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*e extraction of the vibration impulse signal plays a crucial role in the fault diagnosis of rolling element bearing. However, the
detection of weak fault signals generally suffers the strong background noise. To solve this problem, a new adaptive multiscale
enhanced combination gradient morphological filter (MECGMF) is proposed for the fault diagnosis of rolling element bearing. In
this method, according to the filtering ability of four basic morphological filter operators, an enhanced combination gradient
morphological operation (ECGMF) is first proposed.*is design enhances the ability ofMECGMF to extract impulse signals from
strong background noise. And accordingly, a new adaptive selection strategy named kurtosis fault feature ratio (KFFR) is
proposed to select an optimal structuring element (SE) scale. Subsequently, the optimal SE scale is the largest measure of
multiscale morphological filtering for extracting bearing fault information. In the meanwhile, the effectiveness of the proposed
method is verified by simulation and experiment. Finally, the experimental results demonstrate that MECGMF can effectively
restrain the noise interference and extract fault characteristic signals of rolling element bearing from strong background noise.
Moreover, comparative tests show that the proposed method is more effective in detecting wind turbine bearing failures.

1. Introduction

Rolling bearings are widely used as important components
of mechanical equipment, such as aerospace, automotive,
wind power, and some large mechanical equipment [1].
*eir running state is directly related to the healthy running
state of the mechanical system. *erefore, it is especially
important for early fault identification of bearings.When the
bearing fails locally, nonlinear and nonstationary shock
signals are usually generated [2]. However, these fault signals
are usually submerged in strong background noise. *ere-
fore, how to effectively extract fault information from strong
background noise becomes crucial.

In recent years, short-time Fourier transform (STFT) [3],
stochastic resonance (SR) [4], wavelet transform (WT) [5],
and empirical mode decomposition (EMD) [6] have been
widely used to deal with nonlinear and nonstationary signals
of faulty bearing. However, these methods usually have their
own limitations. For instance, the time and frequency

resolution of the window function of STFT cannot be op-
timal at the same time. *e system parameters of SR are not
easy to be determined. WT filtering requires manual se-
lection of wavelet bases, which is difficult to perform
adaptively. EMD is affected by boundary effects and mode
mixing.

Different from the aforementioned time-frequency
processing method, the morphological filtering (MF) algo-
rithm is a filtering method based on mathematical mor-
phology [7]. Initially, Matheron and Serra applied
morphological filtering for image processing [8]. At present,
it is widely used in mechanical vibration signal processing
[9]. By modifying the geometry of the time-domain signal, it
can preserve the fault characteristics of the signal, and it can
also effectively remove the noise signal. It is an effective
nonlinear signal filtering processing method [10]. *e
morphological filtering theory mainly includes the selection
of SE and morphological operators. For SE, it consists
mainly of three parts: length, height, and shape. Some
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scholars have already researched [11, 12] the height and
shape of SE have less effect on the filtering results. *erefore,
this paper will further study the performance of morpho-
logical filtering from the two aspects of the length of SE and
the morphology operator.

In the signal processing process, morphological filtering
mainly includes four basic operators: erosion, dilation,
opening, and closing operators [7]. Erosion operator can
reduce the signal peak and widen the signal valley. Closing
operator can suppress the signal negative impulse. In con-
trast, dilation and opening operators are able to extract
negative peak suppression positive peaks. Based on the
aforementioned four basic operators, some advanced cas-
cading and combining operations can be implemented. For
example, Hu et al. [13] applied the morphological gradient
(MG) operator to bearing fault diagnosis successfully. Also,
Li et al. [14] used MG to propose weight multiscale mor-
phological filtering. Raj and Murali [15] used the MG op-
erator to extract the bearing fault characteristics. Osman and
Wang [16] proposed a new morphological Hilbert–Huang
(MH) technique to detect fault characteristics of bearings.
*en, Wang et al. [17] used the combination morphological
filter operator (CMF) to eliminate the high-frequency noise.
However, these morphological operators only used the
opening and closing characteristics which generally led to
the different output bias. Aijun et al. [18] proposed a
combined Top-Hat (CTH) morphological filter operator to
extract the impulse signal of the bearing. Li et al. [19]
enumerated and analyzed the characteristics of various
morphological filter operators and proposed a new en-
hanced operation (MGPO). Based on the aforementioned
research studies, in order to further enhance the ability of
morphological operators, this paper proposed a new mor-
phological operator named enhanced combination gradient
morphological filter (ECGMF).

*erefore, the optimal scale selection of SE is critical to
the performance of the filtering performance. *e shorter its
length, the more obvious the fault feature information ex-
traction effect, but the noise suppression effect is not good.
On the contrary, the longer its length, the more obvious the
noise suppression effect but affects the extraction of fault
characteristic information [20]. At present, there are a large
number of scholars who study the adaptive selection method
of structural element length. Some scholars use 0.6 times the
length of SE as the empirically optimal length, but this is not
accurate enough. Deng et al. [21] used envelope spectrum
sparsity (IESS) to select the optimal scale of SE. Although his
method can effectively extract the impulse characteristic
signal, he ignores the details of the signal. Wu et al. [22]
selected the optimal scale of SE based on the kurtosis cri-
terion. Kurtosis has been proven to be effective at extracting
the impulsive feature, but it is also vulnerable to be interfered
[23]. Miao et al. [24] proposed a new fault detection standard
named KR, which is proved as a comprehensive index for
detecting bearing fault characteristics. *is paper selects the
product of the kurtosis value of the frequency domain and Rf

as a measure. *erefore, a new vector factor (KFFR) is
applied to select the optimal scale of MECGMF.

