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Abstract—In this paper, intuitionistic fuzzy spiking neural
P (IFSNP) systems as a variant are proposed by integrating
intuitionistic fuzzy logic into original spiking neural P systems.
Compared with a common fuzzy set, intuitionistic fuzzy set
can more finely describe the uncertainty due to its member-
ship and non-membership degrees. Therefore, IFSNP systems are
very suitable to deal with fault diagnosis of power systems, spe-
cially with incomplete and uncertain alarm messages. The fault
modeling method and fuzzy reasoning algorithm based on IFSNP
systems are discussed. Two examples are used to demonstrate the
availability and effectiveness of IFSNP systems for fault diagnosis
of power systems. Case studies involve single fault, complex fault,
and multiple faults with protection device failures and incorrect
tripping signals.

Index Terms—Power systems, fault diagnosis, spiking neural
P systems, intuitionistic fuzzy set.

I. INTRODUCTION

T
HE POWER system consists of many system elements,

such as generators, transformers, bus bars and trans-

mission lines, which are protected by protection systems

comprised of protective relays (PRs), circuit breakers (CRs)

and communication equipment. The supervisory control and

data acquisition (SCADA) system is equipped together with

electric power systems. Fault diagnosis of power systems is a
process of discriminating the faulted system elements by trip-

ping of protective relays and circuit breakers. When a fault

event occurs, it can lead to a large amount of alarm messages

in SCADA system. The alarm messages must be analyzed by

dispatchers according to their operating experiences in order to
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identify the faults. However, the received data is often incom-

plete and tripping of protective relays and circuit breakers is

sometime uncertain. Therefore, fault diagnosis is a difficult

and complicated task since circuit breakers may fail to oper-

ate the multiple faults with the incomplete and uncertain alarm

messages.

The expert systems (ES)-based methods have been used to

deal with fault diagnosis of power systems [1]–[3]. The ES-

based methods are suitable for operating logics of protective

relays and circuit breakers as well as the diagnosis experience

of operators. However, main drawbacks of the ES-based meth-

ods are the incapacity of generalization and the difficulty of

validating and maintaining large rule base. With their attractive

features, artificial neural networks (ANNs)-based systems have

been employed as an intelligent fault diagnosis tool [4]–[6].

Nonetheless, most of the ANN-based diagnosis systems suffer

from the “black-box” phenomenon since it is difficult to extract

domain knowledge encoded in a trained network to explain its

results intuitively. In addition, the performance of ANN-based

diagnosis systems is highly restricted without the extensive

confirmation of the quality of training process and the quantity

of training samples. The fault diagnosis of power systems can

be also formulated as an optimization problem. Some opti-

mization techniques, such as genetic algorithms (GAs) [7],

Honey-Bee Mating Optimization (HBMO) [8] and artificial

bee colony (ABC) [9], were employed to solve the optimiza-

tion problem. Since the outage area must be identified initially,

the loss of a boundary CB alarm may lead to the failure of such

methods. In fault diagnosis of power systems, a key problem

is how to handle the incomplete and uncertain alarm mes-

sages of tripping of circuit breakers. Fuzzy logic provides a

more usable and accessible technique to model the inaccu-

racy and uncertainty in fault diagnosis. Some techniques that

incorporate fuzzy logic have been developed for fault diagno-

sis of power systems, for example, fuzzy logic (FL) [10], fuzzy

relation (FR) [11] and fuzzy digraph models (FDM) [12].

Petri nets (PNs) are a useful tool for event modeling in a

concurrent structure. However, it lacks the ability to han-

dle uncertainty. Thus, fuzzy Petri nets (FPNs) [13], [14] that

combine fuzzy logic with PNs have been employed to deal

with the uncertainty existing in the operation of protective

devices.

