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Abstract 
 
This paper proposes a novel hybrid algorithm for fault diagnosis of rotary kiln based on a binary ant colony (BACO) and support vec-

tor machine (SVM). The algorithm can find a subset selection which is attained through the elimination of the features that produce noise 
or are strictly correlated with other already selected features. The BACO algorithm can improve classification accuracy with an appropri-
ate feature subset and optimal parameters of SVM. The proposed algorithm is easily implemented and because of use of a simple filter in 
that, its computational complexity is very low. The performance of the proposed algorithm is evaluated through two real Rotary Cement 
kiln datasets. The results show that our algorithm outperforms existing algorithms.   
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1. Introduction 

The principal function of the condition monitoring is to 
check the operating condition of the system. Our work falls 
under the condition monitoring and diagnosis of industrial 
system which is an important field of engineering study (in 
our case is a Rotary Cement kiln, see Fig. 1).  

The diagnosis is made up of two parts which are detection 
and the diagnosis. The phase of detection makes it possible to 
determine the state of the system as being normal or abnormal. 
The phase of diagnosis consists in identifying the failing com-
ponents and to find the causes starting from a whole of symp-
toms observed. In substance, diagnosis is considered as a clas-
sification problem [1-3]. 

An industrial system is described by a vector of numeric or 
nominal features. Some of these features may be irrelevant or 
redundant. Avoiding irrelevant or redundant features is impor-
tant because they may have a negative effect on the accuracy 
of the classifier [1, 2]. In addition, by using fewer features we 
may reduce the cost of acquiring the data and improve the 
comprehensibility of the classification model (Fig. 2).  

Feature extraction and subset selection are some frequently 
used techniques in data pre-processing. Feature extraction is a 
process that extracts a set of new features from the original 
features through some functional mapping [4]. 

Subset selection is different from feature extraction in that 

no new features will be generated, but only a subset of original 
features is selected and feature space is reduced [5]. 
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Fig. 1. Rotary cement kiln. 

 

 
 
Fig. 2. Construction of the features subset. 
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The idea behind the selection approach is very simple and is 
shown in Fig. 3. Any method of selection of features consists 
of four essential points: 

A starting subset, which represents the subset of features, 
initially is used by a search procedure. This set can be empty, 
or contains all the features or a random subset. The search 
procedure is the essential element of any method of selection. 
It turns over as result the features subset which answers the 
quality standard better. This criterion is returned by an evalua-
tion function. This function determines the classification qual-
ity obtained by using a feature subset. A stopping criterion is 
used to finish the search procedure. This criterion depends to 
the evaluation function or with the configuration parameters 
which are defined by the user [6].   

We present in this paper a hybrid approach based on ant 
colony optimization (ACO) and support vector machine 
(SVM) for feature selection problems using datasets from the 
field of industrial diagnosis.  

This paper presents a novel approach for heuristic value 
calculation, which will reduce the set of available features. 
The rest of this paper is organized as follows. In section 2, 
different methods for feature selection problems are presented. 
An introduction on ACO applications in feature selection 
problems is discussed in Section 3. A brief introduction of 
SVM is presented in Section 4. In Sections 5 and 6, the pro-
posed algorithm is discussed, followed by a discussion on the 
experimental setup, datasets used and the results. 

 
2. Feature subset selection 

Feature selection (FS) is included in discrete optimization 
problems. The whole search space for optimization contains all 
possible features subsets, meaning that its size is 2n where n is 
the dimensionality (the features number). Usually FS algorithms 
involve heuristic or random search strategies in an attempt to 
avoid this prohibitive complexity. However, the optimality de-
gree of the final feature subset is often reduced [7-9]. 

Two broad categories of optimal feature subset selection 
have been proposed based on whether feature selection is per-
formed independently of the learning algorithm that constructs 
the classifier. They are the filter approach and the wrapper 
approach [10, 11]. The filter approach initially selects impor-
tant features and then the classifier is used for classification 
while the wrapper uses the intended learning algorithm itself 
to evaluate the features usefulness [12]. The two famous algo-
rithms of this category are sequential forward selection (SFS) 

and sequential backward selection (SBS) [6, 10]. In sequential 
forward selection, the features are sequentially added to an 
empty candidate set until the addition of further features does 
not decrease the criterion but in Sequential backward selection 
the features are sequentially removed from a full candidate set 
until the removal of further features increase the criterion. In 
our work, we use a hybrid wrapper/filter approach aiming to 
explore the qualities of both strategies and try to overcome 
some of their deficiencies [11]. 