*e rest of this paper is organized as follows: *e new
morphological filter method (i.e., MECGMF) with KFFR is
proposed in Section 2. *e specific scheme of the proposed
method for bearing fault diagnosis is shown in Section 3. In
Section 4, the proposed method is validated on the simu-
lation signals. Section 5 presents experimental verification of
the proposed method. Finally, the conclusions are drawn in
Section 6.

2. Basic Theory of Mathematical Morphology

2.1.Morphological Filter. Supposing the original input signal
f(n) is a discrete function defined in F � (0, 1, . . . , N − 1)
and the SE g(m) is also the discrete function defined in G �
(0, 1, . . . ,M − 1) (N≥M), respectively, the four basic op-
erators (i.e., dilation, erosion, opening, and closing opera-
tors) can be defined as follows:

Dilation:

(f⊕g)(n) � max[f(n − m) + g(m)]. (1)

Erosion:

(fΘg)(n) � min[f(n +m) − g(m)]. (2)

Opening:

(f ∘g)(n) �(fΘg⊕g)(n). (3)

Closing:

(f · g)(n) �(f⊕gΘg)(n), (4)

where ⊕ denotes the dilation operator, Θ denotes the
erosion operator, ∘ stands for the opening operator, and ·
stands for the closing operator. Besides, several main
morphological filters [13] are introduced as follows:

Morphological gradient (MG):

MG(f(n)) �(f⊕g)(n) − (fΘg)(n), (5)

Difference filter (DIF):

DIF(f(n)) �(f · g)(n) − (f ∘g)(n). (6)

*e opening-closing FOC and closing-opening FCO filters
are defined as follows:

FOC(f(n)) �(f ∘g · g)(n),
FCO(f(n)) �(f · g ∘g)(n).

(7)

A combination morphological filter with FOC and FCO
(CMF) is defined as

y(n) �
FCO(f(n)) + FOC(f(n))

2
. (8)

FCO and FOC gradient operation (GCO&OC) [23]:

FCO&OC(f(n)) �(f · g ∘g)(n) − (f ∘g · g)(n). (9)

Average combination difference morphological filters
(ACDIF) [20]:
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ACDIF(n) �
(f · g⊕g)(n) +(f⊕g · g)(n) − 2(fΘg ∘g)(n)

2
.

(10)
An enhancedmorphology gradient operator (MGPO) [19]:

MGPO(n) � GC&O(n) · GCO&OC(n)

�[(f · g)(n) − (f ∘g)(n)]
· [(f · g ∘g)(n) − ((f ∘g · g))(n)].

(11)

2.2. Enhanced Combination Gradient Morphological Filter.
Dilation operator increases the valley of the signal and
extends the peak, and erosion operator reduces the peak
value of the signal and widens the valley. Opening operator
suppresses peaks in the signal, removing glitches and iso-
lated points on the upper edge of the signal. On the contrary,
closing operator suppresses the valley in the signal, re-
moving the glitch and isolated points of the lower edge of the
signal. *erefore, according to the characteristics of the
aforementioned operators, they are able to implement two
functions for processing signals. One category can reduce
negative impulse signals, and the other can reduce positive
impulse signals [20].

Firstly, the cascades of dilation and closing are defined as
follows:

FDC(f(n)) �(f⊕g · g)(n),
FCD(f(n)) �(f · g⊕g)(n).

(12)

Secondly, the cascades of erosion and opening are de-
fined as follows:

FEO(f(n)) �(fΘg ∘g)(n),
FOE(f(n)) �(f ∘gΘg)(n).

(13)

FDC and FCD have been enhanced in suppressing the
negative impulse and extracting the positive impulse of the
signal. In contrast, FEO and FOE have been enhanced in
suppressing the positive impulse and extracting the negative
impulse of the signal. *erefore, the four new difference
operators are defined as follows:

FCD− OE(f(n)) �(f · g⊕g)(n) − (f ∘gΘg)(n),
FCD− EO(f(n)) �(f · g⊕g)(n) − (fΘg ∘g)(n),
FDC− OE(f(n)) �(f⊕g · g)(n) − (f ∘gΘg)(n),
FDC− EO(f(n)) �(f⊕g · g)(n) − (fΘg ∘g)(n).

(14)

*e morphological operator introduced in Section 2.1, Lv
et al. [20] combined the characteristics of four basic operators
to propose an average combined difference operator (i.e.,
ACDIF), and he proved that the filtering effect of FCD-EO and
FDC-EO is better than FCD-OE and FDC-OE, which improves the
extraction accuracy of fault signature signals. Li et al. [19]
proposed the MGPO operator by summarizing the charac-
teristics of operators; theMGPOoperator further enhances the
extraction capability of the morphological filtering fault sig-
nature by the product of two difference operators. *erefore,

to further enhance the ability to extract feature failures and
extract fault characteristics under stronger background noise,
this paper proposes a new enhanced combination gradient
morphological operator (i.e., ECGMF) based on the charac-
teristics of the two morphological operators:

ECGMF(n) � FCD− EO(n) · FDC− EO(n)

� [(f · g⊕g)(n) − (fΘg ∘g)(n)] · [(f⊕g · g)
· (n) − (fΘg ∘g)(n)].

(15)
A simulation signal x0� cos (60πt) + 1.5 cos (100πt) is

used to illustrate the composition of ECGMF. *e flowchart
of the ECGMF algorithm is shown in Figure 1.

