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Abstract :

This paper presents a methodology for diagnostics of fixture failures in multistage
manufacturing processes (MMP). The diagnostic methodology is based on the state-space model
of the MMP process, which includes part fixturing layout geometry and sensor location. The
state space model of the MMP characterizes the propagation of fixture fault variation along the
production stream, and is used to generate a set of predetermined fault variation patterns. Fixture
faults are then isolated by using mapping procedure that combines the Principal Component
Analysis (PCA) with pattern recognition approach. The fault diagnosability conditions for three
levels: (a) within single station, (b) between stations, and (c) for the overall process, are
developed. The presented analysis integrates the state space model of the process and matrix
perturbation theory to estimate he upper bound for isolationability of fault pattern vectors

caused by correlated and uncorrelated noises. A case study illustrates the proposed method.
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1. INTRODUCTION

Dimensional quality, represented by product dimension variability, is one of the most
critical challenges in industries, which use multistage manufacturing processes such as assembly
and machining for automotive, aecrospace, or appliance products. The complexity of a
manufacturing process puts high demands on process modeling, design optimization, and on
fault diagnosis to ensure the dimensional integrity of the product.

In general, part fixturing, which determines the positions of parts during manufacturing
(assembly or machining), directly affects the dimensional quality of final products. During the
launch of a new automobile, for example, fixture faults accounted for 72% of all the dimensional
faults [1].

Recent advancements in fixture design has resulted in significant improvement of
fixturing accuracy and repeatability [2-4]. Nevertheless, design-oriented methodology alone
cannot guarantee the desired quality of the product due to the complexity and random nature of
uncertainties and disturbances in manufacturing processes. Therefore, an effective method for
detecting and diagnosing dimensional faults during production, based on in-line measurements,
is highly desirable.

The aforementioned factors has led to modeling and diagnosis of manufacturing
processes to emerge as a new research area lying within the boundary of engineering and
statistics research, and has grown rapidly during last few years, Methodologies propased include
pattern recognition of single fixture fault through Principal Component Analysis (PCA) [5], and
the identification of multiple simultaneous faults, using least squares estimation followed by
statistical testing [6.7]. These approaches were also applied to the diagnostics of compliant
assembly processes [8,9]. These diagnostics require the pattern vectors 1o be obtained through
off line modeling (d(i)'s in [5]. @'s in [6], and ¢'s in [7]). Such pattern vectors are relatively easy
to obtain for a fixture fault on a single manufacturing station, and is the case discussed in the

abovementioned papers.

[
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The modeling of pattern vectors for all potential fixturing faults in a multistage
manufacturing process (MMP) is much more challenging due to the complex interrelations that
exist between stations, thus causing, for example, fixture fault patterns resulting from operations
at upstream stations that can be affected by downstream operations. Further. the transfer of a
part and/or intermediate product between stations may introduce variation not included by single
station modeling. Thus, it is insufficient to generate fault pattern vectors for a MMP by simply
grouping peether the pattern vectors obtained separately from individual stations. Rather a
process-level model is required to characterize such propagation and accumulation of varation,
and to relate the fixture variation to the dimension quality of the final product. Such process-
level models did not exist until recently [10-13]. Among these proposed models, tooling
variation, including fixture variation, is only explicitly considered by Jin and Shi [13], where a
state space modeling approach is used 1o recursively describe variation propagation at the
process level of a multistage assembly process.

The state space model is a different form of the standard kinematic analysis model, also
utilized in such software as Variation Simulation Analysis [14]. which is widely used and
commercially available. The state space model provides analytical tools for system evaluation
and synthesis thus going beyond numerical simulation; the commercial software is mostly based
on pure numerical analysis and triakand-error synthesis approach. Although J in and Shi [13]
presented expressions for model parametric matrices only for a simplified assembly processes,
the modeling framework is fairly general and can be extended to more complex situations in
assembly, and also to other nunufacturing processes such as the machining process [15]. Thus,
we think that state space model can be a good modeling framework for fixture fault diagnosis in
MMPs.

This paper proposes a diagnostic approach for diagnosing fixture faults in a given MMP
system. A systematic method of modeling variation propagation and fault patiern vectors is
developed by using the state space model. A PCA-based algorithm similar to the one proposed

in [3] is employed for single fault diagnosis. Analytical upper bounds of the perturbation in
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pattern vectors due to the correlated noise are found using matrix perturbation theory. Although
certain assumptions imposed in the current paper helped to set up a complete approach for the
fixture diagnostics of MMPs, neither the framework of the state space modeling nor the
diagnostics approach is bound by these assumptions. Thus, we think that the proposed
diagnostic method provides a better understanding of the process and creates analytical
foundation for further optimization and control of MMP systems.

This paper is divided into five sections. Section 2 derives a variation propagation model
from the state space model of a MMP. Section 3 presents the diagnostic method for the single
fault situation in a MMP, followed by the perturbation analysis. In Section 4, fault patterns of an
assembly process are first generated and then interpreted. Computer simulation is used t©

illustrate and verify the proposed method. Finally, this work is summarized in Section 3.

