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Multisensor information fusion, when applied to fault diagnosis, the time-space scope, and the quantity of information are
expanded compared to what could be acquired by a single sensor, so the diagnostic object can be described more comprehensively.
�is paper presents a methodology of fault diagnosis in rotating machinery using multisensor information fusion that all the
features are calculated using vibration data in time domain to constitute fusional vector and the support vector machine (SVM) is
used for classication.�e e�ectiveness of the presentedmethodology is tested by three case studies: diagnostic of faulty gear, rolling
bearing, and identication of rotor crack. For each case study, the sensibilities of the features are analyzed. �e results indicate that
the peak factor is the most sensitive feature in the twelve time-domain features for identifying gear defect, and the mean, amplitude
square, root mean square, root amplitude, and standard deviation are all sensitive for identifying gear, rolling bearing, and rotor
crack defect comparatively.

1. Introduction

Typical rotating machinery systems such as water turbine,
steam turbine, wind turbine, and rotary kiln are critical
core equipment support of the important industries of the
national economy [1, 2]. �e safety, reliability, e�ciency, and
performance of rotating machinery are major concerns in
industry, so, the task of condition monitoring and fault diag-
nosis of rotating machinery is signicant [3]. �e common
mechanical defects of rotating machinery are divided into
three categories: (1) rotor body defects, such as unbalance,
misalignment, rubbing, and rotor crack; (2) rotor support-
bearing defects, such as inner race, outer race or ball defect
of rolling bearing, and oil whirl or oil whip of sliding bearing;(3) transmission gear defects, such as chipped tooth defect or
missing tooth defect. In-process monitoring and diagnostics
of rotating machinery require reasoning about defect and
process states from sensor readings. O�en the relationship

between the sensor readings and the process states is complex
and nondeterministic. For a complex system, a single sensor
is incapable of collecting enough data for accurate condition
monitoring and fault diagnosis. Multiple sensors are needed
in order to do a better job. When multiple sensors are used,
data collected from di�erent sensors may contain di�erent
partial information about the same machine condition. �e
diagnostic object can be describedmore comprehensively [4–
6]. Compared with single sensor, the time-space scope and
the quantity of information are expanded. �e diagnostic
accuracy and reliability can be improved. Multisensor infor-
mation fusion can be categorized into three levels [7, 8]: data-
level fusion, feature-level fusion, and decision-level fusion.

At data-level fusion, all sensor data from a measured
object are combined directly and features are then calculated
from the fused data. Fusion of data at this level contains
most information and can deliver good results. However, the
sensors used in this level must be commensurate.�at means
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the measurement has to be the same or has similar physical
quantities or phenomena. During the most popular data-
level fusion methodology, such as weighted fusion [9], the
weighted value ofmultisensor signals is di�cult to determine.
As a consequence, data-level applications are limited in
real environment. At feature-level fusion, the features are
calculated from each sensor according to the type of raw
data. �en, these noncommensurate sensors features are
combined at the feature level. All features are combined in
turn into a bigger single feature set, which are then used
in a special classication model such as articial neural
network (ANN), support vector machine (SVM), and cluster
algorithm for decisions [10]. �e feature-level fusion is a
compromise form of data-level fusion and decision-level
fusion. Its data alignment requirements are not strict as the
data-level fusion that heterogeneous sensors are allowed, and
its information loss is less serious than the decision-level
fusion but still achieved a better information compression.
As a consequence, feature-level applications are �exible and
popular. At decision-level fusion, the processes of features
calculation and pattern recognition are applied in sequence
for single-source data obtained from each sensor. �e deci-
sion vectors are then fused using decision-level fusion tech-
niques such as voting strategy, Bayesian method, behavior-
knowledge space, andDempster-Shafer theory [11]. Relatively
speaking, there is maximum amount of information loss
at decision-level.