2.3. Multiscale Morphological Filter. In order to make the
analysis signal more accurate, multiscale analysis is applied.
Let g(m) be a unit SE and ε (ε�1, 2, . . ., λ) be the scale. *e
SE applied at this scale can be defined as

εg(m) � g(m)⊕g(m)⊕ · · · ⊕g(m)􏽼√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√􏽽
λ− 1 times

.
(16)

Multiscale dilation and erosion can be defined as

(f⊕ εg)(n) � f⊕g⊕g⊕ · · · ⊕g(n)􏽼√√√√√√√√√􏽻􏽺√√√√√√√√√􏽽
λ− 1 times

,

(fΘεg)(n) � fΘgΘgΘ · · ·Θg(n)􏽼√√√√√√√√􏽻􏽺√√√√√√√√􏽽
λ− 1 times

.
(17)

*en, the opening and closing operations of signal f(n)
with SE λg are further defined as follows:

(f ∘ λg)(n) �((fΘλg)⊕ λg)(n),
(f · λg)(n) �((f⊕ λg)Θλg)(n).

(18)

Ultimately, the multiscale enhanced combination gradient
morphological filter (MECGMF) at scale ε can be expressed as

MECGMF f(n)λg􏼐 􏼑 � FCD− EO f(n)λg􏼐 􏼑 · FDC− EO f(n)λg􏼐 􏼑
�[(f · λg⊕ λg)(n) − (fΘλg ∘ λg)(n)]
· [(f⊕ λg · λg)(n) − (fΘλg ∘ λg)(n)].

(19)
To further verify the ability of the proposed operator to

extract fault frequencies at different scales, characteristic
frequency intensity coefficient (CFIC) was introduced [25]:

CCFI �
􏽐Mi�1AifC􏽐Nj�1Afj , (20)

where AifC represents the amplitude of the ith fault
frequency,Afj represents the amplitude of each j point, and
M and N represent the numbers of fault frequency and total
frequency spectrum, respectively. *e CFIC is used to
measure the performance of fault feature extraction. Here,
the value of M is 5 and N is 200.

Analyze the vibration signal of Figure 2(d) in Section 4.1
using the enhance combination gradient morphological
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filter (ECGMF) and other proposed methods in Section 2.1.
Figure 3 displays the CFIC of these methods. It can be found
that the optimal CFIC value of GCO&OC is 0.3124. Other four
morphological filter operators (i.e., CMF, ACDIF, DIF, and
MG) give better results than GCO&OC analysis. *e CFIC of
the ECGMF varies with the scale. When the scale is 2, the
maximum value is 0.4369.

When the scale is greater than 30, the performance of
ECGMF is not as good as MG, but for the same set of fault
signals, the smaller the scale, the more complete the fault

information of the signal reservation. And, ECGMF gets the
largest CFIC value at scale 2 compared to other operators.
*erefore, the filtering performance of ECGMF is superior
to other operators.

3. Proposed Adaptive Multiscale Enhanced
Combination Gradient Morphology Filter

3.1. Adaptive Selection Strategy of SE Scale. A suitable SE
scale plays a crucial role in the extraction of impulse signals
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Figure 1: Process diagram of ECGMF calculation.
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and the suppression of strong background noise. Most
scholars [25, 26] used the average of the filtered results at
each scale as the output:

y(n) �
1

λ
􏽘λ
ε�1

yε(n). (21)

In order to avoid all scales using the same weight results
[27], this paper proposes an adaptive multiscale enhanced
combination gradient morphological filter method
(MECGMF):

MECGMF(y(n)) � 􏽘λmax
λ�1

ωλ ×MECGMF f(n)λg􏼐 􏼑􏼐 􏼑,

ωλ �
eλ􏽐λmax
λ�1 eλ

, eλ � 􏽘N− 1
n�0

MECGMF f(n)λg􏼐 􏼑􏼌􏼌􏼌􏼌􏼌 􏼌􏼌􏼌􏼌􏼌,
(22)

where ωλ indicates the weight coefficient and eλ represents
the output of MECGMF at scale λ.

In addition to the MF operator, the choice of SE
structure parameters is critical to the performance of the
filter. In general, the shape and the height of SE have little
effect on the filtering result. To improve the efficiency of
calculation, this paper selected flat SE with zero height [27].
For a flat SE, as reported in [26], multiscale SEs are listed in
Table 1.

*e relationship between flat SE length and scale is
L� λ+ 2. *e maximum selection length of SE should be
fs/fo, where fs represents sampling frequency and fo rep-
resents fault frequency.
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Figure 2: (a) Impulsive signal y2(t), (b) harmonic signal y1(t), (c) Gaussian white noise δ(t), and (d) simulation signal y(t).
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Kurtosis value is particularly sensitive to vibration shock
signals and is particularly suitable for bearing surface
damage diagnostics [28]. Its formula is as follows:

K �
E(x − μ)4

σ4
, (23)

where x represents a discrete signal, μ represents an av-
erage value of x, and σ represents variance. Although
kurtosis is an effective means of detection, it is also vul-
nerable to interferences. To solve this problem, Li et al. [23]
proposed the frequency domain kurtosis. *e formula is as
follows:

K(y(f)) �
1/n􏽐ni�1 yi(f) − y(f)􏼐 􏼑4
1/n􏽐ni�1 yi(f) − y(f)􏼐 􏼑2􏼒 􏼓2. (24)

In order to improve the performance of morphological
filtering, Miao et al. [24] proposed another effective de-
tection method named Hilbert envelope spectrum fault
feature ratio Rf. It is defined as follows:

Rf �
S(f) + S(2f) + S(3f)

S
, (25)

where f represents the fault characteristic frequency and
S(f) represents the magnitude of the envelope spectrum at f.