2. VARIATION PROPAGATION MODEL

The variation propagation model, which will be used for diagnostic method is based on
the model developed by Jin and Shi [13]. The propagation of deviation in an mtstation MMP
can be represented in the form of state space equations

X(i) = A — DX -D+BGE)U)+ V(). ie {1.2, ..., m} (1)

Y(i) = CEOX)+ W), {if = {1.2, ..., m} i2)
where A(i-1) corresponds to the term I+T(i-1} in Eg. (36) in [13]. The state space model is
extended from its previous version [13] to accommodate more general manufacturing processes.
The difference is briefly discussed in Appendix IL

In Eqgs. (1) and (2), X represents the part deviation at station 1. U is the fixturing
deviation contributed from station i, and Y is the deviation vector containing all measurements al
the Key Product Characteristics (KPC) points. V and W are process noise such as background
disturbance and unmodeled error, and sensor noise, respectively. Vand W are assumed to be
mutually independent.  These definitions follow the same notation as used in [13]. Matrices A,

B, and C encode the design information of process configuration. A is the dynamic matrix,
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determined by the deviation change due to part transfer among stations. B is the input matrix,
depending on the fixture layout at each station. C is the observation matrix, corresponding to the
information of the sensor number and locations.

Equation (1), known as the state equation, implies that the part deviation at station 1 is
nfluenced by two sources: the accumulated part deviation up to station t1, and the deviation
contributed at the current station. Equation (2) is the observation equation. If sensors are
installed at one or more stations in a production line, the index for the observation equation
is actually a subset of {1, 2, ...m}, whereas the index for the state equation is the complete set.

This paper employs the end-of-line sensing strategy, which is the most commonly used
sensor installation scheme in industry. End-ofline sensing means thal observation is only
available at the last station m, that is, i = m for Eq. (2), and

Y =CX(m)+W, (3)
where ¥ & R¥ indicates that k measurements are obtained at station m. The indices for¥, C,
and W are dropped since they are all 'm's.
State transition matrix F(--) is adopted from lincar control theory [16] and is defined as
F(m.,i)=A(m-DA(m-2)--A(i) form=1 and F(i.i)=1T. (4}
The input-output relationship can then be represented as

Y = Y CF (m.)B(i)U(i) + CF (m, 0)X(0) +e , (5)

i=l
where X(0) corresponds to the initial condition (for instance, the fabrication imperfection of
product components in an assembly) and e is the summation of all modeling uncertainty and

sensor noise terms, where

e=> CF(mi)V(i)+W . (6)

=l
Define 2(i) and 2(0) as
2i)=CF(m,i)B(i) and 2(0)=CF(m,). (7

where 'm' is dropped from the indices of ? for this end-of-line sensing scheme. Then, Eq. (5)

can be simplified as

LA
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'I."=i?{i}U{i}+ HMX(D) +e (8)

i=l
Here, X(0). W. V" (i) are the basic random variables in a stochastic process and thus
usually assumed to be independent. The assumption can be partially released to include the

situation where the basic random variables are dependent by enlarging the state vector [17].

m

Moreover, U" (i), the fixturing deviations at station i, are independent with those basic random

variables as well since only an open loop system is considered now. Given the independent
relationships between these variables, the input-output covariance relationship could be obtamned
from Eg. (8) to characterize the variation propagation in a production line,

Ky = 3 20K ()2 () + 20K, 2 (0)+ K, (9)

i=l

where Ky represents the covanance matrix of random vector Y, and Ky is given as the mitial
variability condition, K, can be estimated from the data during which no fixture fault was
present,

Jin and Shi [13] assumed that only the lap joint is involved in the current model, implying
that the fabrication imperfection of parts will not affect the propagation of variations. Thus, it is
reasonable to set the initial condition Ky to zero. The process can then be approximated as
tollows ;

K, =i?fi}Kr{i}?"'{i}+K,. (10)
i=l

This equation suggests that, while being contaminated by noise, the variation of the final

product is mminly the contribution of variations of fixturing errors at all stations.
3. DIAGNOSIS OF FIXTURE FAULT IN MMPs

3.1. The Overall Concepl
The overall concept of the diagnostic methodology is shown in Fig. 1. If a fixturing
element (locator) does not function properly, a symptom will be reflected in the final product or

downstream intermediate products. From off-line CAD information and the created earlier state
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space model, the set of all possible fault patterns can be generated. Measurement data are
collected in-line and analyzed using one of the multivariate statistical methods, for example, the
Principal Component Analysis [18], to extract the fault feature patterns. Fault isolation can then
be conducted by mapping the feature patterns of real production data with the pre-determincd
fault patterns generated from the analytical model.