The stopping criterion in Fig. 4 represents the dimension of 
the vector obtained by the algorithm where the quality stan-
dard does not evolve/move if we add another feature [13].  

Where V represent the feature subset and F(V) is the 
evaluation function. 

The first good use of ACO for feature selection seems to be 
reported in Ref. [13]. A. Al-Ani [13] proposes to use a hybrid 
evaluation measure that is able to estimate the overall per-
formance of subsets as well as the local features importance. 
A classification algorithm is used to estimate the subsets per-
formance. On the other hand, the local importance of a given 
feature is measured using the mutual information evaluation 
function. Vieira et al. [14] propose an algorithm for feature 
selection based on two cooperative ant colonies, which mini-
mizes two objectives: the features number and the classifica-
tion error. The first colony determines the features number 
(cardinality) and the second selects the features based on the 
cardinality given by the first colony. C.L. Huang [15] presents 
a hybrid ACO-based classifier model that combines ant col-
ony optimization (ACO) and support vector machines (SVM). 
In his work, an ant’s solution represents a combination of the 
feature subset and the classifier parameters, C and g, based on 
the radial basis function (RBF) kernel of the SVM classifier. 
The classification accuracy and the feature weights of the 
constructed SVM classifier are used to design the pheromone 
update strategy. Based on the pheromone table and measured 
relative feature importance, the transition probability is calcu-
lated to select a solution path for an ant. The major inconven-
ience with this method is the classifier parameters which are 
fixed during the program execution and they may have differ-
ent value in each solution.  

 
3. Ant colony optimization (ACO) 

Ant colony optimization (ACO) is based on the cooperative 
behavior of real ant colonies, which are able to find the short- 

 
 
Fig. 3. Subset selection method. 

 

 
 
Fig. 4. The choice of the dimension of vector V. 
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est path from their nest to a food source. ACO algorithms can 
be applied to any optimization problems that can be character-
ized as follows [16, 17]: 

A finite set of components C ={ c1, c2, …, cN} is given. 
A finite L set of possible connections/transitions among the 

elements of C is defined over a subset C’ of the Cartesian 
product C×C, L={CiCj}|(ci, cj) ∈ C’}, |L| ≤ N2c’. 

For each lCiCj ∈ L a connection cost function JCiCj ≡ 
J(lCiCj, t), possibly parametrized by some time measure t, is 
defined. 

A finite constraints set Ω ≡ Ω(C, L, t) is assigned over the 
elements of C and L. 

The states of the problem are defined in terms of sequences 
s = (ci, cj,… , ck, …) over the elements of C or of L. S’ is a sub-
set of S. The elements in S’ define the problem’s feasible states. 

A neighbourhood structure is assigned as follows: the state 
s2 is said to be a neighbor of s1 if s1 and s2 are in S and the state 
s2 can be reached from s1 in one logical step, that is, if c1 is the 
last component in the sequence determining the state s1, it 
must exists c2 ∈ C such that lC1C2 ∈ L and s2 ≡ 〈s1, c2〉. 

A solution Ψ is an element of S’ satisfying all the problem’s 
requirements. A solution is said multi-dimensional if it is de-
fined in terms of multiple distinct sequences over the C ele-
ments. 

A cost JΨ(L, t) is associated to each solution Ψ. JΨ(L, t) is a 
function of all the costs JCiCj of all the connections belonging 
to the solution. 

It is worth mentioning that ACO makes probabilistic deci-
sion in terms of the artificial pheromone trails and the local 
heuristic information. This allows ACO to explore larger 
number of solutions than greedy heuristics. Another character-
istic of the ACO algorithm is the pheromone trail evaporation, 
which is a process that leads to decreasing the pheromone trail 
intensity over time. Pheromone evaporation helps in avoiding 
rapid convergence of the algorithm towards a sub-optimal 
region [13, 16, 17].  