Based on the advantages of the aforementioned two
indicators, this paper proposes a new comprehensive
measure called kurtosis fault feature ratio (KFFR). For a
signal y(f), KFFR is defined as follows:

KFFR � Kf × Rf. (26)

KFFR is used for the detection of impulse signals, and it
has strong anti-interference ability *erefore, KFFR is a
comprehensive index which can be used to catch impulse
features of the vibration signals. *e larger the value of
KFFR, the better filtering effect of the signal. *erefore, the
largest KFFR is used to select the optimal SE scale of
MECGMF.

3.2. Adaptive Multiscale Enhanced Combination Gradient
Morphology Filter. *is paper proposes a multiscale adap-
tive enhancement combination gradient morphological fil-
tering method; the flowchart of this method for bearing fault
diagnosis is depicted in Figure 4. *e work steps are as
follows:

Step 1: firstly, the vibration signal of the bearing under
test is detected.

Step 2: then, calculating the scale range of MECGMF,
the minimum scale is 1 and the maximum scale is
fs/fo − 2.

Step 3: obtain the time-frequency domain analysis
results of MECGMF under different SE scales.

Step 4: calculate the kurtosis value of the frequency
domain and fault feature ratio (Rf ) at each scale.

Step 5: calculate the kurtosis fault feature ratio (KFFR)
results from step 4. *e larger the value of KFFR is, the

better the fault monitoring effect is and the stronger the
noise suppression capability is.

Step 6: choose the optimal scale based on the maximum
KFFR value and filtering the vibration signal from 1 to
the optimal scale λmax.

Step 7: calculate the weighting coefficient of the signal
at each scale based on step 6.

Step 8: obtain the final spectrum of the signal.

4. Simulation Study

4.1. Simulation Signal Analysis. To verify the effectiveness of
the proposed method, a set of simulated signals is estab-
lished. A periodic impulse vibration signal is generated
when a local fault occurs in the rolling element bearing;
however, these impulse signals are usually subject to in-
terference; these interference components mainly include
harmonic interference and white Gaussian noise. According
to Xu et al. [29] and Zhang et al. [30], the failure model of the
rolling bearing was established:

y(t) � y1(t) + y2(t) + δ(t),

y1(t) � 1.2 sin 2f1πt( 􏼁 + 1.1 cos 2f2πt( 􏼁,
y2(t) � 5 exp − 100t1( 􏼁sin(400πt), t1 � mod t,

1

fo
􏼠 􏼡,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(27)

where harmonic frequency f1 and f2 are defined as 30Hz and
40Hz, respectively. *e Gauss white noise signal δ(t) with
− 5 db SNR is added to the original signal. *e fault fre-
quency fo� 16Hz. *e sampling frequency fs� 1024Hz, and
the sampling number N� 1024.

*e simulation signal y(t), impulsive signal y2(t),
harmonic signal y1(t), and Gaussian white noise δ(t) are
shown in Figure 2. In Figure 2(d), the periodic impulse
signal has been heavily flooded in the background noises.
After analyzing y(t), the FFT spectrum and envelope
spectrum of y(t) are shown in Figure 5. From Figure 5(a),
interference frequencies f1 and f2 can be clearly seen. From
Figure 5(b), due to the interference of background noise and
harmonic signals, it is difficult to find the fault frequency fo.

4.2. Analysis Result of MECGMF. *e vibration signal of
Figure 2(d) is processed by the method proposed in this
paper. Firstly, the KFFR values at various scales are calcu-
lated, and the calculation results are shown in Figure 6. In

Table 1: Multiscale structuring elements.

Scale Double-dot structuring element Flat structuring element

1 1, 0, 1{ } 0, 0, 0{ }

2 1, 0, 0, 1{ } 0, 0, 0, 0{ }

3 1, 0, 0, 0, 1{ } 0, 0, 0, 0, 0{ }

4 1, 0, 0, 0, 0, 1{ } 0, 0, 0, 0, 0, 0{ }

n . . . . . .

6 Shock and Vibration



Figure 6, when the scale λ� 4, KFFR takes the maximum
value. Hence, the SE scale (i.e., λ� 4) is selected.

*e results of the analysis of the signal y(t) by the
proposed method are shown in Figure 7. From Figure 7(b),
the periodic impulsive characteristic frequencies (e.g., 16, 32,
48, 64, 80, and 96Hz) are extracted and the interfering
harmonic frequencies (30 and 40Hz) are suppressed, the
fault signature frequency can be clearly seen, and the
background noise is effectively suppressed. *e proposed
method shows the accuracy of the extraction of bearing fault
features.

For comparison verification, the same signal y(t) is
processed by the traditional multiscale morphology filter
(MMF) [25, 26]. *e average weight of the scale is expressed
as 1/31. *e analysis and processing results are shown in
Figure 8. In Figure 8(b), fault frequencies 16Hz and 32Hz
can be detected; other high-order fault frequencies (e.g., 64,
80, and 96Hz) are not obvious. What is more, the sup-
pression of noise interference is not good, and harmonic
interference (e.g., 10Hz� 40–30Hz) still exists. Comparing
Figure 7(b) and Figure 8(b), the proposed method is more
effective in dealing with bearing fault frequencies.
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. . .

Optimal scale λ

Weight

n × fc

Optimal MECGMF
demodulation spectrum

Y(f)
Characteristic

frequency

Original
signal

y(t)

Scale 1 Scale λScale 2 Scale 1 Scale 2. . .

. . .

. . .

