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Abstract: When an induction motor is running at stable speed and low slip, the fault signal of the
induction motor’s broken bar faults are easily submerged by the power frequency (50 Hz) signal.
Thus, it is difficult to extract fault characteristics. The left-side harmonic component representing
the fault characteristics can be distinguished from power frequency owing to V-shaped trajectory of
the fault component in time-frequency (t-f ) domain during motor startup. This article proposed a
scheme to detect broken bar faults and discriminate the severity of faults under starting conditions.
In this scheme, successive variable mode decomposition (SVMD) is applied to analyze the stator
starting current to extract the fault component, and the signal reconstruction is proposed to maximize
the energy of the fault component. Then, the quadratic regression curve method of instantaneous
frequency square value of the fault component is utilized to discriminate whether the fault occurs.
In addition, according to the feature that the energy of the fault component increases with the fault
severity, the energy of the right part of the fault component is proposed to detect the severity of
the fault. In this paper, experiments are carried out based on a 5.5 kW three-pole induction motor.
The results show that the scheme proposed in this paper can diagnose the broken bar faults and
determine the severity of the fault.

Keywords: broken bar faults; induction motor; successive variational mode decomposition (SVMD);
quantification of failure severity; starting current

1. Introduction

Induction motors have been widely used in various industries due to their advantages,
including their cheap price and stable structure. However, poor operating environment
and artificial mis-operation in the production process may lead to motor failure, among
which broken bar faults are one of the typical failures of motors. In the early stage, the
broken bar faults manifest as local fracture of the rotor bar with stress near the broken
rotor bar enhancing, then the fault develops into complete broken rotor bar even adjacent
bars until the motor whole failure. Therefore, the detection of incipient broken rotor bar is
very necessary to reduce economic losses and schedule regular maintenance [1]. The fault
frequency of the broken bar faults in the stator current is f b = |1 − 2s| f, which is called the
left-side harmonic; the left-side harmonic component is the fault component. Many papers
have put forward fault detection methods which analyze the stator current in time domain
and frequency domain. However, the slip rate s will be low in light load steady-state
operation, which leads to the fault frequency being easily submerged by power frequency
f [2–4]. When partial broken rotor bars occur, the amplitude of the fault component which
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represents the severity of the fault is weak and easy to be overwhelmed by the noise.
In both cases, those methods are rough to perform roles in the diagnosis of the broken bar
faults [5–8]. The fault frequency changes regularly from 50 Hz to 0 to 50 Hz and emerges a
V-shape in the t-f domain during the starting process, which is completely different from
the t-f feature of power frequency. Consequently, the starting current signal is employed to
diagnose the broken bar faults in this article.

Linear time-frequency (t-f ) analysis methods such as short-time Fourier transform
(STFT) and wavelet transform are widely used to analyze non-stationary signals. Choosing
a proper window function in STFT can reduce spectrum leakage to a certain extent, but
according to Heisenberg’s uncertainty principle, STFT cannot take both time and frequency
resolution into account, so the fault frequency trajectory in STFT is fuzzy and decentralized
when the start-up time is short [9–11]. In [12], an improvement STFT analysis method was
proposed to achieve the entire fault frequency trail under a long starting time, whose t-f res-
olution is determined by the trajectory slope, but the extraction effect under a short starting
time has not been verified. Compared with the STFT, wavelet transform has the advantage
of multi-resolution and has a better effect of extracting local features of signals [13] uses con-
tinuous wavelet transform to analyze the starting current, and realizes the accurate tracking
of the fault frequency. Discrete wavelet transform discretizes the scale parameters by
power levels, which can decompose the starting current into multiple sub-signals, and then
according to the frequency distribution between the sub-signals to obtain the (t-f ) trajectory
of the fault frequency. However, the performance of those wavelet transform methods are
susceptible to the selection of wavelet bases [14,15]. Quadratic transform analysis methods
such as Wigner-Ville distribution (WVD) which has the highest t-f resolution is proposed
to solve the problem of insufficient t-f resolution. However, the cross-term interference
of WVD appears severely resulting from complex harmonic components in the motor
current [16–18]. In addition, adaptive decomposition algorithms such as empirical mode
decomposition and empirical wavelet transform have a good performance in the analysis of
nonlinear and nonstationary signals. Nevertheless, empirical mode decomposition has the
problem of mode mixing, which affects the extraction of the fault component [19–21]. The
empirical wavelet transform overcomes the problem of mode mixing, but it is susceptible
to noise interference, and the frequency band division of sub-signal is limited by the local
maximum of the Fourier spectrum [22,23]. Variational mode decomposition suppresses the
problem of mode mixing and is beneficial to narrow band signal decomposition, but the
decomposition performance of variational mode decomposition depends on the setting
of parameter such as mode and penalty factor. If the setting is inaccurate, the result of
extracting the fault component will become descending [24–26]. Successive variational
mode decomposition (SVMD) which is improved from variational mode decomposition
is an adaptive signal processing method. It decomposes the original signal into a series
of intrinsic mode functions by constructing and solving constrained variational problems.
SVMD can adaptively determine the number of modes and match the best center frequency
through decomposing the signals one by one, which leads to the avoidance of redundant
mode extraction, the decline of calculation time, and the improvement of convergence
speed [27].

