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Abstract—The discrete wavelet transform has attracted a rising
interest in recent years to monitor the condition of rotating
electrical machines in transient regime, because it can reveal the
time-frequency behaviour of the current’s components associated
to fault conditions. Nevertheless, the implementation of the
wavelet transform, especially on embedded or low-power devices,
faces practical problems, such as the election of the mother
wavelet, the tuning of its parameters, the coordination between
the sampling frequency and the levels of the transform, and
the construction of the bank of wavelet filters, with highly
different bandwidths, that constitute the core of the discrete
wavelet transform. In this paper, a diagnostic system using the
harmonic wavelet transform is proposed, which can alleviate
these practical problems because it is built using a single FFT
of one phase’s current. The harmonic wavelet was conceived to
perform musical analysis, hence its name, and it has spread into
many fields, but, up to the best of the authors’ knowledge, it has
not been applied before to perform fault diagnosis of rotating
electrical machines in transient regime using the stator current.
The simplicity and performance of the proposed approach are
assessed by comparison with other types of wavelet transforms,
and it has been validated with the experimental diagnosis of a
3.15 MW induction motor with broken bars.

Index Terms—Harmonic wavelet, Discrete wavelet transform,
Discrete wavelet packet transform, Condition monitoring, Fault
diagnosis, Fourier transforms, Signal processing.

I. INTRODUCTION

FAULT diagnosis of rotating electrical machines through
the analysis of the machine’s current signature (MCSA)

is a widely spread diagnostic method, whose rapid expansion
can be explained, albeit partially, by the simplicity of its
implementation. On the hardware side, it requires just a single
current’s clamp or sensor, so it can be applied online without
disturbing the normal machine’s operation. On the software
side, a simple FFT is needed to generate the power spectrum
of the current in the search for characteristic fault harmonics.
However, at the same time, the use of the power spectrum
restricts the application of MCSA to machines working in
steady state [1]. In effect, in the case of time varying
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conditions, such as oscillating loads, motors fed from variable
speed drives (VSD) with continuous changes of speed, wind
generators, or even during the start-up transient, the power
spectrum of the current does not display any sharp peak at
the frequencies associated to the machine’s faults. Instead, a
wide area is filled by the fault harmonics as their frequency
varies with the speed, the slip or the supply’s frequency
[2]. Anyway, this inability of MCSA to operate correctly in
transient regime is not a limitation of the FFT itself, but of the
use for diagnostic purposes of the modulus of the FFT of the
current, or its squared value. In fact, any arbitrary signal, as
the motor current in transient regime, can be fully described
either in the time domain, or in the frequency domain (using its
complex spectrum, that is, both the modulus and the argument
of its Fourier transform), and it can be converted from one
domain to the other one without any loss or distortion.

To overcome the limitations of MCSA in transient
condition, new techniques have been developed to track
the fault harmonics, even if they are non-stationary, using
advanced transforms that are able to display the evolution
of the fault harmonics in the time-frequency domain [3],
[4]. The short time Fourier transform (STFT) is a natural
extension of the FFT, by repetitively performing the FFT
of the current signal multiplied by a short, time-sliding
window [5], [6]. During the length of this window, the
current can be considered to be a nearly steady signal, so
that its spectrum gives a meaningful display of the frequency
content of the current at the central time of the window.
But the effect of multiplying the signal by a time window
has the effect of convolving the frequency transforms of
the signal and the window, so an improvement on the time
resolution implies a reduction of the frequency resolution,
as the Heisenberg’s principle states, and vice versa. This
implies that to display correctly harmonics components with
a low frequency variation, long time windows must be used,
while the analysis of components with a high frequency
variation requires the use of short time windows. If the current
signal contains both type of components, a trade-off between
good time resolution and good frequency resolution must be
made. A solution to this problem is the use of a multi-
resolution transform, such as the wavelet transform (WT)
[7], which uses simultaneously long time windows to extract
the low frequency components of the signal, and short time
windows to correctly locate in the time axis the high frequency
components of the signal. To do so, the WT uses a single



mother wavelet that is shifted in the time domain and scaled
in the frequency domain, giving variable shaped Heisenberg
boxes, with constant relative bandwidth.

However, in all the aforementioned time-frequency
transforms, there is a drawback that difficult its practical
implementation: they are much more costly, in terms of
computing resources and time, than the simple FFT used in
MCSA. For example, in the case of the STFT, the FFT must
be applied to each one of the windowed signals that result
as the time window slides along each one of the current
signal samples. This implies to multiply the computation of
a single current spectrum by the number of samples of the
current, which can be several orders of magnitude in the case
of long acquisition times and a high sampling frequency. For
example, a 100 s current signal sampled at 100 kHz produces
107 samples, so that a full STFT representation of the current
would need to compute 107 different FFTs.