MECGMF time-scale analysis x(t, λ)

Fourier transform for
each scale 

x(f, λ)

�e product of frequency 
domain kurtosis and fault

feature ratio
K(X(f, λ)) × Rf

Optimal scale selection 
based on maximal KFFR

Optimal scale 

Figure 4: Flowchart of the proposed method for bearing defect detection.
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As mentioned earlier, Yan’s method [27] is proved to be
an effective fault detection method. *erefore, in order to
further verify the accuracy of the method, it is compared
with his method. In his method, flat SE is selected; the
optimal scale of MCMFH is chosen by the feature energy
factor (FEF) criterion; the relationship between SE scale and
FEF is shown in Figure 9. From Figure 9, the maximum scale
is 2.

*e filtered result after processing is shown in Figure 10.
In Figure 10(b), noise interference is large and high-order
fault frequencies (e.g., 64, 80, and 96Hz) are submerged in
background noise. Comparing Figure 7(b) and Figure 10(b),
the method proposed in this paper is more effective in fault
feature extraction. Some quantitative indexes [11], for in-
stance, kurtosis and energy ratio (ER) (i.e., the ratio of the
fault frequency to the total spectrum) are calculated to
evaluate the filtering ability of MECGMF.

Table 2 shows kurtosis and ERs (frequency band 0–
200Hz) of four methods on the simulation signal y(t). After
MECGMF processed, the kurtosis is 9.28 and the ER of the
filtered signal is 51.37%. After MCMFH processed, the
kurtosis is 3.65 and the ER of the filtered signal is 31.48%.
After traditional MMF processed, the kurtosis is 2.56 and the

ER of the filtered signal is 25.11%.*e kurtosis is 3.12 and the
value of ER is 19.25% after envelope spectrum processed.
*e kurtosis after MCMFH processing is higher than the
traditional MMF method and envelope spectrum analysis
method. However, the MECGMF method proposed in this
paper obtains the maximum kurtosis value of 9.28. At the
same time, MECGMF obtains the largest ER value of 51.37%,
which is 19.89% higher than the MCMFH method, 26.26%
higher than the traditional MMFmethod, and 32.12% higher
than the envelope spectrum method. It indicates that
MECGMF extracts the signal fault characteristic frequency
better and suppresses the noise interference greatly. From
the aforementioned analysis results, MECGMF is superior to
the other three methods in extracting the characteristic
frequency and suppressing noise.

5. Experiment Validations

5.1. Case 1: Bearing with Inner Race Defect. In order to verify
the validity of MECGMF, the bearing fault data from Case
Western Reserve University (CWRU) [31] were firstly
adopted.*e experimental platform is shown in Figure 11; it
consists of three parts: a 2-hp motor, a torque transducer,
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Figure 6: KFFR values of filtering results with different scales.
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Figure 7: Impulsive extracting results of the proposed MECGMF: (a) waveform; (b) frequency spectrum.
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and a dynamometer. *e bearing model tested is 6205-2RS
SKF and the speed of the motor is 1797 rpm; the structural
parameters of the bearing are shown in Table 3. A 0.007mm
fault in diameter in the inner is generated using electro-
discharge machining. *e sampling frequency was 12000Hz

and sampling points are 2048, the theoretical calculation of
the fault frequency (fBPFI) of the inner race of the bearing is
162.4Hz, and the rotational frequency (fr) is 29.95Hz. *e
formula for the theoretical calculation of the fault frequency
(fBPFI) of the inner race of the bearing is as follows:
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Figure 8: Impulsive extracting results of traditional MMF: (a) waveform; (b) frequency spectrum.
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Figure 10: Impulsive extracting results of MCMFH: (a) waveform; (b) frequency spectrum.
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fBPFI � N · fr ·
1 +D/dm cos α

2
� 162.4Hz, (28)

where, N is the ball number, D is the ball diameter, dm is the
pitch diameter, and α is the contact angle.

*e time-domain image of the experimental test signal
and the processed frequency domain image are shown in
Figure 12. In Figure 12(b), fault characteristic frequency is
difficult to be found due to background noise interference.
*erefore, it is important to extract the fault characteristic
frequency of the bearing.

*e vibration signal of Figure 12(a) is processed by the
method proposed in this paper. Firstly, the KFFR values at
various scales are calculated, and the calculation results are
shown in Figure 13. In Figure 13, when the scale λ� 6, KFFR
takes the maximum value. Hence, the SE scale (i.e., λ� 6) is
selected. After applying the MECGMF method, the filtered
signal and the frequency spectrum of the inner race fault are
displayed in Figure 14.

*e traditional MMF method is applied to process the
experimental data of Figure 12(a). *e average weight of the
scale is expressed as 1/73. After applying the traditional
MMF method, the time-domain signal and the frequency
spectrum of the inner race fault are shown in Figure 15.

*e MCMFHmethod is also applied to process the same
vibration signal. And, the optimal scale of MCMFH is
chosen to be 12. After applying the MCMFH method, the
time-domain signal and the frequency spectrum of the inner
race fault are displayed in Figure 16.

In Figure 14(b), we can clearly identify the fault char-
acteristic frequency (i.e., 164.1Hz) and the coupling fre-
quency with the rotational frequency. In Figures 15(b) and
16(b), the fault characteristic frequency of the inner of the
bearing is not obvious.*e comparison results show that the
ability of the MECGMF to extract the fault characteristics is
stronger than the other two methods.