Membrane computing is a class of distributed parallel com-

puting models inspired from the structure and functioning of

living cells as well as interaction of living cells in tissues and

organs, known as P systems [15], [16]. In past years, a various
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of P systems and variants have been proposed and applied

in a lot of real-world problems [17]–[27]. Spiking neural P

systems (in short, SNP systems) are one of main forms of

P systems. A SNP system can be viewed as a directed graph

whose arcs represent the synaptic connections among the neu-

rons [16], [28]–[30]. In recent years, a class of variants, which

integrate different fuzzy logics in SNP systems, were devel-

oped, called the fuzzy spiking neural P system (in short, FSNP

systems) [31]–[34]. Furthermore, FSNP systems have been

used to deal with fault diagnosis of power systems [35]–[37].

Intuitionistic fuzzy set (IFS) has been proposed to deal with

more finely the incompleteness and uncertainty [38]–[40]. IFS,

which is a natural generalization of usual fuzzy set, seems

to be useful in modeling many real life situations. IFS can

finely characterize the membership level of an element x to

fuzzy set A by providing two measures (membership and non-

membership degrees) simultaneously. However, IFS has not

been used to handle fault diagnosis problem of power systems.

In this paper a new variant is proposed by integrating IFS

in SNP systems, called intuitionistic fuzzy spiking neural P

systems (in short, IFSNP systems). The fault diagnosis model

based on IFSNP systems is discussed in detail. Main contri-

bution of this paper stays on proposing the IFSNP systems

and developing a novel modeling method for fault diagnosis

of power systems. Compared with the existing FSNP systems,

differences of IFSNP systems include: (1) intuitionistic fuzzy

number (IFN) is used to express alarm information and impre-

cise knowledge in fault diagnosis problems of power systems;

(2) fuzzy reasoning mechanism of IFSNP systems is based

on intuitionistic fuzzy logic; (3) diagnosis result (whether an

element is a fault in a section) is described by a member-

ship degree and a non-membership degree simultaneously.

Therefore, the proposed IFSNP systems can better model the

imperfect information, especially under imperfectly defined

alarm information and imprecise knowledge in fault diagnosis

of power systems.

The remainder of this paper is organized as follows. IFSNP

systems are discussed in Section II, including the definition,

modeling and reasoning methods. Three case studies of power

systems with different structures are provided in Section III.

Conclusions are finally drawn in Section IV.

II. IFSNP SYSTEMS

A. Definition

Let X be a universe of discourse. Intuitionistic fuzzy set

(IFS) is a generalized fuzzy set introduced by Atanassov [38],

shown as follows:

A = {< x, µA(x), νA(x) > |x ∈ X } (1)

which is characterized by a membership function µA : X →

[0, 1] and a non-membership function νA : X → [0, 1], with

the condition

0 ≤ µA(x) + νA(x) ≤ 1, ∀x ∈ X

where the numbers µA(x) and νA(x) denote the member-

ship and non-membership degrees of the element x to the A,

respectively.

For each IFS A in X, if πA(x) = 1 − µA(x) − νA(x), then

πA(x) is called the indeterminacy degree or hesitation degree

of x to A. Specially, if πA(x) = 1−µA(x)−νA(x) = 0,∀x ∈ X,

then the IFS A is reduced to a common fuzzy set.

For convenience, we call α = (µα, να) an intuitionistic

fuzzy number (IFN), where µα ∈ [0, 1], να ∈ [0, 1], and

µα + να ≤ 1.

Let α = (µα, να) and β = (µβ , νβ) be two intuitionistic

fuzzy numbers, and λ is a real number in [0, 1]. Three oper-

ations are introduced as follows:

(1) α ⊕ β = (max(µα, µβ), min(να, νβ));

(2) α ⊗ β = (µα · µβ , να + νβ − να · νβ);

(3) λα = (λµα, λνα).

Let S(α) = µα − να and H(α) = µα + να . For α and β,

α < β if and only if (1) S(α) < S( β), or (2) S(α) = S( β)

and H(α) = H( β).