 
4. Support vector machines   

In our wrapper approach, we have used SVM as classifier. 
SVM is an attractive learning algorithm first introduced by 
Vapnik [18]. It has a competitive advantage compared to neu-
ral networks, and decision trees [19]. 

Given a data set S ={(x1, y1),…,(xi, yi),…,(xm, ym)}. Where xi 
∈ RN is features vector and yi ∈ {-1, +1} is a class label. The 
SVM goal is to find one of the forms  

 
( ) 0w x bψ + =  with ( ( ) ) 1i i iy w x bψ ξ+ ≥ −   (1) 

 
that separates the S training dataset into two classes (positive 
and negative) (Fig. 5). In general, S cannot be partitioned by a 
linear hyperplane. However S can be transformed into higher 
dimensional feature space for making it linearly separable. 

The mapping Ψ(x) need not be computed explicitly; instead, 
an inner product Kernel of the form 

( ) ( ) ( ), . .i j i jK x x x xψ ψ=   (2) 

 
To solve the optimal hyperplane problem, we can construct 

a Lagrangian and transforming to the dual. Then, we can 
equivalently maximize 
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For a test example z, we define the decision function as fol-

low: 
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where  

•  α is the Lagrange multiplier. 
•  b is the bias term.  
•  C is the punishment parameter. 
•  w is the weight vector.  
In the next section, we present our proposed SVM/Binary 

ACO algorithm [20], and explain how it is used for selecting 
an appropriate features subset. 

 
5. Proposed approach 

5.1 Description of the proposed approach 

This research proposes a new implementation of Binary 
ACO algorithm [20] applied to feature selection, where the 
best features number is determined automatically. In this ap-
proach, each ant searches the same routine, and pheromone is 
left on each edge. As an intelligent body, each ant just chooses 
one edge of the two in the first step and in the second step the  

 
 
Fig. 5. Two-class SVM used in linear classification. 
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ant selects one value of parameters C and γ as shown in Fig 6. 
C and γ are the two parameters for the RBF kernel [3]. 

The intelligent behavior of ant is very simple, and the inci-
dence matrix traversed by each ant needs only 2 × n + 2 steps, 
which to some extent solves the descriptive difficulty gener-
ated from long coding and the reduction of solution quality. 

 
5.2 Probabilistic rule 

Initially, the information quantity in each routine is ran-
domly generated. During the movement, ant k shifts its direc-
tion according to the pheromone values concentration FP and 
the heuristic value FH. The heuristic value FH is computed 
using the Fisher discriminant criterion for feature selection [21, 
22], which determines the importance of each feature, and it is 
described in more detail in Section 5.4. The probability that an 
ant k chooses the feature Xi is given by: 
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PC represents the probability that an ant k chooses the pa-

rameter C. It is given by: 
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and Pγ represents the probability that an ant k chooses the pa-
rameter γ. It is as follows: 
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5.3 Updating rule 

After all ants have completed their solutions, pheromone 

evaporation on all nodes is triggered, and then according to Eq. 
(7), pheromone concentration in the trails is updated. 

 
( )1FP FP FPρ← − + Δ   (9) 

 
where ρ ∈ ]0, 1[ is the pheromone evaporation and ΔFP is the 
pheromone deposited on the trails by the ant k that found the 
best solution for this tour: 
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where F(V) represents the best solution built since the begin-
ning of the execution and F(V’) represents the best solution 
built during the last tour. 

F  is the objective function of our optimization algorithm 
and V is the solution funded by the ant k. 

The optimal subset is selected according to classifier per-
formance and their length. 

The results of this wrapper approach will be compared to a 
filter approach. The filter approach uses ( )'F V  an evalua-
tion function. 'F  is calculated using two concepts: the vari-
ance in each class and the variance between classes. 
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where the variance matrix intra-class is calculated as follows: 
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whereas the variance matrix inter-classes is calculated as fol-
lows: 
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with: 

•  m : General gravity centre 
•  M : A classes number 
•  mc : gravity Centre of the class number C 
•  X cv : V th vector of the class number C 
•  NRc : A vectors number of the class number C 
•  NR : the total number of vectors. 
 