Table 4 shows kurtosis and ERs (frequency band 0–
600Hz) of four methods on the experimental signals. After

MECGMF processed, the kurtosis is 11.08 and the ER of the
filtered signal is 41.63%. After MCMFH processed, the
kurtosis is 6.75 and the ER of the filtered signal is 28.78%.
After traditional MMF processed, the kurtosis is 2.79 and the
ER of the filtered signal is 25.93%. *e kurtosis is 5.51 and
the value of ER is 21.61% after envelope spectrum processed.
*e MECGMF method proposed in this paper obtains the
maximum kurtosis. At the same time, MECGMF obtains the
largest ER value of 41.63%, which is 12.85% higher than the
MCMFH method, 15.7% higher than the traditional MMF
method, and 20.02% higher than the envelope spectrum
method. From the above data comparison results can show
that MECGMF extracts the signal fault characteristic fre-
quency better and suppresses the noise interference greatly.
From the aforementioned analysis results, MECGMF is
superior to the other three methods in extracting the fault
characteristic frequency and suppressing noise.

5.2. Case 2: Bearing with Outer Race Defect. In order to
further verify the correctness and engineering applicability
of the method proposed, wind turbines produced by the
company are used to make a test. *e wind turbine test
bench is shown in Figure 17.

In Figure 17, the experimental system mainly includes
wind power generator, data collector, electric control cab-
inet, acceleration sensor, and computer. Tested wind turbine
is installed on the bench.*e wind turbine model is a YJ93A
1.5MW doubly-fed asynchronous generator, and the rated
speed is 1509 rpm.*e data collector applied is RONDS, and
the type of acceleration is B&K Vibro AS-020. *e electric
control cabinet provides power for the driving wind tur-
bines, and the configuration of the computer is the same as
the simulation. *e acceleration sensor is mounted on the
bearing end cap. *e test bearing model is shown in Table 5.
*e sampling frequency is 16384Hz; the theoretical calcu-
lation of the fault frequency (fBPFO) of the outer race of the
bearing is 53.2Hz.

*e vibration signal of the bearing outer ring and its
spectrum diagram are shown in Figures 18(a) and 18(b),
respectively. In Figure 18(b), it is difficult to find the fault
characteristic frequency of the bearing outer ring.

*e method proposed in this paper (MECGMF) is ap-
plied to process the data in Figure 18(a). At first, the KFFR
values at various scales are calculated, and the calculation
results are shown in Figure 19. From Figure 19, the optimal
scale is 68. *en, the analysis result and the corresponding
spectrum are shown in Figure 20. From Figure 20(a), we can
see the periodic shock signal, and the impact characteristics
of the signal are enhanced; the filtering effect is obvious. In
Figure 20(b), wind turbines are subject to low-frequency
interference during operation, and fault features are easily
submerged in background noise. In the range of 0–100Hz,
the frequency components are more complicated. Since the
MECGMF method uses the product of two differential
morphological operators, it has an enhanced effect on fault
feature extraction, so it is sensitive to the fault impact signal,
and the fault frequency fBPFO of the bearing outer ring can be
clearly detected. In addition to 100Hz, the MECGMF

Table 2: Comparison results of the MECGMF, MCMFH, tradi-
tional MMF, and envelope spectrum.

Methods Kurtosis ER (%)

MECGMF 9.28 51.37
MCMFH 3.65 31.48
Traditional MMF 2.56 25.11
Envelope spectrum 3.12 19.25

Figure 11: Bearing experimental platform.
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Table 3: Structural parameters of the bearing.

Outer diameter
(mm)

Inside diameter
(mm)

*ickness
(mm)

Pitch diameter
(mm)

Ball diameter
(mm)

Ball
number

Contact angle (°)

52 25 15 39 8 9 0
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Figure 12: Waveform and amplitude spectrum of the inner race defect signal: (a) time-domain waveform; (b) amplitude spectrum.
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Figure 13: Case 1: KFFR values of filtering results with different scales.

0

2

4

6

8

A
m

p
li

tu
d

e

500 1000 1500 20000

Sample number

(a)

fBPFI – 2fr
2fBPFI – 2fr

fBPFI + 2fr

fBPFI

2fBPFI

3fBPFI

fBPFI – fr2fr

0.0

0.2

0.4

0.6

0.8

A
m

p
li

tu
d

e

100 200 300 400 500 6000

Frequency (Hz)

(b)

Figure 14: Case 1: waveform and spectrum of the MECGMF filtering result: (a) time-domain waveform; (b) amplitude spectrum.
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method has superior filtering performance, and harmonic
frequencies (2fBPFO, 3fBPFO, 4fBPFO, and 5fBPFO) can be
clearly detected. *erefore, the method proposed in this
paper can effectively detect the fault characteristics of wind
turbine bearings.

*e traditional MMF method is applied to process the
experimental data of Figure 18(a). *e weight of each scale is
1/120. Filter processing result of inner race is displayed in
Figure 21. From Figure 21(b), the fault frequency fBPFO of the
bearing and its harmonic frequency 3fBPFO can be detected,
and other harmonic frequencies are submerged in the noise
interference.

*e same experimental signal was processed by method
MCMFH. According to the FEF criterion, the optimal SE
scale of the MCMFH method is 110. After analyzing, filter
processing result of the outer ring of the bearing is shown in
Figure 22. In Figure 22(b), the fault signal of the bearing is
almost drowned in the background noise.

Comparing Figure 20(b) with Figures 21(b) and 22(b),
we can clearly see that the method proposed in this paper
(MECGMF) is more effective than the other two methods
in dealing with bearing failures. *e traditional MMF
method and the MCMFH method have no obvious effect
on strong background noise filtering. A large number of
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Figure 15: Case 1: waveform and spectrum of the traditional MMF filtering result: (a) time-domain waveform; (b) amplitude spectrum.
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Figure 16: Case 1: waveform and spectrum of the MCMFH filtering result: (a) time-domain waveform; (b) amplitude spectrum.