For the sake of simplicity and better illustration. the diagnostic methodology for the
MMP systems is presented in the context of automotive body assembly process. However, the
proposed approach and analysis are not limited to a specific automotive manufacturing process.
The presented methodology can be used for a class of MMPs which can be modeled by using the
state space framework.
3.2. Single Fault Patterns Without Noise Consideration

A detailed description of an autobody assembly process can be found in [1 9]. Suppose
there are n; subassemblies on each station in an mestation assembly process. Each of the
subassemblics is supported by the 3-2-1 fixture layout, which consists of a pair of locating pins
Piway and Py, and three NC blocks. An illustrative picture is included in Appendix 1 for
reference. Due to the modeling assumption used in [13], the currently developed state space
model only includes the fixturing deviation from the 4-way and 2-way locating pins. Each of the
pins could be faulty in two orthogonal dimensions. A simple calculation reveals that the number

of potential single faults is 4 at each station, and the total number of potential single [aults in
the process is L7, 4n,.
Eh

Let p be the index of fixture (locating pin) fault at the i station, which could be one of

the 4n; potential single faults (p = 1, 2. ..., 4n;). Assuming that all pin deviations at station i are
uncorrelated with each other, K, (i) is a diagonal matrix. When only fault p occurs at station i
matrix Ky(i) appears as follows:
(.
K, ()= G, (11)

T

e |
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where only the (p, p) entry is a norn-zero value GF , the variance of the fault. The pattern vectors
of potential fixture faults are first obtained without considering the noise term, K, i.e. from the
covariance matrix K\ , which is not contaminated by noise. K", is obtained by substituting Eq.
(11) into Eg. (10) and dropping the term K to yield

K =8 ey, (12)
where the superscript T denotes vector transpose and 7 (1) 1s the p" column of matrix  ?(i).
Equation (12) implies that the rank of K. is one, that is, one eigenvalue is nom-zero and all

others are zero. It is also known that ? (i) is the gigenvector corresponding to the only nor-zero

eigenvalue Aip (fault p at station i), that is,

Ky2, () =2, 7,(0) (13)
resulting in

PRPE 25T 42 .

? (o2, (D)2,(D)—-A; }=0 (14)

which indicates,
i gl 28 iR
""'ip=ﬁ;?r|:’]"n{]]:nﬁn?pu;. (15)

where [||. is the Euclidean norm. The eigenvalue Aj, represents the variance of the principal

component. In a single fault situation, it indicates the variation level of a product. The
eigenvector is the pattern vector of a fixture fault, manifesting the fixturing variation by

generating a mode shape of measurement vector Y . If one repeats this for the entire range of

single fault candidates, the eigenvalue-eigenvector pairs {i'l.”,,?p{ i} } will constitute the set of

candidate fixture fault patterns. In the rest of this paper, assume 2.(i) as a normalized

eigenvector using the Euclidean norm.
3.3. Fault Isolation and Diagnosability With the Presence of Noise

Given any two fault patterns 2 (i) and ? (k), which are the symptoms of fault p at
station i and fault q at station k. respectively, the similarity between the two faults can be
expressed in the acute angle formed by fault pattern vectors,

0,,(i,k) = cos™ (2, (i).2,(K)) . 0585 2, (16)

op
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where <~ represents the inner product of two vectors. Consider two special cases, 8 = 0 and
I
g=—.
¥
If 8 = 0, the two vectors are collinear. The fault patterns are identical and, therefore, the

corresponding faults are undistinguishable in this case (Fig. 2(a)).

L . L A
e = e~ the two vectors are perpendicular to each other. In this situation, the two faults

are called orthogonal. It is obvious that orthogonal faults ensure maximum diagnosability (Fig.

2(b}).

. 18 X ) e I
If 8 has a value between 0 and — . as long as 8 is not zera, the two faults are distinct (Fig.

2(c)). However, small 8 implies that two fault patterns are close o each aher. Under the

influence of noise, fault patterns might be undistinguishable. Thus, the larger 6 is, the easier are
the faults that can be distinguished.
With the presence of noise,

K, =K,+K._. (17)

Denote the cigenvalue and eigenvector of K as (A, ?} and those of K§ as {4’ 2" }.

iy

The pattern vectors obtained from Eq. (12) are actually i

s. The difference between ? and
due to the additive noise K, is studied by Ceglarck and Shi [20] for the case where K, is
diagonal. Although this is a reasonable assumption in a single station case, it 1s not valid for a
MMP. Consider Eq. (6). Even if all V's are assumed mutually independent, ¢lements in e may
be correlated in general after being filtered by CF (m,i). In fact, the evaluation of pattern
perturbation under the influence of correlated noise may not be adequately handled by the
diagnostic algorithms proposed for the single station situation, which are usually employed for
cases of uncorrelated noise.

Matrix perturbation theory [21] is employed to evaluate the upper bound on the
perturbation of pattern vectors due to the influence of correlated noise. Theorem 8.1.12 in [21]

derives an upper bound of eigenvector perturbation for a symmetric matrix S under the influence
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of another symmetric perturbation matrix E. This theorem is stated in Appendix III for the

reader's reference.

Since the covarance matrix K is always symmetric, the results of this theorem apply

here. Noting that K\ only has one non-zero eigenvalue X', therefore, there exists an orthogonal

matrix Q = [ 7" Q3] such that

l.IZI {} ['?L'I'}[ K ?LI {?ﬂ }'| K -Q'.!
KiQ= 1 Q'K.Q= : i | 18
e {u u} e [QIKE?" QIK,Q. o

Following the definition for d in Theorem 8.1.12, we may conclude that d = A'>0. Furthermore,
]

if the condition HK,‘_ " E}"T is also satisfied, the upper bound of the angle between 2" and 7 is

AB < sin "{%\mﬁr 2 — (27K %)

< sin lﬂlh (K,)-1.(K.)), (19)

where A(-) is the eigenvalue of a matrix. The proof of this result is presented in Appendix IV.
- A o S : o X
Remark 1. The condition EKEL = e required for Eg. (19) is not restrictive in practice.