5.4 Heuristics 

The heuristic value is computed using the Fisher discrimi-
nant criterion for feature selection [22]. Considering a classifi-
cation problem with M possible classes, the Fisher discrimi-
nant criterion is described as follows: 

 
Fig. 6. The final net obtained by the BACO algorithm. 
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where: 

M represents the class’s number; 
mC(a) represent the gravity centre of the class number C by 

considering only the parameterα it is calculated as follows: 
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  with Xcv is the number v of the class number C. the value of 
NR equal to the vectors number of the class in question is the 
vector. 

( )2
rσ α  is the variance of the component α  of the vec-

tors of the class number C. 
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Algorithm 1 presents the description of the Binary ACO-

SVM feature selection algorithm. 
The time complexity of proposed algorithm is O(Im), where 

I is the iterations number, and m the ants number. This can be 
seen from Fig. 6. In the worst case, each ant selects all the 
features. As the objective function is evaluated after all ants 
have completed their solutions, this will result in m evalua-
tions. After I iterations, the objective function will be evalu-
ated Im times. 

 
6. Experimental results 

6.1 Test data 

The experimental results comparing the binary ACO algo-
rithm with genetic algorithm are provided for two industrial 
datasets of Rotary Cement kiln (RCK1 and RCK2) [1]. RCK1 
consists of 200 recordings which represent 4 classes. RCK2 
consists of 500 recordings which represent 2 classes (Table 1). 
Cement rotary kiln is the most essential element of a cement 
factory whose outcome is cement clinker. A rotary kiln is a 
cylinder with a length of around 70 meters and a diameter of 
around 5 meters in a factory with a producing capacity about 
1560 tons of clinker in a day. The kiln is rotated by a powerful 
electrical motor. The temperature in the hottest point in the 
kiln is up to 4500ºC. The typical clinker composition is CaO= 
65 ± 3%, SiO2= 21 ± 2%, Al2O3= 5 ± 1.5%, and FeO3 = 3 ± 
1% [23]. 

 
6.2 Parameters of the selection algorithm 

Like any other algorithm, before passing to the selection 
phase. Some parameters should be fixed. This problem repre-

sents one of the disadvantages of the bio-mimetic methods. 
Since the parameters values are related to the number of indi-
viduals and the data distribution on the representation area. 
The following table presents the parameters values of our 
algorithm. These parameters are fixed after the execution of 
several simulations by using as entered a restricted whole of 
data. The search range for parameter C is [23, 211] and the 
search range for parameter γ  is [2-12, 22]. The search ranges 
are divided into many discrete search points with discretiza-
tion interval lengths of 0.25 [15]. 

 
6.3 Heuristic factor FH 

Heuristic factor FH is taken into account that by the ants 
which have a behavior related to the probability PS. The ants 
which have a random behavior are used to discover new 
search space. The following figures represent the heuristic 
values factor FH by using RCK1 and RCK2 datasets. 

According to Fig. 8, we notice that the 41st feature has the 
greatest value of FH. Consequently it will be present in the 
final subset. 

Algorithm 1. Binary ACO/SVM feature selection algorithm. 
 

1 Initiate the pheromone of the net; 
2 Compute the ( )FH α  using (12); 
3 Ants search using (6), (7) & (8); 
4 Evaluate the solutions founded by the ant colony algorithm using 

SVM classifier, and reserve the optimal; 
5 Upgrade pheromone of the net by optimal solution using (9); 
6 Judge whether the stopping condition of the qualification is met, 

if qualified, ends; otherwise, Go to step 3; 
 

 
 
Fig. 7. SVM-Binary ACO feature selection algorithm. 

 



606 O. Kadri et al. / Journal of Mechanical Science and Technology 26 (2) (2012) 601~608 
 

 

6.4 Results 

We tested the performances of our algorithm by using the 
following classification error measure: 

 

1

11 ( max )
Ct

i
i

p M
N

=

= − ×∑
 

 (17) 

 
where p is the purity of a class, Ct is the class number, M is 
the confusion matrix and N is the total data number. 

Table 3 shows the classification quality while using: 
a) The best discriminating feature; 
b) The best features subset generated; 
c) All features. 
The implementation platform was implemented in Matlab 

7.9, which is a general mathematical development tool. The 
Bioinformatics Toolbox functions svmclassify and svmtrain 
were used as the SVM classifier. The empirical evaluation 
was performed using an Intel Pentium Dual Core T4400 2.2 
GHz with 3 GB RAM.  