Table 4: Case 1: comparison results of the MECGMF, MCMFH, traditional MMF, and envelope spectrum.

Methods Kurtosis ER (%)

MECGMF 11.08 41.63
MCMFH 6.75 28.78
Traditional MMF 2.79 25.93
Envelope spectrum 5.51 21.61
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Figure 17: Wind turbine experimental platform.

Table 5: Structural parameters of the bearing.

Outer diameter
(mm)

Inside diameter
(mm)

*ickness
(mm)

Pitch diameter
(mm)

Ball diameter
(mm)

Ball
number

Contact angle (°)
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Figure 18: Waveform and amplitude spectrum of the outer race defect signal: (a) time-domain waveform; (b) amplitude spectrum.
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frequency interference components can be detected in the
frequency range of 100–500Hz. *is causes the harmonic
frequencies (2fBPFO, 3fBPFO, 4fBPFO, and 5fBPFO) of the fault
frequency to be contaminated and submerged in the

background noise. Wind turbine bearing faults are often
subject to severe low-frequency noise disturbances.
*erefore, MECGMF is effective in engineering
applicability.
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Figure 19: Case 2: KFFR values of filtering results with different scales.
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Figure 20: Case 2: waveform and spectrum of MECGMF filtering result: (a) time-domain waveform; (b) amplitude spectrum.
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Figure 21: Case 2: waveform and spectrum of traditional MMF filtering result: (a) time-domain waveform; (b) amplitude spectrum.
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6. Conclusions

In this paper, a new adaptive multiscale enhanced combina-
tion gradient morphological filter (MECGMF) is proposed for
rolling element bearing fault diagnosis. An enhanced com-
bination gradient morphological operation (ECGMF) is first
built according to the ability of extracting fault characteristic
information based on the two optimal combination difference
operators. *is method enhances noise rejection and the
ability to extract fault information from the background noise
of a stronger degree. A new comprehensive dimensionless
index (KFFR) is proposed to select the optimal scale of
MECGMF, which further strengthens the self-adaptive ability.
*e simulation and experimental results show that the
MECGMF is effective for bearing fault diagnosis. Comparative
experiments show that MECGMF gives better detection
ability, more effective in solving engineering issues.

Data Availability

*e vibration time-domain signal data of the inner ring of
the bearing come from Case Western Reserve University,
and the fault data of the bearing outer ring used to support
the findings of this study are available from the corre-
sponding author upon request.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

Acknowledgments

*is research was supported by the National Natural Science
Foundation of China (no. 51675350 and no. 51575361) and
the Doctoral Research Initial Fund of Liaoning Province
(grant no. 201601154).

References

[1] J. Zheng, “Rolling bearing fault diagnosis based on partially
ensemble empirical mode decomposition and variable pre-
dictive model-based class discrimination,” Archives of Civil
and Mechanical Engineering, vol. 16, no. 4, pp. 784–794, 2016.

[2] S. Zhang, Y. Wang, S. He, and Z. Jiang, “Bearing fault di-
agnosis based on variational mode decomposition and total
variation denoising,” Measurement Science and Technology,
vol. 27, no. 7, Article ID 075101, 2016.

[3] R. K. Vashisht and Q. Peng, “Crack detection in the rotor ball
bearing system using switching control strategy and short
time fourier transform,” Journal of Sound and Vibration,
vol. 432, pp. 502–529, 2018.

[4] P. Xia, H. Xu, M. Lei, and Z. Ma, “An improved stochastic
resonance method with arbitrary stable-state matching in
underdamped nonlinear systems with a periodic potential for
incipient bearing fault diagnosis,” Measurement Science and
Technology, vol. 29, no. 8, Article ID 085002, 2018.

[5] J. Chen, J. Pan, Z. Li, Y. Zi, and X. Chen, “Generator bearing
fault diagnosis for wind turbine via empirical wavelet
transform using measured vibration signals,” Renewable
Energy, vol. 89, pp. 80–92, 2016.

[6] J. Dybała and R. Zimroz, “Rolling bearing diagnosing method
based on empirical mode decomposition of machine vibration
signal,” Applied Acoustics, vol. 77, pp. 195–203, 2014.

[7] J. Serra, “Morphological filtering: an overview,” Signal Pro-
cessing, vol. 38, no. 1, pp. 3–11, 1994.

[8] J. Serra, “Image analysis and mathematical morphology,”
Academic Emergency Medicine, vol. 4, no. 2, pp. 184-185,
1983.

[9] S. Dong, L. Chen, B. Tang, X. Xu, Z. Gao, and J. Liu, “Rotating
machine fault diagnosis based on optimal morphological filter
and local tangent space alignment,” Shock and Vibration,
vol. 2015, Article ID 893504, 9 pages, 2015.

[10] C. Li and M. Liang, “Continuous-scale mathematical mor-
phology-based optimal scale band demodulation of impulsive
feature for bearing defect diagnosis,” Journal of Sound and
Vibration, vol. 331, no. 26, pp. 5864–5879, 2012.

[11] Y. Li, X. Liang, andM. J. Zuo, “A new strategy of using a time-
varying structure element for mathematical morphological
filtering,” Measurement, vol. 106, pp. 53–65, 2017.

[12] Z. Chen, N. Gao, W. Sun et al., “A signal based triangular
structuring element for mathematical morphological analysis
and its application in rolling element bearing fault diagnosis,”
Shock and Vibration, vol. 2014, Article ID 590875, 16 pages, 2014.