=L, (K_) is the largest variance of noise, and A" is the variance of a fixture
: 2 : s s

fault, A (K. )= 2’ suggesting that the standard deviation of noise is less than one half of the
standard deviation of a fixture fault, This condition is usually satisfied. [T the noise i the MMP
is severer than this level, the cigenvector will be distorted to the point where this PCA-based

recognition approach will no longer be effective.

Remark 2. There are two upper bounds given in Eq. (19), that i3

by (?") ‘bm"{—\/ﬂK el l?”f}mudhzusin“r%dlimfl\’a}—limuisn.

The bound b, is different for individual eigenvectors and preferred since it is tighter than bp.

However, it requires K, to be known or estimable. The bound by only requires the knowledge

of the extreme eigenvalues of K _. which may be more easily estimated from production data.

For instance, Apley and Shi [22] estimated the variance of noise (equivalent to the eigenvalue of

K ) from Ky. The tightness of bx depends on the difference between the extreme eigenvalues of

10
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K, . Since the noise normally exists in process umiformly and any outstanding deviation away

from the nominal is grouped into the term K7 as fault condition, K, is fairly well-posed. Thus,

the recognition result will not be very conservative when by 1s used.

Remark 3. According to the upper bound by, it is not the variance of noise associated

with each measurement point but their difference (A2 (K,)—2_. (K, )) that accounts for the

distortion in fault pattern vectors. If K, =g;1, ie., the noises are uncorrelated and have the

same varances for all KPCs, then b; = 0, meaning that the fault pattern vectors will not be
altered. The above conclusions are consistent with those presented in [20] for a single-station
manufacturing process. But the bounds by and by provide general analytical expression for the
robustness evaluation of the PCA-based approach in pattern recognition.

By using the upper bounds, conditions for the diagnesability of an individual station,
between stations, and of the entire process are presented here on the single fault assumption.
1) Diagnosability within an individual station

If it is known on which station a Fault occurred, the question is then under what condition
we can tell which fixture (locator or clamp) on the specific station causes the fault. Given that

the fault patterns at station i are represented by the column vectors of matrix ?(i), the smallest

angle between any two pattern vectors p and q at station i can be defined as
0, ()= min 8.0 (20)

Then, a single fixture fault on station i can be diagnosed if and only if

0. (1) >2b, (21)
If b,(?,(i))'s are known, the following condition will be less conservative

min {'E!H[Li]l—zhd‘.’F[i:l]lv}‘.bl{?q{”}}}ﬂ (223

rq

where av b= max{a b) for any real number @ and b.
2) Diagnosability between stations

The second scenario asks whether we could tell on which station the fault occurred based
on the end-of line measurement. With the fault pattern angle between station 1 and station k

defined as

11
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0(i,k)=min 0__(,k) , (23)
A

the between-station diagnosability is ensured if and only if
miﬂn 0(i,k)=2b, or
| =

ek
mE1 ":T 18, (Lk)=2b, (2 (11w 2b,(? (K))} =0 . (24)
ik
3) Diagnosability of the entire process

If the above two conditions are satisfied, the fixture fault can first be localized at a certain
station and then identified right on that station. Diagnosability of the entire process is equivalent

to the combination of two previo us equations, (21 ) and (24):
mn B(Lk)=2b, or
1k -

min min {8, (i, k) —2b; (2, () v 2b, (2, (k)} >0 . (25)

4. A CASESTUDY

4.1  Single-Fault Patterns and Geometric Interpretation

In this section, a multistage assembly process is setup. This process is abstracted from a
side aperture assembly line in the automotive industry, including three assembly stations and one
measurement station. The final product is made of four parts, as shown in Fig. 3.

The assembly sequence and datum shift scheme regarding this assembly process are
shown in Fig. 4. {{Py, Pz}, {Pa1, Ps}} denotes the locating pairs used at station 1, where {P, P32}
is for the first workpiece and {P3, Ps} for the sccond one. The others are similarly defined. At
station 4, which is the measurement station, one pair of locating pins {Py. P} s used since there
is only one piece of the assembly to measure.

In the fixture layout indicated in Fig. 3(b), a 4-way pin (one of Py, Ps, Ps, and P;7) controls
part motion in both X and Z directions and a 2-way pin (one of Py, P4, Ps, and Py) controls part
motion only in the Z direction. It 15 also assumed that the locating pins at the measurement
station are much more accurate than those at assembly stations, which implies that fixture error

at the measurement station can be neglected. Hence, the total number of all single fault patterns

12
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is =% (4n,—2) = 18 with n = 2 for i=1, 2, and 3. The relationship between fault indices
and rool causes on cach station is shown in Table 1.

As indicated in Fig. 3(b), there are two sensors on each part at the last station (end-oi-ling
sensmg), Each sensor ¢an measure part deviation in both X and Z directions, Two sensors are
sufficient to detect the deviation in position and orientation of a 2-D rigid part.

Following the derivation of the previous sections, a state space model can be set up for

this side aperture assembly process as
X(1)=B(U() + V(1)
X(i)=A(l—-DX(i—D+BHU+ V(i),i=2.3
X(4) = A(DX(3)+ V(4)
Y =CX(4)+W

(26}

where A's, B's, and C can be obtained through Eqs. (38), (39), and (43) in [13].