Using the parameters presented in the Table 1, the follow-
ing results were obtained by taking the best solution after 20 
BACOs trials.  

The Table 3 gives the best solutions obtained for each data-
set (RCK1 & RCK2). For the two datasets, the FV of the best 

solution is indicated with the corresponding error Rate. We 
conducted a performance comparison between the proposed 
wrapper-based (ACO–SVM), the filter-based ACO and the 
filter-based GA. 

Table 3 shows that we obtain an acceptable error rate with 
the subset generated by our algorithm. It is also noticed that 
the FV value reflects well the quality of classification. The Fig. 
10 shows the FV value obtained by each agent during the last 
iteration using Rotary Cement kiln dataset. 

The GA parameters used in this experimentation are: popu-
lation size = 50, generations = 100, crossover probability = 0.8 
and mutation probability = 0.05. For the Filter based ACO 
algorithm, we have used the parameters presented in the Table 
1. In the two algorithms, the Fisher discriminant criterion is 
used as a filter. 

The best pair of (C, γ) using Hybrid Wrapper/Filter based 
ACO-SVM algorithm for the two datasets is (23, 2-5).   

We notice that after the last iteration, more than 80% of 
agents find a good solution. This is due to the pheromone 
density which is updated at the end of each iteration. 

Fig. 11 shows that we obtain the optimal solution after the 
6th iteration which shows the effectiveness and the speed of 
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Fig. 8. The Fisher discriminant criterion for RCK1 dataset. 
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Fig. 9. The Fisher discriminant criterion for RCK2 dataset. 

 

Table 1. Detail of the RCK datasets used in experimentation. 
 

Dataset Class Description Training data 
(observations) 

Testing data
(observations)

1 Disrupted operation 31 30 

2 Moving area 20 20 

3 Inferior product 21 21 
RCK1 

30 features

4 Energy loosed 29 28 

1 Normal operation 125 125 RCK2 
46 features 2 Abnormal operation 125 125 

 
Table 2. Parameters of binary ant colony. 
 

Parameter Value Description 

N_A 20 A number of agents 

F_a 0.2 Random rate of behavior 

ρ 0.3 Rate of evaporation 

S_Min_FP Min FH Minimal threshold of pheromone 

S_Max_FP Max FH Maximum threshold of pheromone 

 
Table 3. Performances of classification by using the various entries. 
 

RCK1 RCK2 
Algorithm Features Error 

rate F (V) Error rate F (V) 

Hybrid wrap-
per/filter-based

ACO-SVM 
11 % 0.7717 10 % 0.5178 

Filter-based ACO 13 % 0.4347 15 % 0.5010 

Filter-based GA

Generated 
subset 

11 % 0.6537 15 % 0.5010 

One feature 75 % 0.0325 46 % 0.0061 
All algorithms

All features 7 % 0.7875 10 % 0.5218 

 
 



 O. Kadri et al. / Journal of Mechanical Science and Technology 26 (2) (2012) 601~608 607 
 

  

our algorithm. The convergence time of the presented algo-
rithm can be reduced using a lower number of ants. This num-
ber is related to the features number in the dataset. 

Table 4 shows that our algorithm discards a bigger percent-
age of features for the RCK dataset case. However, the se-
lected features are not always the same, once there are features 
that are weakly relevant and have a similar influence in the 
classifier. 

The results given in Figs. 10-12 and Table 3 show that our 
approach (Wrapper/Filter-based ACO-SVM) is very precise. 
In other word, it gives the optimal solution compared to those 
obtained by other algorithms. In fact, the results obtained on 

the Rotary Cement kiln datasets show that our approach con-
verges to the global optimum in all of runs. 

 
7. Conclusion 

In this work, a new approach for selecting best discrimi-
nates features subset using Binary ACO algorithm is presented. 
The ACO is chosen for this study because it is the newest 
metaheuristic. The goal is to select the best subset that is suffi-
cient to perform a good classification and obtain acceptable 
error rate. We have tested the proposed method on two data-
sets. The experimental results indicate that the proposed Bi-
nary ACO algorithm can be applied for a large number of 
features. 