Is it possible to perform the analysis of the current
in transient regime, using either a constant or a relative
bandwidth analysis, with the cost of a single FFT? The answer
to this question, presented in this paper, is affirmative, and
relies on the use of the discrete harmonic wavelet transform
(DHWT).

The DHWT is a member of the family of discrete wavelet
transforms (DWT), which are being used extensively for the
diagnosis of rotating machinery in the time-frequency domain
[1], [8]–[11], for the diagnosis of power system disturbances
[12]–[16], for the diagnosis of mechanical parts and structures
[17]–[19], or even for the development of biosensors [20]
and electronic sensors [21]. However, the implementation of
a diagnostic system based on the DWT of the motor current
faces practical problems, which have been extensively pointed
out in the technical literature:

• The frequency bands of the DWT are fixed, and depend
only on the sampling frequency. Choosing the correct
sampling frequency to isolate the mains component into a
given band, for avoiding the leakage over adjacent bands,
is crucial to guarantee that the fault signature can be
revealed.

• The amplitude of the fault components is very small
compared with the mains amplitude, so a slight leakage
in the frequency band that contains the mains component,
due to the non-ideal behaviour of the DWT filters,
may hide the fault harmonics in the adjacent bands.
This problem depends on the election of the mother
wavelet (Bior [9], Mexican [18], Daubechies [19], [20],
etc) and the tuning of their parameters (Daubechies-44,
Daubechies-10, etc.), which define the shape of the high-
pass and low-pass filters used in the wavelet analysis.

• Although the DWT is very fast, compared with
continuous time-frequency transforms, the computation
of the filters needed to implement a given DWT analysis
is costly, because they differ greatly on the frequency
band that they span and on the number of coefficients
needed to implement them.

The method proposed in the paper solves these problems:

• The DHWT allows the maximum flexibility in the

selection of the frequency bands of the DWT
decomposition. In this way a very narrow band can be
used to isolate the mains component, leaving the rest of
the bands available for displaying the fault signature.

• The DHWT uses ideal frequency filters, so the leakage
of the mains component into adjacent frequency bands is
very small, allowing the use of these bands for displaying
the fault signature.

• The computation cost of the proposed approach is very
low: just one FFT and as many IFFTs as desired
frequency bands are needed. And there are extremely
efficient FFT algorithms, which are available even for
embedded devices. This feature allows implementing the
proposed method using online diagnostic devices such as
DSPs or FPGAs.

So, the proposed approach represents an improvement of
the DWT techniques available for performing the diagnosis of
the induction motor through the currents in transient regime,
obtained through the use of a particular implementation of the
mother wavelet. Up to the best knowledge of the authors, this
improvement has not been proposed before in this field, in
spite of its great advantages from a practical point of view.

The structure of the paper is the following one. In Section
II, the fault diagnosis of rotating electrical machines using the
DWT of the machine’s current is reviewed. In Section III, the
proposed diagnostic method, based on the use of the DHWT, is
presented, and it is validated in Section IV with the diagnosis
of a large 3.15 MW motor with a broken bar during the start-
up transient. Finally, Section V presents the conclusions of the
work.

II. FAULT DIAGNOSIS OF ROTATING ELECTRICAL

MACHINES USING THE DWT

The proposed method is a particular implementation of
the more general DWT-based diagnostic methods, so in this
section the use of the DWT for fault diagnosis of rotating
electrical machines is reviewed.

The DWT of the motor current has been used extensively
for detecting, in transient regime, faults such as eccentricity
[1], stator faults [7], broken bars [22]–[24], rotor asymmetries
[10], [11], and short circuit faults [25], among others types of
faults. As stated in [26], this diagnostic technique is a four-step
process that involves:

• Sampling of the transient motor current, with a sampling
frequency fs, during an acquisition time Tacq.

• Computation of the wavelet transform of the current
signal, after a proper selection of the mother wavelet and
the number of decomposition levels.

• Analysis of the wavelet coefficients.
• Diagnostic conclusion.

The proposed DHWT approach greatly simplifies the second
step of the general DWT-based diagnostic procedure, using just
the FFT as the signal processing tool, as will be shown in the
following sections.

The first step in the DWT-based diagnostic process is the
uniform sampling of the current signal i(t), giving a discrete
sequence i[n], n = 1 . . . N , with N = Tacq × fs. The DWT



performs the decomposition of i[n], into an approximation
signal at a certain decomposition level k, Ak[n], and k detail
signals Dj[n], j = 1 . . . k,

i[n] = Ak[n] +

k∑

j=1

Dj[n] =

N
2k∑

i=1

aki Φ
k
i [n] +

k∑

j=1

N
2j∑

i=1

djiΨ
j
i[n],

(1)
where Φk and Ψj are, respectively, the scaling function at level
k and the wavelet function at level j. The DWT coefficients ak

i

and dji in (1) are computed using a subband coding algorithm.
It has been represented in Fig. 1 and Fig. 2, applied to a current
signal sampled at frequency fs, for k = 2.

i[n]

[0, fs/2]

    [fs/4,fs/2]

   [0,fs/8]

Low pass filter High pass filter

  [fs/8,fs/4]
A2 D2

D1

Fig. 1. DWT coefficients computed with a subband coding algorithm, for a
number of levels k=2.

  fs/8    fs/4 fs/2

Frequency

Amplitude

A2 D2 D1

Fig. 2. Filter bank used in the DWT, for a number of levels k=2.

