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Abstract. In order to improve the speed and accuracy of rolling bearing fault diagnosis on small 

samples, a method based on relevance vector machine (RVM) and Kernel Principle Component 

Analysis (KPCA) is proposed. Firstly, the wavelet packet energy of the vibration signal is 

extracted with the wavelet packet transform, which is used as fault feature vectors. Secondly, the 

dimension of feature vectors is reduced in order to weaken the correlation between the features. 

The important principal components are selected using KPCA as the new feature vectors under 

the criterion that the cumulative variance is greater than 95 %. Finally, the faults of rolling bearing 

are diagnosed through combining KPCA with RVM. Simulation experimental indicates the 

advantages of the presented method. Moreover, the proposed approach is applied to diagnoses 

rolling bearing fault. The results show that wavelet packet energy can express rolling bearing fault 

features accurately, KPCA can reduce the dimension of feature vectors effectively and the 

proposed method has better performance in the speed of fault diagnosis than the method based on 

support vector machine (SVM), which supplies a strategy of fault diagnosis for rolling bearing. In 

this paper, the performance of the proposed method is also compared with other diagnostic 

methods.  

Keywords: rolling bearing, relevance vector machine, kernel principle component analysis, fault 

diagnosis. 

1. Introduction 

Rolling bearings are common components in rotating machine and they are also prone to break 

down. Bearing faults can cause severe machine vibration and even damage the machine. About 

thirty percent of the rotating machinery failures are caused by the bearing fault according to 

statistics. Therefore, they have received much more attention in the field of condition monitoring 

and fault diagnosis. Mechanical vibration signals can reflect mechanical running condition and 

fault information [1]. Fault diagnosis based on vibration signals has been well developed for some 

years, and vibration signal analysis technique has been proven to be an effective approach for 

detecting [2, 3].The rolling bearing fault diagnosis methods mainly include two categories: 

(1) The methods based on signal processing technology which extract failure-frequency mainly 

from the bearing vibration signal, such as wavelet transform (WT) [4], Wigner-Ville transform 

(WVT) [5] and empirical mode decomposition (EMD) [6]; (2) Another methods to bearing 

diagnostics are statistical methods based on pattern recognition, namely, intelligent fault diagnosis. 

The different fault classes are distinguished relying on training a pattern recognition system with 

typical fault feature representing the different classes extracted from the bearing vibration signal, 

such as support vector machine (SVM) [7] and artificial neural network (ANN) [8]. They require 

some typical failure data for the training. In essence, intelligent fault diagnosis technology is a 

pattern recognition process. Fault feature extraction and intelligent classification are so important 

technology to mechanical fault diagnosis that they are the focus of research in the field of fault 

diagnosis. However, the vibration signal of rolling bearing fault is usually non-stationary and 

non-linear, so the traditional fault diagnosis methods are often difficult to achieve the desired 

results [9]. 
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Wavelet packets proposed by Coifman and Wicker-Hauser in 1992 is a generalized family of 

multi-resolution orthogonal basis [10]. Wavelet packet transform can analyze high frequency and 

low frequency, which is implemented by a basic two-channel filter bank that can be iterated over 

either a low-pass or a high-pass branch. The high frequencies information can be analyzed as well 

as low frequencies information in wavelet packet transform. Therefore, wavelet packet transform 

has been widely used in vibration signal analysis and fault feature extraction successfully [11, 12]. 

However, excessive decomposition levels easily lead to complexity of data processing. In addition, 

there is usually correlative between the features of the fault. Thereby, it is very important to extract 

the most sensitive fault features that reflect the fault and reduce dimension from high dimension 

data. For the complex and nonlinear data, the kernel principal component analysis (KPCA) is a 

simple and efficient method of dimension reduction [13]. KPCA is a effective tool to deal with 

the multivariable and nonlinear data, and its main idea is that it maps the original spatial data into 

high dimensional space by kernel function, transforms the original nonlinear problem to 

linearization one, and uses PCA to reduce the dimension. 