�is paper proposes a feature-level fusion method for
rotating machinery fault diagnosis. Generally, heterogeneous
information fusion is executed at feature-level fusion for
mechanical condition monitoring and fault diagnosis in the
present literature. For example, Barad et al. put forward the
development of an ANN based model for condition moni-
toring of a power turbine that blends parameters belonging
to performance, vibration, and lubrication [8]; Loutas et al.
combined use of vibration, acoustic emission, and oil debris
monitoring of rotating machinery [6]. �e condition of
mechanical system may be described in more detail by
using heterogeneous information fusion, but this process
needs multiclass sensors and its matching data acquisition
systems, which would lead to higher monitoring costs and
inconvenient operation of data acquisition in the real envi-
ronment. ANN and SVM are the most popular classication
models to execute decision at feature-level fusion [12, 13].
�e main di�erence between ANN and SVM is in their risk
minimization. SVM is based on structural risk minimization
principle, whereas ANN is based on traditional empirical risk
minimization principle. �e di�erence in risk minimization
leads to a better generalization performance for SVM than
that of ANN [14, 15]. SVM is powerful for solving the
problem with small sampling, nonlinear and high dimension
in machinery condition classication. In this paper, the
proposed feature-level fusionmethod belongs to homologous
information fusion that the raw data all come from vibration
sensors, so only a vibration testing system is needed for
raw signal collected, which makes the process simpler. In
this method, time-domain features are calculated from each
vibration signal to compose a multidimensional feature set,
and the SVM is selected as the classication model to process

information fusion. In order to verify the e�ectiveness of
the proposedmethod, fault diagnostic cases are tested, which
include fault diagnosis of rolling bearing (identifying normal,
inner race defect, outer race defect, and ball defect), fault
diagnosis of gear (identifying normal, chipped tooth, and
missing tooth), and fault diagnosis of rotor crack (identifying
normal, crack depth of 3mm, and crack depth of 5mm). For
each case study, the sensibilities of the features are analyzed.

2. Theory

2.1. Support Vector Machine (SVM). �e SVM is a machine
learning method based on the statistical learning theory and
structural risk minimization principle. Given two category

sample sets (��, ��) (�� ∈ ��; �� ∈ {−1, +1}; � = 1, 2, . . . , �), � is
the number of samples. �e optimal hyperplane separating
the data can be obtained as a solution to the following
optimization problem [15, 16]:

Min
12‖	‖2 + 


�∑
�=1
��

s.t. �� [(	 ⋅ ��) + �] ≥ 1 − �� (�� ≥ 0) ,
(1)

where � is weight vector, � is scalar, �� is slack variable, and 

is error penalty.

�e dual quadratic optimization description can be
obtained by converting the problem with Kuhn-Tucker con-
dition into the equivalent Lagrangian dual problem:

Max
�∑
�=0
�� − 12

�∑
�=1

�∑
�=1
�������� (�� ⋅ ��)

s.t. �∑
�=1
���� = 0 (0 ≤ �� ≤ 
) ,

(2)

where �� is Lagrange coe�cient, which must meet the
following equation:

�� {�� [(	 ⋅ ��) + �] − 1 + ��} = 0. (3)

�e support vector is the sample which satises the
equation ��[(� ⋅ ��) + �] = 1 − �� at the time of the nonzero��. It reveals that the samples at the edge of distribution
are essential for classication. �is leads to the optimal
classication decision function:

� (�) = sgn{ �∑
�=1
�∗� �� (�� ⋅ �) + �∗} , (4)

where � is the number of support vectors.
In linear inseparable condition, the samples (��, ��) (�� ∈��; �� ∈ {−1, +1}; � = 1, 2, . . . , �) in input space are mapped

into high dimensional space � where the optimal classi-
cation surface can be established through the nonlinear

mapping Φ : �� → �. �e nonlinear mapping Φ is
usually di�cult to be solved while kernel functions"(��, ��)
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meeting Mercer conditions can be used to solve this problem
dexterously. �e kernel function is described as follows:

"(��, ��) = ⟨Φ (��) ⋅ Φ (��)⟩ . (5)

�e optimal classication decision function of linear
inseparable samples is obtained using (5) into (4):

� (�) = sgn{ �∑
�=1
�∗� �� ⟨Φ (��) ⋅ Φ (��)⟩ + �∗}

= sgn{ �∑
�=1
�∗� ��"(��, ��) + �∗} .