The classifier induced in the experiments is a SVM. This 
classifier is chosen because it does not suffer from the local 
minima problem, it has fewer learning parameters to select, 
and it produces stable and reproducible results, but our wrap-
per method can be used with any other supervised classifiers.  

In the near future, the performance of the proposed algo-
rithm will be compared with other features selection methods 
to improve that our algorithm achieving equal or better per-
formance. Moreover, we will combine our algorithm with 
other intelligent classifiers, such as neural networks classifiers. 

 
Acknowledgment 

The research has been generously supported by Batna Uni-
versity. The authors would like to express their sincere appre-
ciation for all support provided. 

 
References 

[1] R. Mahdaoui and L. H. Mouss, NEFDIAG, A new approach 
for industrial diagnosis by neuro-fuzzy systems: Application 
to manufacturing system, Proc. of ERIMA, 2 (2) (2008) 144-

0 2 4 6 8 10 12 14 16 18 20
0.4339

0.434

0.434

0.4341

0.4341

0.4342

0.4342

0.4343

Agent number

F
V

 
 
Fig. 10. The FV value obtained by each agent during the last iteration
(RCK1). 

 

0 2 4 6 8 10 12 14 16 18 20
0.424

0.426

0.428

0.43

0.432

0.434

0.436

Iteration

F
V

 
 
Fig. 11. The best solution obtained at the end of each iteration (RCK1).

 

0 2 4 6 8 10 12 14 16 18 20
0.5172

0.5174

0.5176

0.5178

0.518

0.5182

0.5184

0.5186

 
 
Fig. 12. The best solution obtained at the end of each iteration (RCK2).

Table 4. Description of selected feature subset (RCK1). 
 

P1 COC Cyclone outlet CO 
content A50 P11 O2C Teneur O2 sortie 

cyclone A50 

P2 A50T1 Cyclone gas outlet 
temperature A50 P12 V31F1 Gas flow 

P3 A52T1 Cyclone gas outlet 
temperature A52 P13 V01F1 Gas flow 

P4 A52P2 Cyclone pressure 
A52 P14 W01X1 Oven time 

P5 A53T1 Temperature gas 
cyclone A53 P15 W01S1 Speed oven 

P6 A53T2 Material tempera-
ture cyclone A53 P16 TV Kiln shell  

temperature 

P7 A53P1 Cyclone pressure 
A53 P17 V07P1 Primary air  

pressure 

P8 A54T1 Temperature gas 
cyclone A54 P18 U01T1 Clinker  

temperature 

P9 A54P2 Cyclone pressure 
A54t. P19 A54T2 Material tempera-

ture cyclone A54

P10 COP CO content  
smokebox P20 K01T1 Secondary air 

temperature 
 



608 O. Kadri et al. / Journal of Mechanical Science and Technology 26 (2) (2012) 601~608 
 

 

151. 
[2] Z. Zhang, W. Cheng and X. Zhou, Research on intelligent 

diagnosis of mechanical fault based on ant colony algorithm, 
The Sixth International Symposium on Neural Networks, 
Springer Berlin, Heidelberg, 56 (2009) 631-640. 

[3] Q. Wu, Fault diagnosis model based on Gaussian support 
vector classifier machine, Expert Systems with Applications, 
37 (9) (2010) 6251-6256. 

[4] N. Wyse, R. Dubes and A. K. Jain, A critical evaluation of 
intrinsic dimensionality algorithms, Proc. of Pattern Recog-
nition in Practice, Morgan Kaufmann Publishers, Inc, (1980) 
415-425. 

[5] M. Dash and H. Liu, Feature selection methods for classifi-
cations, Intelligent Data Analysis, 3 (1) (1997) 131-156. 

[6] A. L. Blum and P. Langley, Selection of relevant features 
and examples in machine learning artificial, Artificial Intelli-
gence, 97 (1997) 245- 271. 

[7] P. M. Narendra and K. Fukunaga, A branh and bound algo-
rithm for feature subset selection, IEEE Transactions on 
Computers, 26 (1977) 917-922. 

[8] J. H. Yang and V. Honavar, Feature subset selection using a 
genetic algorithm, IEEE Intelligent Systems, 13 (2) (1998) 
44-49. 