Recently, the widely-used intelligent classification algorithms of fault types are ANN [14-16] 

and SVM [17-19]. Many of the studies proposed in the literatures present that these techniques 

can use feature vectors derived from vibration signal to classify fault types. However, these 

methods often need many training samples to train the classifiers. In fact, the training samples are 

difficult to obtain in industrial environment. The RVM is a machine learning technology based on 

an exploited probabilistic Bayesian learning framework similar to SVM, which was proposed by 

Tipping in 2001 [20]. RVM model is much sparser and require less training samples compared to 

SVM. Therefore, RVM is much more suitable to indentify the fault types based on the small 

samples. In recent years, RVM has been applied to the mechanical fault diagnostic research 

[21, 22], but it has not been gotten enough attention. 

In this paper, a novel method based on RVM and KPCA is proposed to diagnose rolling bearing 

fault and obtain a higher fault diagnostic rate. The wavelet packet energy of rolling bearing 

vibration signal forms the feature vector utilizing ‘db’ wavelet packet. The dimension of feature 

vector is reduced to 2-dimensional under the standard that the cumulative variance is greater than 

95 % by KPCA, which is used for classification. The experiment results demonstrate the 

effectiveness of the proposed method. 

The rest of the paper is organized as follows. Section 2 gives the background knowledge of 

feature extraction. Section 3 provides a brief introduction of the kernel functions and discusses the 

selection of parameters. Section 4 reviews the algorithm of the RVM for classification and 

compares RVM with SVM. Section 5 verifies the method with artificial data set. Section 6 shows 

the application of the method in rolling bearing diagnosis and experimental results. The 

performance of the proposed method is also compared with other diagnostic methods. Finally, the 

conclusions and discussion follow in Section 7. 

2. Feature extraction 

The wavelet packet energy (WPE) is a very useful feature for signal analysis [2]. The 𝑖th 

decomposition level and the 𝑗th frequency band wavelet packet energy can be written as: 

𝐸𝑖,𝑗 = ∫ |𝑋𝑖,𝑗|
2𝑑𝑡 = ∑|𝐶𝑗,𝑘|

2

𝑛

𝑘=1

, (1) 

where 𝑋𝑖,𝑗 (𝑖 = 0,1,2, … , 𝑗 = 0,1,2, … ) is the 𝑖th decomposition level and the 𝑗th frequency band 

signal, 𝐶𝑗,𝑘 is the 𝑗th frequency band wavelet packet coefficient and 𝑛 is the number of coefficient. 

The feature vector can be constructed by the wavelet packet energy of the 𝑖th decomposition 

level: 
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𝐓 = [𝐸𝑖,0, 𝐸𝑖,1,⋅⋅⋅, 𝐸𝑖,2𝑖−1]. (2) 

It will bring inconvenience for the data analysis because 𝐸𝑖,𝑗 is usually a larger value when the 

signal energy is stronger. So, the feature vector 𝑇 can be normalized: 

𝐸 = ∑ 𝐸𝑖,𝑗

2𝑖−1

𝑗=0

, (3) 

𝐓′ =
[𝐸𝑖,0, 𝐸𝑖,1,⋅⋅⋅, 𝐸𝑖,2𝑖−1]

𝐸
. (4) 

Traditional principal component analysis (PCA) is a kind of linear transformation [23]. But, 

for some complicated cases in industrial environment, non-linear characteristics should be 

considered, such as the rotating machinery faults. PCA can't well reflect the nonlinear properties 

due to its linearity assumption. KPCA can efficiently compute principal components in 

high-dimensional feature spaces by the use of integral operator and nonlinear kernel functions 

[22]. Because the redundant fault features are easy to increase the classifier training time and 

reduce the class accuracy, it is essential to use KPCA to reduce the dimension of the feature vectors 

for decreasing the classifier training time and improving the class accuracy. 