The response of the DWT filter bank to an impulse signal,
using a Daubechies-44 (db44) mother wavelet, is shown in
Fig. 3, where the multi-resolution property of the DWT
can be observed: the low frequency signal components are
captured with a high frequency resolution (0− f s/8), and the
high frequency components are resolved with a fine temporal
resolution.

Nevertheless, there is a drawback related to the practical
implementation of the DWT-based diagnostic process: the
frequency bands covered by the DWT decomposition overlap,
due to the non-ideal frequency behaviour of the DWT filters, as
shown in Fig. 2. The magnitude response of the high pass and
the low pass filters in the case of a widely used mother wavelet,
the Daubechies 44, are shown in Fig. 4. From a practical
point of view, this overlapping implies that the energy of
signal’s components whose frequencies are close to the border
of a given frequency band can leakage into the neighbouring
bands, appearing as false harmonics components. This affects
especially to the mains component, whose amplitude can be
very high compared to the fault harmonics: the mains leakage
in this case can completely hide the small fault components in

Fig. 3. DWT at level k = 2 of a pulse signal using a Daubechies-44 mother
wavelet.

the adjacent bands. To solve this problem, widely reported in
the technical literature, it is necessary to select a sampling
frequency fs that centers one of the DWT bands on the
mains frequency, using the expression for the frequency band
spanned by a detail signal at a given level j,

f(Dj) ∈ [
fs

2j+1
,
fs
2j

]. (2)

Fig. 4. Magnitude responses of the high pass and low pass filters of a
Daubechies-44 mother wavelet.

For example, in the case of fmains = 50 Hz, using a
sampling frequency of 5000 samples/s would give a detail
signal of level 6 whose frequency band spans

f(D6) ∈ [
5000

27
,
5000

26
] = [39.0625 Hz, 78.125 Hz], (3)

centered on the mains frequency.
The problem of using non-ideal filters also arises in a variant

of the DWT, the discrete wavelet packet transform (DWPT),
which uses the same decomposition tree of the DWT of Fig. 1,
but performs a full decomposition of both the approximation
signal and the detail signal at each level of the tree, as in
[14]. The k-level DWPT of the current signal, sampled at
fs samples/s, is a high resolution decomposition in frequency
bands with a constant bandwidth

fband =
fs

2k+1
, (4)



as shown in Fig. 5 and in Fig. 6.

i[n]

[0,fs/2]

  [fs/4,3fs/8]

Low pass filter High pass filter

[3fs/8,fs/2]

AD2 DD2

[0,fs/8]

Low pass filter High pass filter

  [fs/8,fs/4]

AA2 DA2

Fig. 5. DWPT coefficients computed with a subband coding algorithm, for
a number of levels k=2.

  fs/8    fs/4    fs/2

Frequency

Amplitude

AA2 DA2  AD2

3fs/8

DD2

Fig. 6. Filter bank used in the DWPT, for a number of levels k=2.

III. FAULT DIAGNOSIS OF ROTATING ELECTRICAL

MACHINES WITH THE PROPOSED METHOD, USING THE

DHWT

The proposed approach, based entirely on the use of the
FFT, and its inverse, the IFFT, relies on the election of a
particular scaling function, the sinc function,

φ(t) =
sin(πt)

πt
, (5)

and its associated mother wavelet, the harmonic wavelet

ψ(t) =
sin(πt/2)

πt/2
cos(3πt/2). (6)

The particularity of these functions is that the low pass and
high pass filters that they generate are ideal ones, that is, their
frequency responses do not overlap, as shown in Fig. 7.

Fig. 7. Magnitude responses of the high pass and low pass filters of a
harmonic mother wavelet.

The multi-resolution filter bank used to implement the
DHWT with the filters depicted in Fig. 7, is shown in Fig. 8.
Due to the ideal behaviour of the DHWT filters, this filter bank

can be implemented very effectively in the frequency domain,
by spectral windowing, instead of applying the filters in the
time domain. The process needed to perform the DHWT of
the motor current is very simple, and reduces to (Fig. 9):

• Capturing the transient motor current.
• Obtaining the complex spectrum of the current signal

(modulus and argument), using the FFT.
• Applying a rectangular window to the current’s spectrum,

equal to one within the frequency band spanned by each
desired wavelet component (2), and zero elsewhere.