[9] M. L. Raymer, W. F. Punch, E. D. Goodman, L. A. Kuhn 
and A. K. Jain, Dimensionality reduction using genetic algo-
rithms, IEEE Transactions on Evolutionary Computation, 4 
(2) (2000) 164-171. 

[10]   J. Kittler, Feature set search algorithms, Proc. of Pattern 
Recognition and Signal, C. H. Chen, editor, Sijhoff and 
Noordhoff, the Netherlands (1978). 

[11]   O. Boz, Feature subset selection by using sorted feature 
relevance, International Conference on Machine Learning 
and Application, Las Vegas City (2002) 147-153. 

[12]   I. Guyon and A. Elisseeff, An introduction to variable and 
feature selection, Journal of Machine Learning Research, 3 
(2003) 1157-1182. 

[13]   A. Al-Ani, Feature subset selection using ant colony opti-
mization, International Journal of Computational Intelli-
gence, 2 (1) (2005) 53-58. 

[14]   S. M. Vieira, J. C. Sousa and T. A. Runkler, Two coopera-
tive ant colonies for feature selection using fuzzy models, 
Expert Systems with Applications, 37 (4) (2010) 2714-2723. 

[15]   C. L. Huang, ACO-based hybrid classification system with 
feature subset selection and model parameters optimization, 
Neurocomputing, 73 (2009) 438-448. 

[16]   V. Maniezzo, M. Dorigo and A. Colorni, The ant system: 
Optimization by a colony of cooperating agents, IEEE 
Transactions on Systems, Man, and Cybernetics-Part B, 26 
(1) (1996) 29-41. 

[17]   M. Dorigo and G. D. Caro, The ant colony optimization  

meta-heuristic, In New Ideas in Optimization, McGraw-Hill, 
London, UK (1999) 11-32. 

[18]   W. N. Vapnik, An overview of statistical learning theory, 
IEEE Transactions of Neural Networks, 10 (1999) 988-999. 

[19]   M. F. Pasha and R. Budtarto, Evolvable-NEURAL- based 
fuzzy inference system and its application for adaptive net-
work anomaly detection, Advances in machine learning and 
cybernetics, 3930 (2006) 662-671. 

[20]   X. Weiqing, Y. Chenyang and W. Liuyi, Binary ant colony 
evolutionary algorithm, International Journal of Information 
Technology, 12 (3) (2006) 10-20. 

[21]   E. Youn, Support vector-based feature selection using 
Fisher’s linear discriminant and Support Vector Machine, 
Expert Systems with Applications, 37 (9) (2010) 6148-6156. 

[22]   R. O. Duda, P. E. Hart and D. G. Stork, Pattern classifica-
tion, Second Ed. Wiley Interscience Publication (2001). 

[23]   S. O. Ogbeide, Developing an optimization model for CO2 
reduction in cement production process, Journal of Engi-
neering Science and Technology Review, 3 (1) (2010) 85-88. 

 
 

Ouahab Kadri received his magister 
degree from the Department of Com-
puter Science, University of Batna, Al-
geria, in 2004. He is currently an assis-
tant professor at the University of 
Khenchela, Algeria. He is currently a 
Doctoral student in the Department of 
Industrial Engineering, University of 

Batna, Algeria. His current research interests include evolu-
tionary computation, artificial intelligence, etc. 

 
Leila Hayet Mouss was born in Batna, 
Algeria, in 1954. She received the B.Sc. 
degree in Electrical Engineering, in 1979, 
from the National Polytechnic School of 
Algiers, Algeria; the M.Sc. degree in 
Electrical and Computer Engineering, in 
1982, from the ENSERB, France; and 
finally the Ph.D. degree also in Electrical 

and Computer Engineering, in 1985, Bordeaux University, 
France. After graduation, she joined the University of Batna, 
Algeria, where she is an Associate Professor of Electrical and 
Computer Engineering. Pr. Mouss is a member of New York 
Science Academy. She is the head of Automatic and Com-
puter Integrated Manufacturing Laboratory. Pr. Mouss current 
research interests include industrial Diagnosis of production 
system using the artificial intelligence techniques in the LAP 
Lab (Laboratoire d’Automatique et Productique) at Batna, 
Algeria. 
 