The definitions and formulation presented here follow closely the ones described in [13]. The 

reader can peruse to the reference for further details. Given a data set composed of 𝑛 samples  

𝐗 = [𝑥1, 𝑥2,⋅⋅⋅, 𝑥𝑛], the key procedure of KPCA is computing the kernel matrix 𝐊 = {𝐾𝑖𝑗}𝑛×𝑛 

using kernel function: 

𝐾𝑖𝑗 = (𝜙(𝑥𝑖) · 𝜙(𝑥𝑗)) = 𝑘(𝑥𝑖 , 𝑥𝑗), (5) 

where 𝜙 is a nonlinear mapping function and 𝑥𝑖 , 𝑥𝑗 are samples in the original data. 𝑘(𝑥𝑖 , 𝑥𝑗) is 

kernel function which avoids the problem of solving nonlinear mapping. 

For any testing vector 𝑥 , the principal component scores 𝑡  in the feature space can be 

calculated as: 

𝑡𝑘(𝑥) =∑𝛼𝑖
𝑘

𝑛

𝑖=1

〈𝜙(𝑥𝑖) · 𝜙(𝑥𝑗)〉 =∑𝛼𝑖
𝑘

𝑛

𝑖=1

𝑘(𝑥𝑖 , 𝑥𝑗), (6) 

where 𝑘 = 1,2,⋅⋅⋅, 𝑝, 𝑝 is the number of nonlinear principal components that need to keep, 𝛼 is the 

normalized feature vector of matrix. 

3. Compared RVM with SVM 

The support vector machine (SVM) is widely used for fault recognition, however, it has some 

deficiencies [20, 24]: 

1. The sparse solution of SVM is limited, and the number of support vector is sensitive to the 

number of error boundary as well as grows linearly with the size of training samples. 

2. The output of SVM lacks the necessary information of probability, and it can not forecast 

the uncertainty in classification problems especially. 

3. The kernel function must satisfy the Mercer condition, in other words, it must be positive 

definite, continuous and symmetric. 

4. It is needed to estimate the trade-off parameter 𝐶. It will be a waste of data as well as 

computation if the number of training samples is larger. 

RVM can solve the above four deficiencies of the SVM effectively. RVM’s advantages rise 
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due to its ability to yield a decision function that is much sparser than SVM, which maintains the 

high accuracy and favorable generalization capabilities. This may significantly reduce the 

computational complexity and make it more suitable for online and real-time applications. The 

best advantage of RVM is able to take full advantage of the less training samples which gets 

similar classification accuracy to the SVM. Besides, RVM can generate a probabilistic output. 

For two-class classification, given a training data set composed of 𝑁  samples {𝐱𝑛, 𝐭𝑖}𝑖=0
𝑁 ,  

𝑡𝑛 ∈ {0,1}, where 𝑡 is training sample target. The output of RVM can be written as: 

𝑦(𝑥) = ∑𝜔𝑛

𝑁

𝑛=1

𝑘𝑛(𝑥), (1) 

where 𝜔 = (𝑤1, 𝑤2,⋅⋅⋅, 𝑤𝑁)
𝑇  is the weights vector, and 𝑘𝑛(𝑥) is the kernel function. In RVM, 

there is no necessity for Mercer kernels and no error/margin trade-off parameter. The classifier 

maps 𝑦(𝑥) to (0, 1) by applying the logistic sigmoid link function 𝜎(𝑦) = 1 (1 + 𝑒−𝑦)⁄ . The data 

are assumed to be independently generated, and obey the Bernoulli distribution, and then the 

likelihood of the observed dataset can be written as: 

𝑃(𝑡|𝜔) = ∏𝜎[𝑦(𝑥𝑖; 𝑤)]
𝑡𝑖

𝑁

𝑖=1

{1 − 𝜎[𝑦(𝑥𝑖; 𝑤)]}
1−𝑡𝑖 . (2) 

In order to improve the generalization ability of the model, RVM adopts a separable Gaussian 

prior probability distribution for each weight: 

𝑃(𝑤|𝛼)=∏𝑁(𝜔𝑖|0, 𝛼𝑖
−1)

𝑁

𝑖=0

, (3) 

where 𝛂 = (𝛼1, 𝛼2, . . . , 𝛼𝑁) is the hyper-parameters to control the strength of the weight 𝛚 that 

controls the degree of deviation from zero mean of each weight. 𝑁(⋅) is the normal distribution 

function. 