• Transferring each windowed spectrum back to the time
domain with the IFFT, which generates the desired
approximation and detail components of the transient
current signal.

  fs/8   fs/4    fs/2

Frequency

Amplitude

A2 D2 D1

Fig. 8. Filter bank used in the DHWT, for a number of levels k=2.

   [0 - fs/8]    [fs/8 - fs/4]    [fs/4 - fs/2]

A2 D2 D1

i[n]

FFT

IFFT IFFT IFFT

Fig. 9. DHWT at level k = 2 of the current signal, using the proposed
FFT-based approach to implement the filter bank of Fig. 8.

It is an extended assumption that the Fourier transform (FT)
cannot be applied to the analysis of transient currents, because
the power spectrum only gives the magnitude of the current
harmonics, but not their time localization. On the contrary,
the complex spectrum of a transient signal preserves its time-
related characteristics. For example, the FT of a Dirac-delta
impulse located at the time origin is just a constant unit real
value,

δ(t)
FT−→ δ̂(f) = 1× ej0. (7)

If the pulse is shifted to a time t0, the modulus of its FT
has still a constant unit value, but the time shift generates a
linear shift of the spectrum phase

δ(t− t0)
FT−→ δ̂(f) = 1× e−j2πft0 . (8)

As (8) states, the complex spectrum of a transient signal
contains the information needed to locate its components
precisely in the time domain, which allows the proposed
DHWT approach. Fig. 10 shows the DHWT of an isolated
pulse signal, using the frequency bands depicted in Fig. 9.



Fig. 10. DHWT at level k = 2 of a pulse signal, using the proposed FFT-
based approach.

The results obtained show that the DHWT, although being
based entirely on the FFT, can locate precisely a transient
signal in the time domain. Besides, the impulse responses
shown in Fig. 10 give the scaling (5) and the wavelet (6)
functions of the DHWT for each frequency band. Nevertheless,
the ideal filters in the frequency domain used by the DHWT
(Fig. 8), cannot be ideal also in the time domain, due to the
Heisenberg principle, and they have wider time side-lobes
than the non-ideal Daubechies filters shown in Fig. 2. This
causes a higher ripple in the time components of the Dirac
pulse extracted by the DHWT (Fig. 10) compared with the
time components generated by the DWT (Fig. 3), and this
constitutes a trade-off of the use of ideal frequency filters.
Nevertheless, the ripple effect, which appears always when
filtering sharp signals, is greatly reduced when analysing the
motor current, which is a smooth signal.

The same method used to implement the DHWT can be used
also to perform the discrete harmonic wavelet packet transform
(DHWPT) of the motor current. The only difference with
the DHWT is the length of the rectangular windows that are
applied to the current’s spectrum: instead of using frequency-
dependent window lengths, as in Fig. 8, the DHWPT uses
constant-length spectral windows, as in Fig. 11. The proposed
FFT implementation of the DHWPT is shown in Fig. 12.

  fs/8    fs/4   fs/2

Frequency

Amplitude

AA2 DA2 AD2

  3fs/8

DD2

Fig. 11. Filter bank used in the DHWPT, for a number of levels k=2.

The sinc scaling function, (5), and the harmonic wavelet,
(6), have been used previously in the analysis of vibrations

   [0 - fs/8]    [fs/8 - fs/4]     [fs/4 - 3fs/8]

AA2 DA2    AD2

i[n]

FFT

IFFT IFFT IFFT

  [3fs/8 - fs/2]

IFFT

  DD2

Fig. 12. DHWPT at level k = 2 of the current signal, using the proposed
FFT-based approach to implement the filter bank of Fig. 11.

by [27]–[32]. They are also known in the signal processing
literature as Littlewood-Palley wavelets [33], and Shannon
wavelets. However, up to the best of the authors’ knowledge,
these types of wavelets have not yet been used in a diagnostic
process based on the analysis of the machine current in
transient conditions, in spite of its advantages in terms of
computational simplicity and ideal filtering performance.

IV. VALIDATION OF THE PROPOSED APPROACH

To validate the proposed approach, in this section it is
applied to the detection of a broken bar fault during the start-
up transient of a squirrel cage induction motor. This election is
not exclusive, because other fault types and working regimes,
which have been analysed in the technical literature using
the DWT, can also be effectively detected using the proposed
DHWT method.

The validation is performed in two stages. First, in
Section IV-A, the characteristic pattern that a motor with
broken bars generates in the time-frequency domain during
the start-up transient is described using the DHWT and the
DHWPT. Second, in Section IV-B, this pattern is identified
with the proposed approach in the case of a large 3.15
Mw industrial motor with a broken bar, and the results are
compared with the DWT and the DWPT of the motor current
using a db44 mother wavelet.