Based on this state space model, matix 7)) is cqual to CA(3)---A()B(i) by

substituting the state transition matrix F into Eq. (7). Then the total of 18 potertial single fault

patterns can be generated from the column vectors of ?,(i). The faull patterns are shown in

Table 2 (a). (b), and (c), where I represents the distance between pin P} and pin P, that is,

L, = J{XF_ -X_ ¥ +(z, -7 ) .and AX;, AZ, and Ac; represent the deviation in position and

orientation of each part. Because the pattern vectors listed in Table 2 (a), (b), and (c) are not
normalized. in order to be consistent with the current algorithm. normalization should be

conducted before doing any numerical calculation.

The fault patterns in Table 2(a). (b). and (¢) have a clear geometric interpretation. For
example, if the 4way pin at the first subassembly is faulty in the Z direction at the second
station, thatis p=2 and i = 2, then

- . - i B =l e T N
'.-’xqz:=[[] i % P T"L b u—L : = 3D TR 00 0- (27)

The counter-clockwise is the positive rotation direction as defined in [13]. Thus, Ao, =
Aty = () suggests that part 1 and part 2 rotated the same amount in a clockwise direction. This

can be justified because part | and part 2 have already been welded together in the previous

-

13
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station, thus behaving as one rigid part. Since P, is free of deviation at the measurement station,
AXy and AZy arc always zeros. The fact that AZ; is less than zero is consistent with the part
rotation. Aoty > (} implies that part 3 rotates in the counter-clockwise direction. This seems

counterintuitive, because part 3 should not have a deviation at the 2"

station if there only exists
one fixture fault. However, the new subassembly "1+2+3" has a reorientations indueed deviation
at the 3" station, where it appears that part 3 rotates relative to subassembly "1+2" in the
counter-clockwise direction (Fig. 5). Part 4 is not affected by fault p=2 at station 2 since it has
not yet come into the stream of assembly.

All six fault manifestations at the 1™ station arc listed in Table 3. The fault manifestations
at the 2 and 3" stations look very similar except that the first subassembly consists of more
than one part. However. they behave like one rigid part in the single fault situation.

Consider the satisfaction of diagnosability conditions of this process using Egs. 21) ~
(25). At every station, the patterns of faults p=1 and p=4 are identical, and thus @__ (i,i).,,;=0.
As a result, the conditions in Egs. @1) and 22) are both invalidated, meaning that the single
fixture fault cannot be completely diagnosed on each station. No matter which pin is faulty in X
direction, the symptom is only reflected in the deviation of the second part or subassembly. Only
the relative deviation between two parts in the X direction can be detected.

However, faults p=1 (or 4) and p=2, 3, 5, and 6, on the other hand. have distinct fault
patterns within each station. There is no identical between-station fault pattern found among the
three stations. But whether these non-identical fixture faults are guaranteed distinguishable
depends on the noise level, 1.e. bounds by or bs. This is discussed further in the following section
on the numerical simulation.

It is obvious that diagnosability of the entire process is not ensured since there are
identical fault patterns within individual stations. In order to obtain the process diagnosability,

extra sensors have to be added directly on the assembly stations.
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4.2 Simulations

Although a full diagnosability of the entire process 1s not ensured with the current sensor
installation scheme, faults of p=2. 3. 5. 6 do have distinct patterns, which could be correctly
wdentified when one of them occurs. In reality. the comrect identification of a fixture fault in the
set of {p=2, 3, 5, 6} also depends on the severity of the perturbation due to noise. During this
simulation study, one of the faults {p=2, 3, 5, 6} will be assigned, together with noise and
process disturbance, to the assembly process discussed in Section 4.1, The developed technique
is used to analyze the data and isolate the faulty fixture.

Before simulation, the CAD information was assigned to the assembly process m Fig. 3.

The coordinates of locating and sensing points are listed in Table 4 and 5. respectively.
During simulation, two kinds of additive noises were included, process noise V.7, (i) and
sensor noise W, and these were assumed to be normally distributed. The seventy of both noise

sources is defined as

N, ==Y and N,=-Y_, (28)
Gl’ "Tt

where G, is the standard deviation of faulty fixture, @, and @, are the standard deviations of
each element in V.7, (i) and W, respectively, on the assumption that their standard deviations are
the same.

The simulation was conducted with N_= 5% and N, = 1%. First. we evaluated the
perturbation in fault pattern vectors when the noise was present. Similar to experimentally
conducting the calibration of the process, a simulation ran when no fixture fault was present.
The resulting perturbation bound by's for fault pattern vectors on three stations are listed in Table
6. The maximum h for all pattern vectors is 2.83%. The value of I is more conservative.

Simulation revealed that A (K, ) =0.035and A__ (K,) =0.001. Then by =8.04".