Based on likelihood distribution of sample set and prior probability distribution of weights, 

the posteriori probability distribution of model parameters 𝑝(𝑤, 𝛼|𝑡) can be calculated indirectly. 

Given a training data set 𝐗∗, the prediction distribution of the corresponding output 𝐭∗ can be 

written as: 

𝑃(𝑡∗|𝑡) = ∫ 𝑝(𝑡∗|𝑤, 𝛼)𝑝(𝑤, 𝛼|𝑡)𝑑𝑤𝑑𝛼. (4) 

Because the weight vector is difficult to use the general analytical method, it is needed to be 

calculated by Laplace approximation iteratively. In the iterative process, many 𝛼𝑖  tend to 

infinitesimal, so the corresponding weights 𝑤𝑖  can be approximated to zero and have been 

removed. Then a few non-zero weight vectors are remained so that the training of the RVM model 

is realized. 

For the full details of RVM and the fast maximization method, the reader can peruse [20, 24]. 

4. Kernel functions  

Two representative kernel functions can be chosen as follows: 

• Polynomial kernel, 𝐾(𝑥𝑖 , 𝑥𝑗) = (𝑥𝑖 , 𝑥𝑗 + 1)
𝑞
, where 𝑞 is a positive integer; 

• Radial basis kernel (RBF), 𝐾(𝑥𝑖 , 𝑥𝑗) = exp(−‖𝑥𝑖 − 𝑥𝑗‖/𝜎
2), where 𝜎2 is the width of the 

Gaussian kernel. 
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The parameters 𝑞 and 𝑐 are chosen a priori by the user. In general, the above kernel functions 

will give similar results if appropriate parameters are chosen. But appropriate parameters are 

difficult to be selected since we don’t know the nonlinear information of the process [22]. So, it 

is important to select the optimal parameters. In most cases, the radial basis function may present 

advantages due to its flexibility in choosing the parameter. The optimal parameter process of RBF 

is discussed in Section 6. 

5. Simulation experiment and comparison study 

In order to demonstrate the effectiveness and possible advantages of the proposed approach in 

this paper about dimensionality reduction and intelligent recognition in non-linear data, and 

illustrate the advantages of RVM compared to SVM, Iris-Fisher data set is utilized to demonstrate 

the properties and applications of the proposed method. Iris-Fisher data set is taken as the example 

of experimental analysis [25]. Iris-Fisher data set, composed of four characteristics, has three 

different plants data: Setosa, Virginica and Versicolor, with each plant having 50 samples. Setosa 

is linearity separable with the other two kinds samples but Virginica and Versicolor are nonlinear 

separable each other. Twenty Virginica samples and 20 Versicolor samples are selected randomly 

as the training samples, and remaining 30 Virginica samples and 30 Versicolor samples as the 

testing samples.  

Before the simulation experiment, all the data have been normalized between 0 and 1 by 

arc-tangent function: 

𝑦 = arctan𝑥 × 2 𝜋⁄ . (1) 

Figure 1 shows the distribution and distance in 2-dimensional space of Virginica data (as is 

shown with ‘*’) and Versicolor data (as is shown with ‘+’) KPCA, not the original 4-dimensional 

space [26, 27].  

 
Fig. 1. The kernel principal components of Virginica and Versicolor data 

One classification results between Virginica and Versicolor of tesing samples that have been 

reduced dimension by KPCA are seen in Fig. 2 and Fig. 3, where ‘RVs’ refers to relevance vectors 

of training samples, ‘SVs’ refers to support vectors of training samples and ‘Acc’ refers to the 

accuracy of testing. The RBF is used both in RVM and SVM. It is seen that both RVM and SVM 

achieve identical classification accuracy, i.e. 91.33 %. However, the number of RVs is fewer than 

SVs’s (5 to 26).  
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In addition, the number of relevance vectors/support vectors, the accuracy of recognition, and 

the training time are compared using SVM and RVM. The results are shown in Table 1. Note that 

in Table 1, ‘No.RV’, ‘No.SV’, ‘Acc.Tr’, ‘Acc.Te’ and ‘Time.Tr’ denote the average number of 

RVs of training samples, the average number of SVs of training samples, the average accuracy of 

training samples, the average accuracy of testing samples, and the average training time, 

respectively.  