Definition 1: An intuitionistic fuzzy spiking neural P

system (IFSNP system, in short) of degree m is a construct

� = (A, σ1, σ2, . . . , σm, syn, I, O) (2)

where:

(1) A = {a} is the singleton alphabet (a denotes spike);

(2) σ1, σ2, . . . , σm are neurons of the form σi = (αi, τi, ri),

i ∈ {1, 2, . . . , m} where:

(a) σi is an intuitionistic fuzzy number, denoting the

initial value of spikes contained in σi;

(b) τi is a real number in [0, 1], denoting the confidence

level associated with the neuron;

(c) ri is a firing rule/spiking rule, of the form aα → aα

or aα → aβ , where α, β are two intuitionistic fuzzy

numbers;

(3) syn ⊆ {1, 2, . . . , m} × {1, 2, . . . , m}, with (i, i) 
∈ syn for

∀1 ≤ i ≤ m is the synapse graph, defining the synapses

among neurons;

(4) I and O denote the sets of input neurons and output

neurons, respectively.

IFSNP systems are a variant of original SNP systems, which

integrate intuitionistic fuzzy logic into their mechanisms. The

firing mechanism of neurons can be described as follows: for

a neuron σi, if its spiking rule is enabled, then the neuron

fires and its spike value α is consumed, and then a spike with

value β is generated; once the spike with value β is emitted,

all successor neurons (with (i, j) ∈ syn) will receive the spike.

B. Modeling and Fuzzy Reasoning

In many applications fuzzy production rules have been

commonly used in knowledge representation, where their

antecedent and consequent use “AND” and “OR” operations to

connect multiple propositions respectively. The following two

types of fuzzy production rules have been used to construct

fuzzy knowledge base:

Type 1: IF p1 AND p2 AND . . . AND pk−1 THEN pk

(CF=τ )

Type 2: if p1 OR p2 OR . . . OR pk−1 THEN pk (CF=τ )

where p1, p2, . . . , pk−1, pk are k propositions, and τ is a real

number in [0,1] and denotes the confidence factor (CF) of the

fuzzy production rule.



Fig. 1. Three types of neurons: (a) proposition neuron, (b) ⊗-type rule
neuron and (c) ⊕-type rule neuron.

Fig. 2. Modeling type 1-fuzzy production rule based on IFSNP systems.

Fig. 3. Modeling type 2-fuzzy production rule based on IFSNP systems.

To model the fuzzy production rules, the neurons in IFSNP

systems are further classified into three classes: proposi-

tion neurons, ⊕-type rule neurons and ⊗-type rule neurons.

Proposition neurons are used to characterize fuzzy proposi-

tions in a fuzzy knowledge base. ⊗- and ⊕-type rule neurons

are used to denote “AND”- and “OR”-type fuzzy production

rules, respectively. Fig. 1 shows the three types of neurons.

A type 1-fuzzy production rule can be modeled by an IFSNP

system, shown in Fig. 2. The reasoning procedure of IFSNP

system can be described as follows. Initially, proposition neu-

ron σi is assigned a spike with value αi, i = 1, 2, . . . , k − 1.

Thus, the neurons fire and each emit a spike with value

α1, α2, . . . , αk−1, respectively. Afterward, ⊗-type rule neuron

σk+1 receives k − 1 spikes with value αk+1 = α1 ⊗ α2 ⊗

. . . ⊗ αk−1. Then, rule neuron σk+1 fires and emits a spike

(with value αk+1τ ) to the subsequent proposition neuron σk.

Finally, neuron σk receives the spike. Therefore, computing

result of the system is αk = (α1 ⊗ α2 ⊗ · · · ⊗ αk−1)τ .

Fig. 3 shows another IFSNP system used to model a

type 2-fuzzy production rule. The reasoning procedure of the

IFSNP system can be described as follows. Initially, proposi-

tion neurons σ1, σ2, . . . , σk−1 are each assigned a spike, with

values α1, α2, . . . , αk−1, respectively. Thus, the neurons fire

and each emit a spike with value α1, α2, . . . , αk−1, respec-

tively. Afterward, ⊕-type rule neuron σk+1 receives k − 1

spikes with value αk+1 = α1 ⊕ α2 ⊕ . . . ⊕ αk−1. Then,

rule neuron σk+1 fires and emits a spike (with value αk+1τ )

to the subsequent proposition neuron σk. Finally, neuron σk

receives the spike. Therefore, computing result of the system

is αk = (α1 ⊕ α2 ⊕ . . . ⊕ αk−1)τ .