The angles (in degree) between fault pattern veetors at station i are listed as follows,

where p,q=1,2,3.4, 5,6, Since these matrices are symmetric, only the upper half is listed.
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- 640 90 0 45 534 — 338 90 0 330 488
— 383 A0 517 193 — 449 538 4351 727
—_— - 90 90 576 e — W o0 522
M 45 534 'N = 331 486
- 324 - 378
(- 825 90 0O 7TLI 767
— 236 825 664 217
. (3= - 90 W 453 (29)
- FLL 767
- 447

It was known that faults of p=1 and p=4 at each station are identical. Hence the angles
between faults p=1 and p=4 on three stations are zeros. Moreover, the minimum angle formed
by the faults of p=1 (or 4), 2, 3, 5, 615 0,,(2.2)=7.27°, which is the angle between faults p=2
and p=6 at station 2. This minimum value is larger than 2x<max(b;) = 5.66%, suggesting that
these two fault patterns are still distinet under the current noise level. Hence, the other fault
patterns on three stations are also distinguishable by using bound by, If bound b: is used in the
situation that only the ei-genvalucz-: of K; are estimable, then those fixture faults within three
stations are still distinguishable. except for the faults of p=2 and p=6 at station 2 with the angle
of 7.27% less than b;=8.04°, which are not guaranteed distinguishable in the presence of noise,

Similarly. the smallest between-station angles (as defined in Eq. (23)) are given in Table
7. Those values are large enough so that between-station [ault patterns are distinct under noise,
The large between-station fault angles imply stronger robustness in localizing fixture fault to
certain station, while the smaller in-station angles in Eq. (29) suggest that the isolation of fixture
fault within each station is more sensitive to the influence of noise.

'l‘il.

Suppose fault p = 6 occurred at the station. The sample covariance matrix K, is

calculated by using 500 samples generated by the VSA [14]. The principal component analysis
is performed to get the eigenvalue/eigenvector pairs. The first eigenvalue/eignvector pair is

Ar=0.6011
'.’,=[D.23D2 -0.0713 02178 -0.4484 -0.4054 -—(0.5858 —0.4230 0.0736

; (30)
—0.0062  0.0068 0.0151 —0.016¢ 00257 0.008¢ 00132 0.0051] '
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The first eigenvalue accounts for 53% of the total variation and is 8.5 times larger than
the second largest eigenvalue. The angles between ?, and potential fault patterns are listed in
Table 8, All units are in degrees (°).

The smallest angle indicates the fault. Here it 1s 2.76° for p=6 at the 1® station. By using
within-station fault pattern angles in Eq. (29) and between-station fault pattem angles in Table 7,
we know the angle between fault pattern of p=6 at station | and its closest pattern vector is 19.3%,

which is larger than 2b;=16.1%, Thus, the fault is considered to be correctly identified.
5. CONCLUSIONS

This paper developed a fixture fault diagnosis method explicitly for multistage
manufacturing processes based on product/process design parameters and in-line measurements
obtained at the end of production line. The developed state space model was used to describe
propagation of fixturing varation throughout production ling, and to relate the product quality to
fixturing variability. The state space model provided a systematic way to model the set of fault
pattern vectors. which are needed for PCA-based pattern recognition. Given the existence of
correlated process noises, the upper bound of the perturbation in fixture fault pattemn is given by
matrix perturbation theory and can be expressed in terms of the eigenvalues of noise covariance
matrix. Furthermore, perturbation in Biult patterm due to the influence of noise depended on the
difference of variances of noises rather than on the absolute values of individual noise variances.

An assembly process was used as an application for the proposed methodology, The
single fault patterns of the process, which have a clear geometric interpretation, were obtamed
from the state space model and interpreted in terms of process/product information.  For this
specific process, the entire process diagnosability was not ensured because there existed fault
patterns either identical or too close to the other fixture fault patterns within a station. However,
the between-station fault pattern angles were fairly large, suggesting that the fixwure fault could

be confidently localized to a certain station based on the end-ofline sensing.  Using this process
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with CAD data from an assembly plant, numerical simulation was conducted to illustrate and
verify the method,

Extension of the current work to the diagnosis of multiple simultaneows faults is being
mvestigated by following the concept of observability in control theory. As the total number of
stations and involved product components increases, the computation in model development and
application could be a burden. It is worthwhile to explore effective ways leading to a reduced
model for implementation in practice.

Despite assumptions made for sake of simplicity during the course of modeling and
diagnosis, the approach is fairly general for MMPs since it is based on the standard state space
model. When more complex variation factors are accommodated in the state space form, the

same method can be applied and the analysis will remain valid.
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APPENDICES
Appendix 1. 3-2-1 Fixture Layout (Fig. 6)
[Insert Fig. 6]

Appendix I1. Extension of State Space Model from That in [13]
First, the definition of AP(i) is expressed as
AP(i) = (Ax, (i) Az, (i) Axp (D) Az, ()7 (al)
This definition differs from that in [13] because this AP(i} is measured in a global body
coordinate system, while AP(i) i [13] is measured in a local part coordinate system. The

modification offers more convenience in using actual measured data since CMM or OCMM

readings are based on the global coordinate system. Accordingly, Q. , (i) is changed to

[ ] 1] 0
Q. A i)= 0 1 0 i) ia?)
) Sin o COs L S Cos 0L

L,(P.P,) L.(P,P,) L.P.,P,) L.P.P,],
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where o 1s the nominal orientation of a workpiece measured in the global coordinate system.
This value cannot be assumed to be small since a workpicce could be positioned at an arbitrary
angle.