  
Fig. 2. The testing results of the RVM model (Acc = 91.33 %) 

 
Fig. 3. The testing results of the SVM model (Acc = 91.33 %) 

Table 1. Comparison of classification performance between different methods 

Method 
Simulation experiment 

No.RV/No.SV Acc.Tr Acc.Te Time.Tr (s) 

RVM 2.67 97.37 % 93.18 % 0.121 

SVM 29.21 97.35 % 92.38 % 0.004 

RVM+KPCA 2.51 97.43 % 93.68 % 0.028 

From Table 1, it can be seen that the proposed approach has a little higher training accuracy, 

i.e., 97.43 %, which is higher than those of other methods, i.e., 97.35 % and 97.37 %. The other 

two methods have no dimension reduction on the data set, so the classification accuracy compared 

with the method proposed in this paper is relatively lower. The methods based on RVM needs 

much less relevance vectors than the one based on SVM. That is, the nonlinear relation between 
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Virginica and Versicolor data is reduced by KPCA. So, the dimension-reduced data are relatively 

easy to be classed. Meanwhile, the testing accuracy of RVM is higher than SVM’s. Nevertheless, 

the training time of RVM is longer than SVM’s because RVM needs continuous iteration to 

construct the decision function in the process of sample training. 

6. Example analysis and disccusion 

Experimental data come from the Case Western Reserve University Bearing Data Center 

Website, which were collected from an induction motor driven mechanical system that is tested 

under 3 Hp loads. The bearing of the experiment is 6205-2RS JEM SKF with the sampling 

frequency equals to 12000 Hz and the rotating speed of shaft equals to 1774 rpm. The signals are 

sampled from four types of rolling element bearings and each class of data corresponds to the 

following bearing conditions, respectively, (i) normal status; (ii) inner raceway fault; (iii) rolling 

element fault; (iv) outer raceway fault. The length of each sample was 2048, so each kind of rolling 

bearing fault samples were 59. Twenty samples are selected randomly from each kind of bearing 

fault types to be training samples (80), and the rest samples are used as testing samples. 

Vibration 

signal of 

rolling 

bearing

Wavelet 

packet 

energy

Feature Extraction

By Wavelet Packet 

Transform

Dimensionality 

Reduction By 

KPCA
2-Dimension

feature 

vector 

Training 

sample

Testing 

sample

RVM
Diagnostic 

model

Diagnostic

result 

Fig. 4. Block diagram of the proposed fault diagnosis strategy 

Figure 4 shows the block diagram of the proposed fault diagnosis strategy. The details of these 

steps are presented in the subsequent sections. 

Firstly, the wavelet packet energy of all samples is extracted by ‘db16’ wavelet packet. The 

decomposition level 𝑖 = 3 and the eight decomposition frequency bands are achieved. Therefore, 

the dimension of the feature matrix is 236×8. Figure 1 displays the normalized wavelet packet 

energy of each rolling bearing type. 

As shown in Fig. 5, it is obviously different among the first, second, fourth, seventh and eighth 

frequency band. It denotes that the wavelet packet energy of rolling bearings can be considered as 

the feature for classification. 

Secondly, according to the discussion of Section 4, the RBF is utilized as the kernel function 

of KPCA. In accordance with the standard of the selection of kernel principal component 

mentioned in Section 1, the fault feature vector is processed with the application of KPCA. Two 

principal components of the fault feature are selected and form the new feature vector as input of 

the classifier, and the new feature matrix is 236×2. As shown in Fig. 6, four conditions of rolling 

bearing are distinguished intuitively. 