A. Analysis of the Current of an Induction Motor with a
Broken Bar During the Startup Transient, Using the DHWT

The diagnosis of the broken bar fault during the start-up
transient can be performed by detecting the evolution in the
time-frequency domain of the lower sideband harmonic (LSH),
generated by this type of fault. The frequency of the LSH
varies with the slip s of the machine as

fLSH(s) = (1− 2s)fmains, (9)

where fmains is the supply’s frequency.
The LSH of a simulated induction motor, sampled at 5 kHz,

has been computed and presented in [34], and it is shown in
Fig. 13.

From (9), during the start-up transient, the frequency of
the LSH continuously decreases from the supply’s frequency
when the machine is connected (t = 0), and it becomes
null when the rotor speed equals half the synchronous speed,
s = 0.5 in (9). From this point, the frequency of the LSH



Fig. 13. Lower sideband harmonic of a simulated induction motor with a
broken bar during the start-up transient. Top: amplitude of the LSH. Bottom:
speed during the transient.

increases again, reaching a constant value in stationary regime.
This V-shaped pattern in the time-frequency domain during a
start-up transient constitutes a characteristic signature of the
broken bar fault, and has been used for diagnostic purposes in
[34] and [26]. This signature can be revealed by applying the
proposed DHWT to the LSH depicted in Fig. 13, as shown
in Fig. 14. Besides, the proposed approach allows choosing
the dyadic structure of the wavelet tree that is best suited
to the signal under analysis, independently from the supply’s
frequency, without the constraint of (2).

Fig. 14. DHWT of the LSH during the start-up transient of an induction
motor with a broken bar.

The LSH signal of Fig. 13 has been analysed also with
the proposed DHWPT approach, splitting the spectrum of the
LSH in frequency bands with a constant bandwidth of 9 Hz,
and performing the IFFT of each band. The result, shown in

Fig. 15, displays clearly its characteristic pattern in the time-
frequency domain during the start-up transient of the motor.

Fig. 15. DHWPT of the LSH during the start-up transient of an induction
motor with a broken bar.

B. Fault Diagnosis of a 3.15 MW Motor With a Broken Bar
During the Startup Transient, Comparing the Proposed DHWT
Approach and the DWT Results

A 3.15 MW, grid-connected, high-voltage induction motor,
which drives a low and a high-pressure pumps in a thermal
power plant-heating plant, shown in Fig. 16, has been analysed
using the proposed method, and a broken bar fault has been
detected. A visual inspection revealed that, in fact, the motor
had one broken bar, as shown in Fig. 17.

Fig. 16. The 3.15 MW motor used for validating the proposed method,
installed in the thermal power plant-heating plant.

The proposed method has been applied to the motor start-up
current, sampled at 5 kHz, in order to detect the characteristic



Fig. 17. Broken bar of the 3.15 MW motor used for the experimental
validation of the proposed method.

pattern of the LSH in the time-frequency domain. To validate
the proposed method, the results are compared with those
obtained with a classical db44 DWT of the current motor.

The analysis of the motor current during the start-up
transient has been performed first with a 9-level DWT, using
a db44 mother wavelet, as in [26]. As indicated in (3), the
detail signal of level 6 ([39 Hz − 78 Hz]) contains the mains
component, so that three additional detail signals plus the
approximation signal can be used to track the evolution of
the LSH (see Fig. 18). In this case, the position of the
frequency bands depend on the sampling frequency (2), and
the frequency range available for detecting the LSH signature
is limitied to the [0 - 39 Hz]. Besides, any change in the
value of the sampling frequency would change the limits of
the frequency bands.

The analysis of the same motor current has been performed
using the proposed FFT-based DHWT approach, that is,
applying a rectangular window (with a frequency dependent
length) to the current’s complex spectrum, transforming the
windowed spectrum back to the time domain, and repeating
the process for each desired frequency band (see Fig. 19). In
this case the position of the frequency bands does not depend
on the sampling frequency

As it can be observed in Fig. 18 and Fig. 19, the proposed
DHWT method can detect the fault through the evolution of
the LSH, as in the case of a classical db44 DWT, but using
just a single FFT of the current signal instead of using a multi-
resolution time-domain filter bank. Besides, with the proposed
approach, the position of the frequency bands can be chosen
independently from the sampling frequency. And, due to the
ideal behaviour of the DHWT filters, the frequency range
available for detecting the LSH signature can be extended
near the mains frequency. Comparing the proposed approach
in Fig. 19 with the traditional DWT shown in Fig. 18, the
range has been extended from [0- 39 Hz] up to [0- 48 Hz].

A second analysis of the start-up current of the faulty
motor has been performed with the DWPT, that is, with
approximation and detail signals of constant bandwidth. The
DWPT of the motor current using a db44 mother wavelet,
with 8 levels of decomposition, is shown in Fig. 20. Due to the

Fig. 18. DWT at level k = 9, with a Daubechies 44 mother wavelet, of the
start-up current of the 3.15 MW motor with a broken bar. The dashed line
highlights the evolution of the LSH during the start-up transient.