(6)

�e common kernel functions include linear kernel
function, poly kernel function, radial basis function (RBF)
kernel function, and sigmoid kernel function.

�e traditional SVM was originally designed for binary
classication problems. However, many practical problems
in fault diagnosis eld are multiclassication. Now some
e�ective multiclass support vector machines were proposed
which include “one-against-one,” “one-against-all,” directed
acyclic graph (DAG), and so on [15]. Hsu et al. have given a
comparison of these methods and pointed out that the “one-
against-one” method is more suitable for practical use than
other methods [17, 18].

2.2. Time-Domain Features. When the running conditions of
the rotating machinery deviate from the normal condition,
the time-domain statistical features of the vibration signal
will be di�erent from the normal condition. Furthermore, the
time-domain statistical features will be also di�erent under
di�erent defect models.�erefore, the time-domain statistics
contain abundant defect information, and they can be used
as sensitive character applied to fault diagnosis of rotating
machinery. �e time-domain statistical features used in this
study are shown in Table 1.

2.3. Multisensors Information Fusion Model. �e model of
multisensor information fusion is used in this study and
shown in Figure 1. �e same character of di�erent sensors
is extracted to constitute a multidimensional vector and the
SVM is used for pattern recognition. Twelve di�erent time-
domain features are analyzed one by one.

3. Case Studies

3.1. Data Acquisition. Experiments were performed on the
machinery fault simulator (MFS) from SpectraQuest, Inc.,
shown in Figure 2. It can simulate most of faults that
commonly occur in rotating machinery, such as rotor body
defects, bearing defects, and gearbox defects. �e sha� rotat-
ing speed was obtained by a laser speedometer. Acceleration
signals were collected using the Dewetron 16 channels data
acquisition system and IMI 608A11 accelerometers.

In the vibration testing experiments for roller bearing
fault diagnosis, the simulator is composed of a motor,

Table 1: �e statistic features in time domain.

Code name Feature Equation

�1 Mean
(�) � = 1� ∑ |��|

�2 Peak
(��) �� = max(|��|)

�3 Amplitude square
(�	) �	 = �∑

�=1
��2

�4 Root mean square
(�rms)

�rms = (1�
�∑
�=1
��2)
1/2

�5 Root amplitude
(�
) �
 = (1�

�∑
�=1
|��|1/2 )

2

�6 Standard deviation
(�std) �std = ( 1� − 1

�∑
�=1
(�� − �)2)

1/2

�7 Skewness
(�ske) �ske = ∑

�
�=1(�� − �)3(� − 1) �std3

�8 Kurtosis
(�kur) �kur = ∑

�
�=1(�� − �)4(� − 1)�std4

�9 Waveform factor
(SF)

SF = �rms�
�10 Peak factor

(CF)
CF = ���rms

�11 Pulse factor
(IF)

IF = ���
�12 Margin factor

(CIF)
CIF = ���


�� in the table is discrete time series signal.

a coupling, a testing roller bearing tted on the le� of the sha�
near the motor, a working roller bearing on the other side, a
bearing load, and a sha�.�eMFS provides a rolling bearing
fault kit consisting of one normal, one inner race defect, one
outer race defect, one with ball defect, and one combination
of defects for performing experiments and studying bearing
fault diagnosis. �e acquisition frequency rate is 10 kHz. �e
sensors layout is depicted schematically in Figure 2(a) that a
total of 8 sensors from *1 to *8 are used.

In the vibration testing experiments for gear fault diag-
nosis, the drive from the motor transmits to the gearbox
through bearing-rotor system and belt. �e gearbox consists
of a two-stage parallel sha� with rolling bearings, helical
gears, and a magnetic brake. �e simplied diagram of
gearbox transmission is shown in Figure 3, where -1 is the
testing gear. �e MFS provides a gear fault kit consisting of
one normal, one chipped tooth, and one missing tooth for
performing experiments and studying gear fault diagnosis.
�e acquisition frequency rate is 20 kHz.�e sensors layout is
depicted schematically in Figure 2(b) that a total of 8 sensors
from /1 to /8 are used.