Then, it is needed to realize the intelligent classification of rolling bearing failure using RVM. 

However, RVM and SVM are also proposed for two types of problems, which can not be directly 

applied to multi-class classification. One-against-one (OAO) and one-against-all (OAA) are the 

most commonly used methods. Suppose the samples have 𝑐  classes, the OAA method needs  
𝑐 − 1 classifiers that the samples feature space is divided into 𝑐 regions. In general, the OAA 
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strategy does not exactly get 𝑐 regions, but some additional regions, and the classification will be 

ambiguous in these regions. As shown in Fig. 7(a), the shaded part is the indecision regions. The 

OAO strategy needs to construct a classifier for every two classes of multi-classes. For 𝑐 classes, 

𝑐(𝑐 − 1)/2 binary classifiers will be constructed. Obviously, this approach needs to construct 

much more binary classifiers than OAA. However, the strategy does not involve a problem that 

samples between two classes are uneven, and the indecision region is smaller than OAA as shown 

in Fig. 7(b). OAO usually performs better than OAA in classification accuracy [28]. Therefore, 

OAO is used here to recognize fault and six two-class classifiers are constructed. 

 
Fig. 5. Wavelet packet energy spectrum of different rolling bearing conditions 

 
Fig. 6. The kernel principal components of the fault samples 
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Fig. 7. The possible ambiguity regions with several two-class classifiers realize multi-classes 

The RBF is also utilized as the kernel function of RVM. In order to improve the classification 

accuracy, it is needed to select proper kernel parameter 𝜎 of RVM. The grid-search technique and 

5-fold cross-validation are used in this study to select the optimal parameter values of kernel 

functions. Five-fold cross-validation means: The samples are randomly divided into 5 subsets of 

similar size, which a subset is selected as the testing set in turn, and the remaining four subsets are 

training set. After 5 training-testing processes are finished, the average of five testing accuracy 

(the ratio of the total number of correctly classified sample and testing sample) is seen as the 

average classification accuracy rate, i.e., the average classification accuracy: 

𝐴𝑎𝑣𝑒 =
∑ 𝐴𝑖
𝑛
𝑖=1

𝑛
, (1) 

where 𝐴𝑖 is the accuracy of one testing process, 𝑖 = 1,2, … , 𝑛, 𝑛 is the number of testing sample. 

Here 𝑛 = 5. The process of optimized process of kernel parameter 𝜎 is shown in Figure 9. 

The initial value σ

Five-fold cross-validation

The average classification accuracy rate

Termination conditions

The RVM model of the optimal parameter σ 

Test samples

No

Yes

Grid-search

 
Fig. 8. The flow chart of the parameter optimization of training RVM 

The classification results between ball fault and inner raceway fault of testing samples are seen 

in Fig. 9 and Fig. 10, where RVs refers to relevance vectors and SVs refers to support vectors. It 
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is seen that both RVM and SVM achieve classification accuracy in 100 %. However, the number 

of RVs is fewer than SVs’s (5 to 14). 

Some other methods are also used to diagnose rolling bearings faults with the same experiment 

data preparation to illustrate the advantage and disadvantage of the proposed method 

comprehensively. The diagnostic results using different methods are shown in Table 1. The 

meaning of the title in Table 2 is the same as Table 1, and ‘Time.Te’ denotes the average testing 

time. 

Table 2. Comparison of performance between different methods of rolling bearing fault 

Method 
Experimental results 

No.RV/ No.SV Acc.Tr Acc.Te Time.Tr (s) Time.Te (s) 

Method in this paper 5.71 100 % 100 % 0.665 0.016 

SVM+KPCA 31.27 100 % 100 % 0.005 0.348 

RVM+PCA 7.13 98.69 % 98.47 % 1.356 0.183 

  
Fig. 9. The diagnosis result of testing samples using SVM 

 
Fig. 10. The diagnosis result of testing samples using RVM 
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As listed in Table 2, different methods can achieve high and comparable classification 

accuracy. Specifically, the testing accuracy of the proposed method is 100 % and a little higher 

than the one combing RVM and PCA. The methods both can achieve the high diagnostic rate 