In the following, we describe the proposed fuzzy reason-

ing algorithm based on IFSNP systems. Suppose that the

TABLE I
FUZZY REASONING ALGORITHM BASED ON IFSNP SYSTEMS

considered IFSNP system � contains m proposition neurons

and n rule neurons (⊕-type or ⊗-type). For convenience,

several notions and operations are firstly introduced as follows.

(1) Vector θ = (θ1, θ2, . . . , θm) denotes the values of spikes

in the m proposition neurons, where θi is an intuitionistic fuzzy

number, 1 ≤ i ≤ m.

(2) Vector δ = (δ1, δ2, . . . , δn) denotes the values of spikes

in the n rule neurons, where δi is an intuitionistic fuzzy

number, 1 ≤ i ≤ n.

(3) Matrix C = diag(c1, c2, . . . , cn) is called the confidence

matrix, where ci ∈ [0, 1] denotes confidence factor (CF) of i-th

fuzzy production rule, 1 ≤ i ≤ n.

(4) Matrix D1 = (dij)m×n denotes the synapse connection

from proposition neurons to ⊗-type rule neurons. If there is a

directed arc from proposition neuron σi to ⊗-type rule neuron

σj, then dij = 1; otherwise dij = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

(5) Matrix D2 = (dij)m×n denotes the synapse connection

from proposition neurons to ⊕-type rule neurons. If there is a

directed arc from proposition neuron σi to ⊕-type rule neuron

σj, then dij = 1; otherwise dij = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

(6) Matrix E = (eji)n×m denotes the synapse connection

from rule neurons to proposition neurons. If there is a directed

arc from rule neuron σj to proposition neuron σi, then eji = 1;

otherwise eji = 0, 1 ≤ j ≤ n, 1 ≤ i ≤ m.

(7) C ⊙ δ = (c1δ1, c2δ2, . . . , cnδn)
T .

(8) D ⊗ θ = (d̃1, d̃2, . . . , d̃n)
T , where d̃j = d1jθ1 ⊗ d2j

θ2 ⊗ . . . ⊗ dmjθm, j = 1, 2, . . . , n.

(9) D ⊕ θ = (d̃1, d̃2, . . . , d̃n)
T , where d̃j = d1jθ1 ⊕ d2j

θ2 ⊕ . . . ⊕ dmjθm, j = 1, 2, . . . , n.

Based on neuron’s firing mechanism in IFSNP systems,

fuzzy reasoning algorithm can be summarized in Table I.

III. CASE STUDIES

In this section, two different examples of power systems are

used to illustrate and validate the availability and effectiveness

of the proposed IFSNP systems: a six-bus 69kV distribution

system and a 345kV transmission system. In the two examples,

several cases are discussed, including single fault, complex

fault and multiple faults. The diagnosis results of the proposed

method are compared with other diagnosis methods.



TABLE II
LINGUISTIC TERMS AND THE CORRESPONDING

INTUITIONISTIC FUZZY NUMBERS (IFNS)

TABLE III
THE CONFIDENCE DEGREES OF THE OPERATED PROTECTIVE DEVICES

A. Fault Diagnosis Model Based on IFSNP Systems

In this work, IFSNP systems are used to diagnose the

faults of main sections, including transmission line, bus and

transformer. In IFSNP systems, proposition neurons and rule

neurons both are used to express the causal relationship

between a fault section and its protective devices. The IFN

value of proposition neuron is used to express the confidence

degree of protective relay/circuit breaker, while rule neuron

uses IFN value to express the probability of tripping the circuit

breaker by protective operation. Considering the uncertainty of

experts and senior dispatchers, fuzzy linguistic terms are used

to describe the confidence degrees or probabilities, shown in

Table II.

