibration

signal is increased. Because at an increased noise level some

of the image locations become extremely distorted, there-

fore, the texture pattern distribution associated with the

image is changed. If all the possible local binary patterns

are considered then, reasonably, some patterns will remain

undistorted which can provide necessary discriminating

information for accurate classification. However, according

to the above analysis, LBP8,1 operator showed the optimal

classification performance even in the case of extreme noise

level requiring the lowest computational time.

6. Conclusions
Local texture properties, obtained by local binary pattern

analysis, are exploited efficiently in the proposed system

for the diagnosis of induction motor faults. The proposed

Table 5 Individual fault classification accuracy of the operators for SNR = 10 dB

Feature extraction operator Classification accuracy (%) for different fault categories

AMIS BRB NOM FBO RUN PMIS PUN BRS

LBP8,1 100 100 91.67 100 25 100 100 100

CLBP_S8,1_M8,1 100 100 91.67 100 16.67 100 100 100

CLBP_S8,1
ri _M8,1

ri 100 100 0 100 58.33 100 66.67 100

CLBP_S8,1
riu2_M8,1

riu2 100 100 0 100 91.67 100 91.67 100

Table 6 Computational time evaluation for the proposed system in the case of different texture analysis operators

Feature extraction
operator

Total number
of features

Execution time (ms)

Signal-to-image
conversion

Feature extraction Classification by
SVM (testing)

Total

LBP8,1 768 0.3794 1.3011 0.6417 2.3222

LBPu28;1 177 0.3794 1.7708 0.4564 2.6066

LBPri8;1 108 0.3794 1.7552 0.4236 2.5582

LBPriu28;1 30 0.3794 1.7615 0.3694 2.5103

CLBP_S8,1_M8,1 1,536 0.3794 2.414 0.8969 3.6903

CLBP�Su28;1�Mu2
8;1 354 0.3794 3.0829 0.5161 3.9783

CLBP�Sri8;1�Mri
8;1 216 0.3794 2.9966 0.4583 3.8342

CLBP�Sriu28;1 �Mriu2
8;1 60 0.3794 2.9794 0.4077 3.7664
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system is tested in the case of eight different motor operat-

ing situations in a laboratory setup, and excellent diagnostic

performance is obtained. Gray-scale invariance of the

LBP operator facilitates the proposed system to exhibit

robustness even in higher level of background noise

which is justified by the experimental results. Based on

classification performance and computational time,

LBP8,1 operator is identified as the optimum choice for

the proposed fault diagnosis system. Future research

will be focused on the identification of dominant and

most discriminative texture patterns for different

motor fault categories and application of the proposed

system in the case of multiple motor fault diagnosis.
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