In the vibration testing experiments for rotor crack fault
diagnosis, the rotor-bearing system is driven by the motor. In
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Figure 1: �e multisensor information fusion process model.
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Figure 2: �e machinery fault simulator.
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Figure 3: �e simplied diagram of gearbox transmission.

order to simulate the expanding of crack, crack faults were
introduced to the test rotor by using the electrodischarge
machining.�e defect with crack width of 0.12mm and crack
depth of 3mm represents slight defect, and that with crack
width of 0.12mm and crack depth of 5mm represents serious
defect. �e acquisition frequency rate is 10 kHz. �e sensors
layout is depicted schematically in Figure 2(a) that a total of
4 sensors from *1 to *4 are used.
3.2. Fault Diagnostic Case of Gear. Vibration signals of gear
with three fault models including normal, chipped tooth,
and missing tooth are taken for analysis. A certain time-
domain feature is calculated from eight sensors (/1 to /8) to
constitute an eight-dimensional vector as a fault sample. One
hundred and ten fault samples from each model, a total of

three hundred and thirty samples, are used to constitute the
fault sample sets. Sixty fault samples from each model, a total
of one hundred and eighty samples, are selected randomly as
training samples and the others are used as testing samples.
Twelve time-domain statistics are analyzed one by one.

LibSVM-mat-2.9 is chosen for SVM calculation. LibSVM
is developed by Lin Chih-Jen from Taiwan [19]. It is a simple
and easy-to-use SVMs tool for classication. RBF kernel
function is chosen as kernel function shown as follows:

"(��, ��) = exp (−566666�� − ��666662) , 5 ≻ 0. (7)

�e cross-validation combination with network search
method is used to search the best parameters: the error
penalty 
 of SVM and 5 of RFB. One-against-one multiclas-
sication is chosen for pattern recognition. �e diagnostic
results of gear by using di�erent time-domain features are
listed in Table 2.

It can be found from Table 2 that the highest diagnostic
accuracy is 93.33% by using the peak factor as feature to
constitute fusional vector for gear fault diagnosis. Sensitivity
of the features can be indicated by diagnostic accuracy when
using the same classier SVM, so, the peak factor is the
most sensitive feature in the twelve time-domain features for
identifying gear defect, followed by the amplitude square,
root amplitude, mean, root mean square, standard deviation,
and peak. �e diagnostic accuracy is all above 80% by using
these features. �e skewness, kurtosis, waveform factor, and
margin factor are less sensitive comparatively.�e diagnostic
accuracy is all under 70% by using these features.
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Table 2: Diagnostic results of gear by using di�erent features for fusion.

Feature
�e best parameter Diagnostic accuracy (%)
 5 Normal Chipped tooth Missing tooth All testing samples

Mean 26.5 215 98 82 84 88.00

Peak 21 28 98 86 66 83.33

Amplitude square 212 20 98 82 88 89.33

Root mean square 214 23 98 78 86 87.33

Root amplitude 211.5 211.5 100 88 76 88.00

Standard deviation 27.5 29.5 98 78 86 87.33

Skewness 28 2−1 98 30 58 62.00

Kurtosis 22.5 2−3 94 68 40 67.33

Waveform factor 2−1.5 29 92 42 30 55.33

Peak factor 20.5 2−1 94 92 94 93.33

Pulse factor 2−0.5 2−2 96 64 60 73.33

Margin factor 20 2−3 96 57 55 69.33

Table 3: Diagnostic results of gear by using di�erent single sensors.

Sensor
�e best parameter Diagnostic accuracy (%)
 5 Normal Chipped tooth Missing tooth All testing samples

/1 25.5 28 40 28 86 51.33/2 23.5 213.5 22 94 100 72.00/3 21 24 84 82 76 80.67/4 23 28.5 54 80 94 76.00/5 215 20.5 64 90 100 84.67/6 213.5 26.5 92 96 56 81.33/7 211.5 27.5 90 96 64 83.33/8 215 24 78 86 58 74.00

It also can be found from Table 2 that the accuracy of
normal testing samples is all above 90% by using any feature.
During the analysis, we also found that the samples of defect
with chipped tooth and defect with missing tooth are easy
to be misclassied with each other, but defect samples are
seldom mistakenly regarded as normal samples, so it can
be deduced that normal and defect gear are always easy to
distinguish.