Fig. 19. Proposed DHWT at level k = 9 of the start-up current of the 3.15
MW motor with a broken bar. The dashed line highlights the evolution of the
LSH during the start-up transient.

small bandwidth of the filters (9.77 Hz), and to the overlapping
in the frequency domain of adjacent db44 filters (see Fig. 6),
the energy of the mains component, (50 Hz) leaks into the
adjacent band ([39.1 Hz − 48.8 Hz]), and makes this band
unavailable for detecting the LSH.

The analysis of the same motor current has been performed
using the proposed FFT-based DHWPT approach, that is,
applying a rectangular window (with a constant length) to
the current’s complex spectrum, transforming the windowed
spectrum back to the time domain, and repeating the process
for each desired frequency band (see Fig. 21).

In the case of the proposed DHWPT approach, besides
obtaining a better spectral behaviour due to the use of the
harmonic wavelet filters, there is an additional advantage: it
is not necessary to use filters whose bandwidth depend on the
sampling frequency, as constrained by (4). Instead, the analysis



Fig. 20. DWPT at level k = 8, with a Daubechies 44 mother wavelet, of the
start-up current of the 3.15 MW motor with a broken bar. The dashed line
highlights the evolution of the LSH during the start-up transient.

Fig. 21. Proposed DHWPT at level k = 8 of the start-up current of the 3.15
MW motor with a broken bar. The dashed line highlights the evolution of the
LSH during the start-up transient.

with the proposed method has been performed using a constant
rectangular window in the frequency domain with a bandwidth
of 11 Hz, which isolates and centers the mains component
in a [44 Hz − 55 Hz] band, eliminating any leakage into
adjacent bands. In this way, a better picture of the evolution
of the LSH is obtained with the proposed approach in Fig. 21,
compared with the results obtained with a db44 DWPT in
Fig. 20. This freedom of election of the frequency bands is not
possible using the classical DWPT, where it is strictly imposed
by the sampling frequency and the number of decomposition
levels (2). Moreover, the proposed method is not only very
simple to implement, but also very fast to compute. The time
needed to compute the db44 wavelet packet transform is of
1.25 seconds, while the computation of the proposed harmonic
packet transform is made in just 0.58 seconds, using the same
computer.

As a remark about the flexibility of the proposed method,
the start-up current of the 3.15 MW motor has been analysed

also by slicing its FFT transform in two adjacent frequency
bands with very different frequency bandwidths (Fig. 22):

• A low frequency band, with a wide bandwidth ([0 Hz −
47 Hz]), which contains the LSH.

• A high frequency band, with a narrow bandwidth
([47 Hz− 53 Hz]), which encloses the mains component.

Fig. 22. Extraction of the LSH from the start-up current of the 3.15 MW
motor with a broken bar, using a low frequency band with a wide bandwidth
to extract the LSH, and a high frequency band, with a narrow bandwidth, to
isolate the mains component.

The results of this decomposition, Fig. 22, show that the
LSH can be extracted cleanly and very precisely from the
start-up current using these customized frequency bands. In
fact, the experimental LSH of Fig. 22 follows an evolution
with a shape very similar to the shape predicted in Fig. 13.

V. CONCLUSIONS

In this work, the FFT- based discrete harmonic wavelet. has
been proposed as a valid tool for the diagnosis of electrical
machines working in transient conditions. It is a common
assumption to consider that the FFT can only be applied to
the diagnosis of electrical machines working in steady state,
because the power spectrum is not able to locate in the time
domain the signal components. However, using the complex
spectrum of the current, a new diagnostic method has been
developed in this paper, which performs the fault diagnosis
of rotating electrical machines in transient conditions using
just the FFT of the current (and its inverse, the IFFT). This
fact makes the proposed approach very fast and very easy
to implement. Besides, the proposed method allows selecting
freely the frequency bands used in the current decomposition,
independently of the sampling frequency or the number of
decomposition levels. This feature opens new possibilities for
adapting the frequency bands to the working conditions of
the machine or the type of fault to be detected, in order to
capture better the transient behaviour of the fault harmonics,
or to measure more precisely their energy content. Moreover,
the flexibility of the proposed DHWT decomposition makes
it possible to detect the fault harmonic signature in cases
where the traditional DWT approach may fail. For example,
in the case of noise sources with fixed frequencies in the
range spanned by the transient fault components, the DHWT
can easily eliminate narrow frequency bands containing the
noise signals, which cannot be done with a traditional DWT
approach.

The wide availability of the FFT in modern software
and control devices, and the simplicity and speed of the



proposed approach, makes it especially well suited for its
implementation on embedded devices, such as FPGAs and
DSPs.

APPENDIX

Motor characteristics: three-phase induction motor, star
connection. Rated characteristics: P = 3150 kW,
f = 50 Hz, U = 6 kV, I = 373 A , n = 2982 rpm,
cosϕ = 0.92, number of bars = 56.