For each suspicious component in outage area, IFSNP

systems is used to build its fault diagnosis model. The diag-

nosis procedure based on IFSNP systems has three steps:

(1) retrieve the operational information of each device from

SCADA system as the input data of IFSNP systems; (2) use

fuzzy reasoning algorithm in Table I to obtain fault confidence

levels of suspicious fault components; (3) distinguish the fault

components according to the reasoning results.

In the IFSNP systems, the confidence factor (CF) is a real

number in [0,1]. Based on the experience and protection level,

it is considered that the confidence factor of rule neuron asso-

ciated with both main protective and nearby backup devices is

set to be 1.0, and the confidence factor of rule neuron associ-

ated with remote backup devices is set to be 0.9. If it involves

multiple levels of protections, the certainty factors can be set

to the value corresponding to the highest level of protections.

At the same time, confidence degree of each protective device

is also assigned according to past experience in fault diag-

nosis of power systems, including line, bus, protective relay

TABLE IV
THE CONFIDENCE DEGREES OF THE NON-OPERATED

PROTECTIVE DEVICES

Fig. 4. A six-bus 69kV distribution system.

and circuit breaker. Tables III and IV provide the confidence

degrees of the operated protective devices and non-operated

protective devices, respectively. In addition, if the confidence

level θ of a section satisfies the condition θ ≥ (0.60, 0.30) the

section is a fault; if θ ≤ (0.40, 0.50) the section is not a fault;

otherwise, it may be a fault.

B. Example I

The first system studied is a six-bus 69kV distribution

system, shown in Fig. 4, which is adopted from [11].

This system consists of 10 system sections, 10 circuit

breakers and 26 protective relays. Symbols are assigned

as follows: A/B/C, L, CB and T denote bus, line, circuit

breaker and transformer, respectively. The 10 system sec-

tions have six buses (labeled by A1, A2, B1, B2, C1, C2),

two transmission lines (labeled by L1, L2) and two trans-

formers (labeled by T1, T2). The 10 CBs are labeled as

CB1, CB2, . . . , CB9, CB10. The 26 protective relays are com-

posed of 12 main protective relays (MPR) (labeled by

A1m, A2m, B1m, B2m,), 8 nearby backup relays (labeled by

T1p, T1s, T1p, T1s, L1Bp, L2Bp, L1Cp, L2Cp) and 6 remote backup

relays (labeled by T1t, T2t, L1Bs, L2Bs, L1Cs, L2Cs). This system



Fig. 5. The fault diagnosis model of bus A1 based on IFSNP systems.

was used to test whether the proposed method can diagnose

single fault, complex fault and multiple faults with rejection.

The diagnosis model of bus A1 can be described by an

IFSNP system consisted of 20 proposition neurons and 11 rule

neurons, shown in Fig. 5. There are four assistant synapses,

including (σ1, r5), (σ1, r6), (σ2, r3) and (σ2, r4), marked by

dashed lines with hollow arrow. For clarity, (σ1, r5) is regarded

as an example to explain the meaning of these assistant

synapses as follows: if CB1 successfully opens, then the oper-

ation of T2t, CB3 and CB5 is invalid, thus their values each

are set to be [0.0, 1.0]; otherwise, the operation of T2t, CB3

and CB5 is valid.

In the following, three cases are discussed, including single

fault, complex fault and multiple faults.

Case 1 (Single Fault Without Failure Devices): Suppose that

a fault occurs at the bus A1. The fault leads to the operation of

main protective relays A1m and the tripping of circuit breakers

CB1 and CB2 without malfunction and rejection. The informa-

tion retrieved from SCADA shows the protective relays A1m

operates and circuit breakers CB1 and CB2 trip.