The modeling assumptions used in J&S can be summarized as

(i) 2-D nigid body part;

(ii) 3-2-1 fixture layout for rigid part;

(i} Lap joint only so that part fabrication error does not affect variation propagation.

(iv)  There are¢ only two workpieces on each station and the second piece should be a

single-piece part rather than a multiple-piece subassembly.

The first three assumptions are still kept in the current modeling development. The rigid
body assumption is made and 3-2-1 fixture layout is employed as a primary fixture set up.
However, the model will also apply to n2-1 nonngid body fixturing [23] if the fixture faults
being considered cause panel motion only in the plane of rigidity. The simplification of joints
used in the assembly model enables us to decouple the stamping variation and the fixturing
variation, and thus we can focus on the latter one.

The fourth assumption. however, limits the scope of application of the state space model,
and thus model revision is conducted to eliminate it, In order to expand the model to
accommodate an assembly process with many workpieces joined at a station, the selecting matrix

W(s) is defined as

wis)=[5 1 51* . & 1%]

1 if k=s
O = is the Kronecker Delta, (a3)
0 iF k#s
such that
AP(1) ;
=W, (s)U(i) , ad
[ﬂl"{i'j:| 8)U() (a4)
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where s is the index of the workpicce directly supported by a set of fixture, U(i) can be multiple
sets of fixtures as U(i)=[AP,(i) AP,(i) -+ AP, (i)]' and [AP(i) AP'(i)]" is the U(i)

defined in [13].

Another Wa(i) is defined to pick up the right reorientation term.

“,:{1.]; ‘H,.:lln- W, e ww] ! ﬂﬁﬁj
W W e W
where
: 13:\'_1 ] ; =(1. : :
ST b if(p @) =(Lkor(2,j) i
i 0+ otherwise
such that
Xn® =W, (1)X(i) (a7)
o e

where X, (i) and X_.\J{i} are defined in Eq. (22) in [13] and N is the total number of
workpieces in the assembly.

Appendix HI. Theorem 8.1.12 in [21] (p. 399 —400)

Suppose matrices S and S+E are nx<n symmetric matrices and that Q=[q, Q] is an

orthogonal matrix such that g, is a unit 2-norm eigenvector for 8. Partition the matrices Q'sQ
and Q"EQ as follows

T Ay 0 T & e

50Q= and EQ = . ad

Q 50 [ 0 D l Q EQ L E. (as)

-

Ifd= min |A —p[>0 and |E
)

pekib;,

d : : My g o e
, =—, then the unit 2-norm eigenvector q, of S+E is different
-4

from q, in such a way that
: - R
dist(span{ q, |, span{ q, })=+/1-(q]q,)’ EEIHIJ . (a9)

where A(D,) is the set of cigenvalues of Dy and A, is the cigenvalue of S associated with
eigenvector ,. In this theorem, dist(span{q, }, span{q, }) is equal to the sine of the angle

between g, and q,. Le., &E,=.siri']{di£it(5pan{ q, 1. span{q, }).
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Appendix 1V, Proof of Equation (19)
Following Theorem 8.1.12, the upper bound of the angle between 2" and ? is
AB = sin ' (dist(span{?"},span{?})) . (alD)
Because d=2" and e = Q;K,?", according to Eq. (18).

a8 <sin”(GHIK, 27,

I
R 2
= sin {}J'

3 gitgnT
Since Q,QI+7"?" =1 then

V?"K,Q,QK,?")

=sin (= 2 R -2k, 2%

=sin nT\/'*“‘ K1 2 2

—sin'( }” \ﬂl{ .;.u” {qu:-TK 3 I

{‘K}_‘:qﬂK)IJ{}L l:- },

i

Notice that [K_2°] <[IK. [, -[2°]. =K ], =&..(K,) and &
2], <. 2], =,

ﬁe-::sm"{FJL K= X)) (all)
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Figure 1. Outline of the diagnostic methodology

Figure 2. Angle between two fault patterns

Figure 3. Geometry of the assembly

Figure 4. Assembly sequence and datum shift scheme
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Figure 6. A layout of 3-2-1 fixture

Table 1. Fault indices and their root causes

Table 2(a). Pattern vectors of single fault for the 17 station
Table 2(b) Pattern vectors of single fault for the 2% station
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Table 4. Coordinates of locating points in Fig. 3(b) (Units : mm).
Table 5. Coordinates of sensing points in Fig. 3(b) (Units : mm).
Table 6. Perturbation angle of fault pattern vectors (degree )

Table 7. Angle of fault pattern vectors between stations (degree *)

Table 8. Angle between ?, and fault patterns for single fault
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M2 Iy -4 — MUCASUFEINCOL points
Pi.s-locating points

(a) (b)

Figure 3. Geometry of the assembly




Assembly Sequence

; m (11} (I IV
__‘_' Assembly Assembly M Assembly | Measurement
= Station #1 Station #2 Station #3 Statinn

3 4
Datum

Shift [P P2}, (P B 0P P, (Ps Po) |1 1P Pal, (P Paf o0 (Py Pad ) ]
Scheme

Figure 4. Assembly sequence and datum shift scheme
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Reorentation
. n