In order to compare with single sensor for gear fault diag-
nosis, take eight features from a single sensor to constitute an
eight-dimensional vector as a fault sample. �e eight features
are the peak factor, amplitude square, root amplitude, mean,
root mean square, standard deviation, peak, and pulse factor,
which are the rst eight sensitive features for identifying
gear defect selected on the basis of the above analysis result.
In order to avoid the orders of magnitude di�erence of
di�erent features, normalized eigenvector is processed before
inputting SVM. In fact, during the proposed multisensors
information analysis, the fault sample is constituted by the
same feature from multisensors, so the orders of magnitude
di�erence are nonexistent and normalized eigenvector is
not needed. �e sensors /1 to /8 are analyzed one by one.

�e diagnostic results of gear by using di�erent single sensors
are listed in Table 3.

Comparing with Tables 2 and 3, it can be found that
there is higher diagnostic accuracy by using multisensors
information fusion method than using single sensor method
as a whole.

3.3. Fault Diagnostic Case of Rolling Bearing. Vibration sig-
nals of rolling bearing with four fault models including
normal, inner race defect, outer race defect, and ball defect
are taken for analysis. A certain time-domain feature is
calculated from eight sensors (*1 to *8) to constitute an eight-
dimensional vector as a fault sample. One hundred and ten
fault samples from each model, a total of four hundred
and forty samples, are used to constitute the fault sample
sets. Fi�y fault samples from each model, a total of two
hundred samples, are selected randomly as training samples
and the others are used as testing samples. Twelve time-
domain statistics are analyzed one by one.

LibSVM-mat-2.9 is chosen for SVM calculation. Gaus-
sian kernel function is chosen as kernel function. �e cross-
validation combination with network search method is used
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Table 4: Diagnostic results of rolling bearing by using di�erent features for fusion.

Feature
�e best parameter Diagnostic accuracy (%)
 5 Normal Inner race defect Outer race defect Ball defect All testing samples

Mean 2−3 215 100 100 100 100 100

Peak 23 27 94.29 94.29 100 100 97.14

Amplitude square 2−3 25 100 100 100 100 100

Root mean square 24.5 215 100 100 100 100 100

Root amplitude 2−2 215 100 100 100 100 100

Standard deviation 24.5 215 100 100 100 100 100

Skewness 22 24 65.71 84.29 62.86 80 73.21

Kurtosis 26 2−2 90.00 72.86 82.86 97.14 85.71

Waveform factor 22 29 81.43 70.00 80.00 98.57 82.50

Peak factor 23 2−3 64.29 64.29 78.57 95.71 75.71

Pulse factor 22 2−3 71.43 64.29 81.43 95.71 78.21

Margin factor 25 2−4.5 71.43 68.57 80 95.71 78.93

Table 5: Diagnostic results of rolling bearing by using di�erent single sensors.

Sensor
�e best parameter Diagnostic accuracy (%)
 5 Normal Inner race defect Outer race defect Ball defect All testing samples

*1 214.5 2−1.5 85.56 88.89 100 98.89 93.33*2 211 25.5 58.89 58.89 100 100 79.44*3 23.5 24 96.67 78.89 100 98.89 93.67*4 214.5 20.5 100 85.56 83.33 98.89 91.94*5 22 27.5 100 96.67 100 100 99.17*6 22 27.5 97.7 96.67 100 91.11 96.39*7 211 23.5 98.89 90 100 88.89 94.44*8 210 2−1.5 61.11 51.11 53.33 87.78 63.33

to search the parameters
 and 5. One-against-onemulticlas-
sication is chosen for pattern recognition. �e diagnostic
results of rolling bearing by using di�erent time-domain
features are listed in Table 4.

It can be found from Table 4 that the mean, amplitude
square, root mean square, root amplitude, and standard
deviation are the rst ve sensitive features for identifying
rolling bearing defect. �e diagnostic accuracy is all 100%
by using these features. Comparing with Tables 4 and 2, it
can be found that there is a higher diagnostic accuracy for
rolling bearing fault diagnosis than for gear fault diagnosis by
using the proposed information fusion method as a whole.
�e main cause is that the way from the defect position of
rolling bearing to the sensor installation position is shorter
and simpler than the way from the defect position of gear.