The fault section can be diagnosed as bus A1 by using the

IFSNP system in Fig. 5. The proposed fuzzy reasoning algo-

rithm can be used to conclude that output neuron σ20 has

the fuzzy value of [0.81, 0.19](≥ VH). Therefore, A1 can be

recognised as a fault section with the confidence degree 0.81

according to the judgment condition given above. Note that

A1 is not a fault section only with the credibility of 0.19. This

illustrates that the proposed IFSNP systems can accurately

diagnose single fault.

Case 2 (Complex Fault With the Rejection of Circuit

Breakers): Suppose that a fault occurs at the bus A1. The

fault leads to the operation of main protective relays A1m and

trips circuit breakers CB1 and CB2. But CB2 fails to operate,

thus the operation of remote backup relays T1t leads to trip

CB2 again and CB4. The information obtained from SCADA

shows that the protective relays A1m and T1t operate and circuit

breakers CB1, CB2 and CB4 trip.

Fig. 6. The fault diagnosis model of bus A2 based on IFSNP systems.

Fig. 5 shows the IFSNP system for fault diagnose of A1.

Based on the IFSNP system, fault diagnosis process of A1 can

be achieved by the presented fuzzy reasoning algorithm. After

fuzzy reasoning, we can obtain that fuzzy value of output neu-

ron σ20 is [0.81, 0.19]. Based on the judgment condition, we

can judge that A1 is a fault section with high confidence degree

(≥ VH). Therefore, the proposed method can well distinguish

the fault section in the case of complex fault.

Case 3 (Multiple Faults With Rejection of Circuit Breakers):

Suppose that multiple faults occur at the buses A1 and A2. The

fault at bus A2 leads to the operation of main protective relays

A2m and trips circuit breakers CB1 and CB3. The fault at bus

A1 leads to the operation of main protective relays A1m and

trips circuit breakers CB1 and CB2, but CB2 fails to operate.

Thus, the operation of remote backup relays T1t leads to trip

CB2 again and CB4. The information obtained from SCADA

indicates that the protective relays A1m, A2m and T1t operate

and circuit breakers CB1, CB2, CB3 and CB4 trip.

The diagnosis models of the multiple faults can be also

described by the IFSNP systems in Fig. 5 and Fig. 6, respec-

tively. The presented fuzzy reasoning algorithm is used to

conclude the diagnosis result in the case of multiple faults.

Since A1 and A2 have a similar reasoning procedure, the rea-

soning procedure of bus A1 as an example is illustrated as

follows.

Initially, θ0 and δ0 can be determined according to the sta-

tus information of protective relays and circuit breakers in

the fault situation and Tables II, III and IV, in which θ0 is a

20-dimensional vector and δ0 is a 11-dimensional vector. The

proposed fuzzy reasoning algorithm can be used to conclude

that fuzzy value of output neuron δ20 for bus A1 is [0.81, 0.19].

Similarly, we can conclude for bus A2 that the fuzzy value of

output neurons δ20 is also [0.81, 0.19]. Based on the judgment

condition, A1 and A2 are simultaneously distinguished as the

fault sections with high confidence level (≥ VH). Note that

the confidence levels of them being not the fault sections are

only 0.19. This indicates that the proposed IFSNP systems are



Fig. 7. A 345kV power transmission system. Here, “m” refers to the main
protective relay, “b” denotes the nearby backup relay, and “s” represents the
remote backup relay.

suitable to deal with the multiple faults with malfunction and

rejection of circuit breakers.

C. Example II

The second system studied is a 345kV power transmission

system, shown in Fig. 7, which is adopted from [12]. This

system includes 18 system sections, 17 circuit breakers and

60 protective relays. Symbols are assigned as follows: BUS,

L and CB denote bus, line and circuit breaker, respec-

tively. The 18 system sections include nine buses (labeled

by BUS18, BUS19, . . . , BUS25, BUS27) and nine transmis-

sion lines (labeled by L23, L24, . . . , L31). The 17 CBs are

labeled as CB45, . . . , CB60, CB62. The 60 protective relays

are composed of 26 main protective relays (MPR) (labeled by

BUS18m, . . . , BUS25m,BUS27m, L23 − xm,. . . ,L31 − xm), 17

nearby backup relays (labeled by L23 − xb,. . . ,L31 − xb) and

17 remote backup relays (labeled by L23 − xs, . . . , L31 − xs).