(100 %) based on SVM and RVM because the wavelet packet energy feature is linearly separable 

data after KPCA processed (Fig. 7). However, the average number of RVs is much less than the 

ones of SVs, i.e., 5.71 to 31.27. Theoretically, less relevance vectors lead to less computational 

time because the decision function of RVM is much simpler. Therefore, the proposed method has 

a faster testing time because of the simpler decision function. The fewer RVs imply a significant 

reduction in computational complexity of the decision classifier. Consequently, RVM is much 

more suitable in real application. The results denote that RVM not only has good generalization 

but also high classification accuracy. Although the proposed method needs more training time 

than other methods, i.e., 0.665 s, it does not affect the application in machine fault diagnosis. In 

engineering practice, the fault sample is relatively lack. Therefore, training time will not be too 

long in practical application. 

In order to further illustrate the effectiveness of the proposed method in the recognition 

accuracy, it is also compared with other methods of rolling bearing fault diagnosis that have been 

proposed in the papers. Table 3 shows the different diagnosis method contains different processing 

technology, and the experimental data of bearing is the same. As can be seen from the table, the 

proposed method in this paper can obtain the highest diagnosis accuracy. In [29], the fault feature 

are mixed feature including WPE, wavelet package coefficients (WPC) and some statistical 

characteristics, while only WPE is used as the fault feature in this study and achieves a better 

result. In theory, the fewer features can reduce the complexity of the calculation. There is no 

dimension reduction of high-dimensional features in [30], and the classification ability of neural 

network is relatively lower, so its fault diagnosis rate is lower than other methods. 

Table 3. The diagnostic accuracy between different diagnostic methods of rolling bearing fault 

Method Fault feature Feature extraction/selection Classifier Accuracy 

The propoesd method WPE KPCA RVM 100 % 

Ref. [29] Mixed feature The distance evaluation SWM 99 % 

Ref. [30] WPC None ANN 98.3 % 

7. Conclusions and discussion 

This paper presents an integrated KPCA and RVM to realize intelligent fault diagnosis of 

rolling bearing using the wavelet packet energy coefficients as features, especially the problem of 

limited samples. To improve the performance of intelligent fault diagnosis, KPCA is utilized 

before classification as a pre-processing to reduce the dimension of feature. In this way, not only 

are the dimension of feature and the computational complexity reduced, but also the classification 

accuracy of RVM is improved, which makes the application of RVM more widely. The main 

advantages of this method are: (1) KPCA can reduce dimension effectively of non-liner and 

high-dimension data; (2) the samples are difficult to be acquired in real industrial environment, so 

RVM is much more suitable for fault diagnosis because it is much sparser than SVM. The study 

shows the proposed method is reliable and has the potential for use in rolling bearings fault 

diagnosis. 

In industrial environments, because of the complexity of the rotating machine and other large 

equipment on the structure, it is rather common that several simultaneous faults evolve in a rolling 

bearing, which has brought great difficulties to diagnosis. When the simultaneous faults happen, 

the different and mixed fault characteristics present a nonlinear coupling relations, not a simple 

linear superposition relations. It is difficult to use mathematical model to describe them accurately. 

This paper only discusses the fault diagnosis method of single fault because we lack the sample 

data of simultaneous faults. We are planning to acquire the simultaneous faults data by fault 

simulation in the future. The future research direction is to examine the possibility of applying the 
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method proposed here to diagnoses the simultaneous faults of rolling bearing. The simultaneous 

fault, such as rolling element and inner raceway fault, can be considered as one fault style and 

wavelet packet energy also can be the fault feature. We will also study other feature extraction 

technologys which reflect the fault characteristics of the differences effectively. The KPCA and 

RVM technology are effective on dimensional reduction and intelligent classification. 

Furthermore, the core problem is how to reduce the coupling between the simultaneous fault and 

the single fault. It is likely that the simultaneous fault problem will be overcome by the proposed 

method in the future.  
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