[13] Z. Hu, C. Wang, J. Zhu, X. Liu, and F. Kong, “Bearing fault
diagnosis based on an improved morphological filter,”
Measurement, vol. 80, pp. 163–178, 2016.

[14] B. Li, P.-L. Zhang, Z.-J. Wang, S.-S. Mi, and D.-S. Liu, “A
weighted multi-scale morphological gradient filter for rolling

–3

–2

–1

0

1

2

3
A

m
p

li
tu

d
e

0.2 0.4 0.6 0.8 1.00.0

Time (s)

(a)

0.00

0.05

0.10

A
m

p
li

tu
d

e

100 200 300 400 5000

Frequency (Hz)

fBPFO

(b)

Figure 22: Case 2: waveform and spectrum of MCMFH filtering result: (a) time-domain waveform; (b) amplitude spectrum.

Shock and Vibration 15



element bearing fault detection,” ISA Transactions, vol. 50,
no. 4, pp. 599–608, 2011.

[15] A. S. Raj and N. Murali, “Early classification of bearing faults
using morphological operators and fuzzy inference,” IEEE
Transactions on Industrial Electronics, vol. 60, no. 2,
pp. 567–574, 2013.

[16] S. Osman and W. Wang, “A morphological Hilbert-Huang
transform technique for bearing fault detection,” IEEE
Transactions on Instrumentation and Measurement, vol. 65,
no. 11, pp. 2646–2656, 2016.

[17] J. Wang, G. Xu, Q. Zhang, and L. Liang, “Application of
improved morphological filter to the extraction of impulsive
attenuation signals,” Mechanical Systems and Signal Pro-
cessing, vol. 23, no. 1, pp. 236–245, 2009.

[18] H. Aijun, L. Jianfeng, S. Shangfei, and X. Ling, “A novel
approach of impulsive signal extraction for early fault de-
tection of rolling element bearing,” Shock and Vibration,
vol. 2017, Article ID 9375491, 11 pages, 2017.

[19] Y. Li, M. J. Zuo, Y. Chen, and K. Feng, “An enhanced
morphology gradient product filter for bearing fault de-
tection,” Mechanical Systems and Signal Processing, vol. 109,
pp. 166–184, 2018.

[20] J. Lv and J. Yu, “Average combination difference morpho-
logical filters for fault feature extraction of bearing,” Me-
chanical Systems and Signal Processing, vol. 100, pp. 827–845,
2018.

[21] F. Deng, S. Yang, G. Tang, R. Hao, and M. Zhang, “Self
adaptive multi-scale morphology AVG-hat filter and its ap-
plication to fault feature extraction for wheel bearing,”
Measurement Science and Technology, vol. 28, no. 4, Article ID
045011, 2017.

[22] X. Wu, M. Yang, and E. Al, “Bearing fault diagnosis using
EEMD and improved morphological filtering method based
on kurtosis criterion,” Journal of Vibration and Shock, vol. 34,
no. 2, pp. 38–44, 2015.

[23] Y. Li, M. J. Zuo, J. Lin, and J. Liu, “Fault detection method for
railway wheel flat using an adaptive multiscale morphological
filter,” Mechanical Systems and Signal Processing, vol. 84,
pp. 642–658, 2017.

[24] Y. Miao, M. Zhao, J. Lin, and Y. Lei, “Application of an
improved maximum correlated kurtosis deconvolution
method for fault diagnosis of rolling element bearings,”
Mechanical Systems and Signal Processing, vol. 92, pp. 173–
195, 2017.

[25] B. Li, P.-L. Zhang, Z.-J. Wang, S.-S. Mi, and Y.-T. Zhang,
“Gear fault detection using multi-scale morphological filters,”
Measurement, vol. 44, no. 10, pp. 2078–2089, 2011.

[26] Q. Chen, Z. Chen, W. Sun, G. Yang, A. Palazoglu, and Z. Ren,
“A new structuring element for multi-scale morphology
analysis and its application in rolling element bearing fault
diagnosis,” Journal of Vibration and Control, vol. 21, no. 4,
pp. 765–789, 2013.

[27] X. Yan, M. Jia, W. Zhang, and L. Zhu, “Fault diagnosis of
rolling element bearing using a new optimal scale morphology
analysis method,” ISA Transactions, vol. 73, pp. 165–180, 2018.

[28] D. Goyal, B. S. Vanraj, and S. S. Dhami, “Condition moni-
toring parameters for fault diagnosis of fixed axis gearbox: a
review,” Archives of Computational Methods in Engineering,
vol. 24, no. 3, pp. 543–556, 2016.

[29] Y. Xu, K. Zhang, C. Ma, X. Li, and J. Zhang, “An improved
empirical wavelet transform and its applications in rolling
bearing fault diagnosis,” Applied Sciences, vol. 8, no. 12,
p. 2352, 2018.

[30] L. Zhang, J. Xu, J. Yang, and D. Yang, “Multiscale morphology
analysis and its application to fault diagnosis,” Mechanical
Systems and Signal Processing, vol. 22, no. 3, pp. 597–610,
2008.

[31] Case Western Reserve University Bearing Data Center Website
[EB/OL], 2011, http://csegroups.case.edu/bearingdatacenter/pages/
download-data-file.

16 Shock and Vibration

http://csegroups.case.edu/bearingdatacenter/pages/download-data-file
http://csegroups.case.edu/bearingdatacenter/pages/download-data-file


International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive  
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer 
Engineering

Journal of

Advances in

OptoElectronics

Hindawi

www.hindawi.com

Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com

 Journal of

Engineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi

www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi

www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and 
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in 

Multimedia

Submit your manuscripts at

www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