REFERENCES

[1] K. Yahia, A. Cardoso, A. Ghoggal, and S. Zouzou, “Induction motors
airgap-eccentricity detection through the discrete wavelet transform of
the apparent power signal under non-stationary operating conditions,”
ISA Transactions, vol. 53, no. 2, pp. 603 – 611, 2014.

[2] Y. Gritli, S. B. Lee, F. Filippetti, and L. Zarri, “Advanced Diagnosis
of Outer Cage Damage in Double-Squirrel-Cage Induction Motors
Under Time-Varying Conditions Based on Wavelet Analysis,” Industry
Applications, IEEE Transactions on, vol. 50, no. 3, pp. 1791–1800, May
2014.

[3] E. Strangas, S. Aviyente, and S. Zaidi, “Time-Frequency Analysis for
Efficient Fault Diagnosis and Failure Prognosis for Interior Permanent-
Magnet AC Motors,” Industrial Electronics, IEEE Transactions on,
vol. 55, pp. 4191–4199, Dec. 2008.

[4] Y. Yang, W. Zhang, Z. Peng, and G. Meng, “Multicomponent
Signal Analysis Based on Polynomial Chirplet Transform,” Industrial
Electronics, IEEE Transactions on, vol. 60, pp. 3948–3956, Sept. 2013.

[5] S. Nandi, T. Ilamparithi, S.-B. Lee, and D. Hyun, “Detection
of Eccentricity Faults in Induction Machines Based on Nameplate
Parameters,” Industrial Electronics, IEEE Transactions on, vol. 58, pp.
1673–1683, May 2011.

[6] M. Riera-Guasp, M. Pineda-Sanchez, J. Perez-Cruz, R. Puche-Panadero,
J. Roger-Folch, and J. Antonino-Daviu, “Diagnosis of Induction Motor
Faults via Gabor Analysis of the Current in Transient Regime,”
Instrumentation and Measurement, IEEE Transactions on, vol. 61, pp.
1583–1596, June 2012.

[7] J. Seshadrinath, B. Singh, and B. Panigrahi, “Investigation of Vibration
Signatures for Multiple Fault Diagnosis in Variable Frequency Drives
Using Complex Wavelets,” Power Electronics, IEEE Transactions on,
vol. 29, pp. 936–945, Feb. 2014.

[8] J. Wang, Q. He, and F. Kong, “Adaptive multiscale noise tuning
stochastic resonance for health diagnosis of rolling element bearings,”
Instrumentation and Measurement, IEEE Transactions on, vol. 64, no. 2,
pp. 564–577, Feb 2015.

[9] I. Bediaga, X. Mendizabal, I. Etxaniz, and J. Munoa, “An Integrated
System for Machine Tool Spindle Head Ball Bearing Fault Detection
and Diagnosis,” Instrumentation Measurement Magazine, IEEE, vol. 16,
no. 2, pp. 42–47, April 2013.

[10] Y. Gritli, L. Zarri, C. Rossi, F. Filippetti, G. Capolino, and D. Casadei,
“Advanced Diagnosis of Electrical Faults in Wound-Rotor Induction
Machines,” Industrial Electronics, IEEE Transactions on, vol. 60, pp.
4012–4024, Sept. 2013.

[11] F. Vedreno-Santos, M. Riera-Guasp, H. Henao, M. Pineda-Sanchez,
and R. Puche-Panadero, “Diagnosis of Rotor and Stator Asymmetries
in Wound-Rotor Induction Machines Under Nonstationary Operation
Through the Instantaneous Frequency,” Industrial Electronics, IEEE
Transactions on, vol. 61, no. 9, pp. 4947–4959, Sept 2014.

[12] M. Manikandan, S. Samantaray, and I. Kamwa, “Detection and
Classification of Power Quality Disturbances Using Sparse Signal
Decomposition on Hybrid Dictionaries,” Instrumentation and
Measurement, IEEE Transactions on, vol. 64, no. 1, pp. 27–38,
Jan 2015.

[13] W. Li, A. Monti, and F. Ponci, “Fault Detection and Classification
in Medium Voltage DC Shipboard Power Systems With Wavelets and
Artificial Neural Networks,” Instrumentation and Measurement, IEEE
Transactions on, vol. 63, no. 11, pp. 2651–2665, Nov 2014.

[14] J. Barros, R. Diego, and M. de Apraz, “A Discussion of New
Requirements for Measurement of Harmonic Distortion in Modern
Power Supply Systems,” Instrumentation and Measurement, IEEE
Transactions on, vol. 62, no. 8, pp. 2129–2139, Aug 2013.

[15] F. Bezerra Costa, “Fault-Induced Transient Detection Based on Real-
Time Analysis of the Wavelet Coefficient Energy,” Power Delivery, IEEE
Transactions on, vol. 29, pp. 140–153, Feb. 2014.