Z
j ¥ @ Nomal fixture T‘duit:,- fisture & its faulty direction

Figure 5. Geometric interpretation of fault p=2 at the 2" station
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M

Paway - 4-way locator controlling part in the X
and Z directions

Paway - 2-way locator controlling part in the Z
direction

MNC; . 4 - NC blocks controlling part in the Y
direction and rotation

Figure 6. A layout of 3-2-1 fixture
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Table 1. Fault indices and their root causes

Index Fault root cause Index Fault root cause
p=1 deway pin on the T part/subassembly pd 4-way pin on the 2 part/subassembly
is faulty in X direction is faulty in X direction
= _I;_v:.a;.- pin nnlrhc I part/subassembly p=3 4-way pin on the 2™ parl/subassembly
i5 foulty m Z direction 15 faulty in Z direction
=4 Zeway pin on the ' partsubassembly = 2-way pin on the 2 part/subassembly

1= faulty in £ direction

is faulty in Z direction




Table 2(a). Pattern vectors of single fault for the 1¥ station
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vertor 2 ;1 7,00 7.0 240 2,00
element =l p=2 p=3 ped p=3 p=6
1 AX, 0 0 0 0 0 0
2 AZ, 0 0 0 0 0 0
= L,—Ly; |
3 Acey I.'J T 1 0 0 :
[ - Aty i 0 0 | 0 0
5 AZ; 0 1 0 0 I I

| ) a8

3] A ] Er L] ] e s
i A D 0 0 0 0 0
2 A 0 0 0 0 0 0
9 Aoy 0 ] 0 i 0 0
(107" Ax, 0 0 0 0 0 0
1 Az, 0 0 0 0 0 0
12 e 0 0 0 0 0 0




Table 2(b) Pattern vectors of single fault for the 2™ gtation
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vector 22 242 7,(2) 7 (2) ?.(2) ? {2)
element p=1 p=2 p=3 pid p=5 p=h
i AX, 0 0 0 0 0 0

- AZ f 0 ] ] 0 )
i A i Lis = Lig ! 0 0 !
A Arx —_ —
] Ll Ly |
4 AXa {l 0 0 ] ] (}
Fiisili _
5 AZa 0 — | 0 0 1
iy
6 A 0 Ly —Lag l 0 0 [
(05 T —_—
L:L, Ly Ly
7 AX; | 0 0 1 0 0
P L
8 1 ] = 0 i P -
&Z- L1E : ]'1 1
b i —_— 0 0 ]
Al Lis L Lk
10 AX, 0 0 0 n 0 0
1 AZ, 0 0 0 0 0 0
12 Ad 0 0 0 0 0 0

10
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Al

Table 2(c) Pattern vectors of single fault for the 3™ station

W 7,(3) 2,(3) ?,03) e 2.(3) 2.0
clement p=1 =2 =3 =4 =3 P
1 AN 0 i} 1] 0 0 0
2 AZ, 0 0 0 0 0 0

| l 1
3 Aty i E|_=L:+ ? ] 0 ‘T__T
4 AX; | o 0 0 0 0 0
5 AT 0 Lus = Lug 1 0 0 1
L||I
1 16 l"_é l ..l'_
] Fily s {} Ll s ] 0 L,
L AX. | o 0 0 0 0 0
3 S L) IO I Ly
8 AZ; i LI, L 0 0 T
0 Al i ﬁ L o 0 L
X LysLig Ly Ly
B 5 0 1 0 0
I AT, 1] —]—ﬁ i] ] | LL
LI-. I_II
1 | L..—-L
12 Arty 0 ? i 0 = ﬁ I:JI.;E

11
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Table 3. Geometric manifestation of six single faults at the 17 station

Fault Fault Manifestation Fault Fault Manifestation
le i ——d—— i i p= : -
o 1 E z i 1 *: Al - 2




Table 4. Coordinates of locating points in Fig, 3(b) (Units : mm).
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Tool Iﬂg P | Pg ]-"3 F'.|.
Position (X, Z) | (100,100) {380,100} {800,100) {(1400,100)
Tooling Ps Py P5 Ps
Position (X, Z) | (1500,100) | (2000,100) | (2300,100) | (2600,100)

L3



L

Table 5. Coordinates of sensing points in Fig. 3(b) (Units : mm).
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Sensors my b mh Tl
Position (X, Z) (200, 400) (700, 400) (700, 600 | (1300, 600}
Sensors s my h 1My
Position (X_. Z) | (1330, 600) (2100, 600) | (2200, 2000 | (2700, 200)
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Table 6. Perturbation angle of fault pattern vectors (degree ®)

p=1 or4 p=2 p=3 p=3 p=0
Station 1 2.47 1.48 2.09 2.38 1.58
Station 2 2.29 1.67 2.83 2:35 1.60
Station 3 2.04 1.97 2.62 1.72 1.91




Table 7. Angle of fault pattern vectors between stations (degree ©)

B(1,2)

B(2.3)

0(1,3)

66.2

54.5

T6.4
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Table 8. Angle between ?, and fault patterns for single fault

p=lor4 p=2 p=3 p=5 p=b
1™ station 4.1 18.2 36.4 33.7 2.76
2" station 89.6 841 8523 594 848
3" station B8.4 56,0 26.0 H9.1 B6.6