This system was used to test whether the proposed method

can diagnose the multiple faults with rejection and incorrect

tripping signals.

Case 4 (Multiple Faults With Rejection and Incorrect

Tripping Signals): Suppose that multiple faults occur at the

transmission line L29 and L30. The fault at line section L30

leads to the operation of main protective relays, L30 − 23m

and L30 − 24m, and the tripping of circuit breakers CB59

and CB60. The fault at line section L29 leads to the opera-

tion of main protective relays, L29 − 27m and L29 − 23m, but

the rejection of CB57 and CB58. Thus, nearby backup relays

L29 − 27b and L29 − 23b operate to trip CB57 and CB58.

There is also an obscure operation backup relay L25 − 20s,

which causes CB50 to be tripped. Status information obtained

from the SCADA system is as follows: the operated relays

are L30 − 23m, L30 − 24m, L29-27m,L29-23m, L29 − 27b,

L29 − 23b and L25 − 20s, and the tripped CBs CB50, CB57,

CB58, CB59 and CB60.

The fault diagnosis models of lines L30 and L29 can be built

by two IFSNP systems, shown in Fig. 8 and Fig. 9, respec-

tively. The two IFSNP systems contain each 23 proposition

neurons and 13 rule neurons. In the two systems, proposi-

tion neurons, σ1, . . . , σ10 as the input, are used to denote

the statuses of protective relays and circuit breakers in fault

section, while proposition neuron σ23 as the output is used

to denote the confidence degree of fault section. The ini-

tial values of all input neurons are determined according

to Tables III and IV.

The IFSNP systems of lines L30 and L29 can be easily

reasoned by using the proposed fuzzy reasoning algorithm.

Since L30 and L29 have a similar reasoning procedure, line

L30 as an example is illustrated as follow. Initially, θ0 and

δ0 can be determined according to the status information of

protective relays in the fault situation and Tables II–IV as

follows, where θ0 is a 23-dimensional vector and δ0 is a

13-dimensional vector.

δ0 = [0], θ0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

[0.90, 0.10]

[0.90, 0.10]

[0.90, 0.10]

[0.90, 0.10]

[0.25, 0.60]

[0.25, 0.60]

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

According to fuzzy reasoning algorithm, computing results

of each iteration are provided as follows.

For t = 1,

δ1 =

⎛

⎜

⎜

⎜

⎜

⎝

[0.81, 0.19]

[0.81, 0.19]

[0.225, 0.64]

[0.225, 0.64]

0

⎞

⎟

⎟

⎟

⎟

⎠

, θ1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

[0.81, 0.19]

[0.81, 0.19]

[0.225, 0.64]

[0.225, 0.64]

[0.00, 0.90]

[0.00, 0.90]

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

For t = 2,

δ2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

[0.81, 0.19]

[0.81, 0.19]

[0.81, 0.19]

[0.225, 0.64]

[0.81, 0.19]

[0.225, 0.64]

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, θ2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

[0.81, 0.19]

[0.81, 0.19]

[0.81, 0.19]

[0.225, 0.64]

[0.81, 0.19]

[0.225, 0.64]

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

For t = 3,

δ3 =

(

0

[0.81, 0.19]

)

, θ3 =

(

0

[0.81, 0.19]

)

.

For t = 4, we have δ4 = [0]. Therefore, the halting condi-

tion is satisfied and the reasoning procedure ends. Thus, the

fuzzy value of output neuron δ23 is [0.81, 0.19]. Based on the

judgment condition, L30 is adjudged as a fault section with a

confidence level VH.

Similarly, IFSNP system for L29 can be reasoned, and

the reasoning result of L29 is [0.64, 0.19]. Note that



Fig. 8. The fault diagnosis model of line L30 based on IFSNP systems.

Fig. 9. The fault diagnosis model of line L29 based on IFSNP systems.