[16] S. Jain and S. Singh, “Fast Harmonic Estimation of Stationary and Time-
Varying Signals Using EA-AWNN,” Instrumentation and Measurement,
IEEE Transactions on, vol. 62, no. 2, pp. 335–343, Feb 2013.

[17] L. Rosado, F. Janeiro, P. Ramos, and M. Piedade, “Defect
Characterization With Eddy Current Testing Using Nonlinear-Regression
Feature Extraction and Artificial Neural Networks,” Instrumentation and
Measurement, IEEE Transactions on, vol. 62, no. 5, pp. 1207–1214, May
2013.

[18] H. Hosseinabadi, B. Nazari, R. Amirfattahi, H. Mirdamadi, and A. Sadri,
“Wavelet Network Approach for Structural Damage Identification Using
Guided Ultrasonic Waves,” Instrumentation and Measurement, IEEE
Transactions on, vol. 63, no. 7, pp. 1680–1692, July 2014.

[19] D. Sun, Y. Yan, R. Carter, L. Gao, G. Lu, G. Riley, and M. Wood, “On-
Line Nonintrusive Detection of Wood Pellets in Pneumatic Conveying
Pipelines Using Vibration and Acoustic Sensors,” Instrumentation and
Measurement, IEEE Transactions on, vol. 63, no. 5, pp. 993–1001, May
2014.

[20] K. Luo, J. Li, and J. Wu, “A Dynamic Compression Scheme for
Energy-Efficient Real-Time Wireless Electrocardiogram Biosensors,”
Instrumentation and Measurement, IEEE Transactions on, vol. 63, no. 9,
pp. 2160–2169, Sept 2014.

[21] P. Saha, S. Ghorai, B. Tudu, R. Bandyopadhyay, and N. Bhattacharyya,
“A Novel Technique of Black Tea Quality Prediction Using Electronic
Tongue Signals,” Instrumentation and Measurement, IEEE Transactions
on, vol. 63, no. 10, pp. 2472–2479, Oct 2014.

[22] A. Ordaz-Moreno, R. de Jesus Romero-Troncoso, J. Vite-Frias,
J. Rivera-Gillen, and A. Garcia-Perez, “Automatic Online Diagnosis
Algorithm for Broken-Bar Detection on Induction Motors Based on
Discrete Wavelet Transform for FPGA Implementation,” Industrial
Electronics, IEEE Transactions on, vol. 55, pp. 2193–2202, May 2008.

[23] A. Bouzida, O. Touhami, R. Ibtiouen, A. Belouchrani, M. Fadel, and
A. Rezzoug, “Fault Diagnosis in Industrial Induction Machines Through
Discrete Wavelet Transform,” Industrial Electronics, IEEE Transactions
on, vol. 58, pp. 4385–4395, Sept. 2011.

[24] M. Pineda-Sanchez, M. Riera-Guasp, J. Roger-Folch, J. Antonino-
Daviu, J. Perez-Cruz, and R. Puche-Panadero, “Diagnosis of Induction
Motor Faults in Time-Varying Conditions Using the Polynomial-Phase
Transform of the Current,” Industrial Electronics, IEEE Transactions
on, vol. 58, pp. 1428–1439, Apr. 2011.

[25] K. Iyer, X. Lu, Y. Usama, V. Ramakrishnan, and N. Kar, “A Twofold
Daubechies-Wavelet-Based Module for Fault Detection and Voltage
Regulation in SEIGs for Distributed Wind Power Generation,” Industrial
Electronics, IEEE Transactions on, vol. 60, pp. 1638–1651, Apr. 2013.

[26] M. Riera-Guasp, J. Antonino-Daviu, M. Pineda-Sanchez, R. Puche-
Panadero, and J. Perez-Cruz, “A General Approach for the Transient
Detection of Slip-Dependent Fault Components Based on the Discrete
Wavelet Transform,” Industrial Electronics, IEEE Transactions on,
vol. 55, pp. 4167–4180, Dec. 2008.

[27] D. E. Newland, “Harmonic wavelet analysis,” Proceedings of the Royal
Society of London. Series A: Mathematical and Physical Sciences, vol.
443, no. 1917, pp. 203–225, 1993.

[28] ——, “Harmonic wavelets in vibrations and acoustics,” Philosophical
Transactions of the Royal Society of London. Series A: Mathematical,
Physical and Engineering Sciences, vol. 357, no. 1760, pp. 2607–2625,
1999.

[29] D. Newland, “Ridge and phase identification in the frequency analysis
of transient signals by harmonic wavelets,” Journal of Vibration and
Acoustics, vol. 121, no. 2, pp. 149–155, 1999.

[30] D. E. Newland, “Time-frequency and time-scale signal analysis by
harmonic wavelets,” in Signal Analysis and Prediction, ser. Applied and
Numerical Harmonic Analysis, A. Prochazka, J. Uhlir, Jan, P. Rayner,
and N. Kingsbury, Eds. Birkhäuser Boston, 1998, pp. 3–26.
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