In order to compare with single sensor for rolling bearing
fault diagnosis, take eight features from a single sensor to
constitute an eight-dimensional vector as a fault sample. �e
eight features are the mean, amplitude square, root mean
square, root amplitude, standard deviation, peak, kurtosis,
and waveform factor, which are the rst eight sensitive
features for identifying rolling bearing defect selected on the
basis of the above analysis result. In order to avoid the orders
of magnitude di�erence of di�erent features, normalized

eigenvector is processed before inputting SVM.�e sensors *1
to *8 are analyzed one by one.�e diagnostic results of rolling
bearing by using di�erent single sensor are listed in Table 5.

Comparing with Tables 4 and 5, it can be found that
there is higher diagnostic accuracy by using multisensors
information fusion method than using single sensor method
as a whole.

3.4. Fault Diagnostic Case of Rotor Crack. Vibration signals
of rotor crack with three fault models including normal,
crack depth of 3mm, and crack depth of 5mm are taken for
analysis. A certain time-domain feature is calculated from
four sensors (*1 to *4) to constitute a four-dimensional vector
as a fault sample. One hundred fault samples from each
model, a total of three hundred samples, are used to constitute
the fault sample sets. Fi�y fault samples from each model,
total of one hundred and �y samples, are selected randomly
as training samples and the others are used as testing samples.
Twelve time-domain statistics are analyzed one by one.

LibSVM-mat-2.9 is chosen for SVM calculation. Gaus-
sian kernel function is chosen as kernel function. �e cross-
validation combination with network search method is used
to search the parameters
 and5. One-against-onemulticlas-
sication is chosen for pattern recognition. �e diagnostic
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Table 6: Diagnostic results of rotor crack by using di�erent features for fusion.

Feature
�e best parameter Diagnostic accuracy (%)
 5 Normal Crack depth of 3mm Crack depth of 5mm All testing samples

Mean 24.5 212 98 94 100 98.67

Peak 20 29.5 72 86 88 85.33

Amplitude square 27 22 100 96 94 96.67

Root mean square 26 24 100 98 100 99.67

Root amplitude 25.5 23 100 92 100 97.33

Standard deviation 24 28 98 96 98 98.67

Skewness 25 2−2 58 44 46 58.00

Kurtosis 23.5 2−1 44 74 84 71.00

Waveform factor 22 23 34 80 84 72.33

Peak factor 22.5 2−1.5 42 46 62 69.33

Pulse factor 2−3 2−1 28 74 76 64.00

Margin factor 21 2−3 32 72 74 64.67

results of gear by using di�erent time-domain features are
listed in Table 6.

It can be found from Table 5 that the mean, amplitude
square, root mean square, root amplitude, and standard
deviation are the rst ve sensitive features for identifying
rotor crack defect.�e diagnostic accuracy is all 90% by using
these features. �e result is similar to fault diagnostic case of
rolling bearing.

4. Conclusion

In this paper, a feature-level information fusionmethodology
is proposed that all the features are calculated using vibration
data in time domain to constitute fusional vector and the
SVM is used for classication. Only a vibration testing
system is needed for raw signal collected in this method,
so the process is simpler. �e e�ectiveness of the proposed
methodology is tested with examples of gear, rolling bearing,
and rotor crack fault diagnosis. Sensitivities of the twelve
time-domain features are discussed in each case study. �e
analyzed results indicate that the peak factor is themost sensi-
tive feature in the twelve time-domain features for identifying
gear defect, but it is not very sensitive for identifying rolling
bearing and rotor crack defect. �e mean, amplitude square,
root mean square, root amplitude, and standard deviation are
all sensitive for identifying gear, rolling bearing, and rotor
crack defect comparatively.

�e features used and discussed in this paper are all in
time domain; however, features in frequency domain also
can be used for fault diagnosis of rotating machinery and
the sensibilities of the features for identifying rolling bearing,
gear, and rotor defect are also worth studying in the future.
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