MH< [0.64, 0.19] <H meets. Therefore, L29 is a fault section

according to the judgment condition. The diagnostic result of

L29 is same to L30 although there is the rejection in sections

of L29.

The example indicates that in the case of multiple faults with

rejection and incorrect tripping signals the proposed IFSNP

systems can accurately diagnose fault sections.

D. Comparison Analysis With Other Methods

In the recent, example II has been studied in several litera-

tures, such as fuzzy logic (FL) [10], fuzzy relations (FR) [11],

fuzzy graph (FG) [12] and FSNP systems [35]. Chin [10]

combined classical fuzzy logic with cause-effect network to

deal with the uncertainty in fault diagnosis of power systems.

Min et al. [11] presented a fault method based on fuzzy rela-

tions, where the relationship between the operated protective

TABLE V
THE COMPARISON RESULTS OF THE PROPOSED METHOD

WITH OTHER METHODS ON EXAMPLE II

devices and the fault section candidates was modeled and

reasoned by fuzzy matrix. Chen [12], fuzzy graph was used

to propose a fault diagnosis method. Tu et al. [35], FSNP

systems were applied to deal with fault diagnosis problem of

power systems. In these four methods, classical fuzzy logic

and reasoning mechanism were used to express and handle

the uncertainty in fault diagnosis of power systems. In this

work, a fault diagnosis problem can be described by a set of

fuzzy production rules, and then rule neurons and proposi-

tion neurons are used to express the fuzzy rules and the fuzzy

propositions in them respectively. Moreover, fault diagnosis is

implemented based on the firing mechanism of neurons, and

IFNs are used to express the uncertainty in fault diagnosis

problems.

The comparison results of the proposed fault diagnosis

model based on IFSNP systems with these methods on exam-

ple II are provided in Table V. It can be observed from

Table V that IFSNP systems and FG methods can diagnose

the faults L29 and L30, however, FL, FR and FSNP systems

can distinguish only the fault L30. More importantly, the

proposed fault diagnosis model not only can correctly iden-

tify all the fault sections but also provides two measures of

each fault section (membership degree and non-membership

degree). Thus, IFSNP systems can distinguish a fault section

with high confidence level (higher membership degree and

lower non-membership degree). In addition, the comparison

results of IFSNP systems with FSNP systems indicate that

IFN has stronger ability to characterize the uncertainty in fault

diagnosis problem of power systems than classical fuzzy num-

ber. The comparison demonstrates that fault diagnosis model

based on IFSNP systems is effective for fault diagnosis of

power systems.

IV. CONCLUSION

This paper developed IFSNP systems and presented a novel

fault diagnosis model based on IFSNP systems for power

systems. The IFSNP systems are a kind variant that inte-

grates IFN in SNP systems, therefore, the proposed modeling

method is capable of representing uncertain knowledge in fault

diagnosis of power systems and dealing with alarm messages

from the SCADA system. Moveover, IFSNP systems can more

finely and accurately distinguish whether an element is a fault

section by providing its membership and non-membership

degrees simultaneously. Therefore, IFSNP systems can help

the dispatchers more intuitively and effectively to identify all

the fault sections. The case studies on a six-bus 69kV distri-

bution system and a 345kV transmission system demonstrate

that the proposed diagnosis method can effectively and accu-

rately deal with single fault, complex fault and multiple faults

with rejection and incorrect tripping signals. The proposed

fault diagnosis model requires status information provided by



SCADA system, so it is unable to handle fault diagnosis if

SCADA system is not equipped with power systems. In such

an application scenario, this is a limitation of IFSNP systems.

In addition, the time between the tripping of breakers during a

fault is worth considering because they can provide additional

information, especially in the systems where stepped-distance

and differential protection (and possibly breaker failure protec-

tion) are used. However, the current version of IFSNP systems

does not contain time factors, so it can not handle the situa-

tion. Our further work is to extend IFSNP systems to discuss

fault diagnosis in this situation.
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