This paper proposes a novel method to diagnosis the broken bar faults and distinguish
the severity of broken rotor bar under starting conditions, including partial broken rotor
bar and adjacent broken rotor bars. This method is based on the decomposition of the stator
starting current in the (t-f ) domain using the SVMD then reconstructing the fault component
according to the center frequency. The quadratic regression curve of the instantaneous
frequency square value of the fault component is utilized to diagnose the broken bar faults.
In addition, the energy of the fault signal is employed as a quantitative index for the
severity of the broken bar faults. The method proposed in this paper is tested by using
experimental data under five different states without measuring motor speed.

This paper is structured as follows. The characteristic analysis of the broken bar
faults signal is overviewed in the Section 2. Section 3 introduces the methodology of the
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proposed scheme in detail. The fault diagnosis process is fully illustrated in Section 4.
The application of the proposed scheme and thresholds determination are particularly
discussed in Section 5. Finally, the conclusion is presented in Section 6.

2. Analysis on the Fault Features of Broken Bar Faults

When broken bar faults occur in an induction motor, the distorted rotor magnetic field
can be decomposed into a positive and a negative sequence rotating magnetic field. The
negative sequence rotating magnetic field induces fault component with a frequency of
f b = (1 − 2s) f in the stator winding. The occurrence of the fault component is an important
feature of the broken bar faults. The stator current of the motor with broken bar faults is
divided into three parts: the power frequency component, the fault component, and the
noise. WE assume that the expression of stator current when broken bar faults occur is
as follows:

i(t) = Ap cos(ω1t + ϕp) + AL cos[(1− 2s)ω1t + ϕL] + N(t) (1)

where Ap is the power frequency current amplitude, AL is the fault current amplitude under
partial broken bar faults, ω1 is the power frequency angular frequency, ϕp and ϕL are the
phase angles, and N(t) is 35 dB(signal-to-noise ratio) additive noise.

The time-domain waveform of Equation (1) is shown in Figure 1a, and the power
spectral density is shown in Figure 1b. It can be seen that the energy of the power frequency
current is concentrated around the power frequency, which is a narrow-band signal. During
the starting process, s decreases from 1 to close to 0 with time. The energy of the fault current
is dispersed in the frequency band below the power frequency, which is a broadband signal.
The power frequency current and the fault current show different characteristics during
the starting process, so the starting current can be utilized for the fault diagnosis of broken
rotor bars when the slip is low. It can be seen from Figure 1 that the noise is randomly
distributed in the frequency domain and the energy is not concentrated. In the early stage
of the broken bar faults, the amplitude of the fault component is comparable to the noise
component, hence the weak fault current signal is easily submerged by the noise, which
brings difficulty to the fault diagnosis. Therefore, this paper takes advantages of the good
anti-interference and adaptability of the SVMD to decompose the starting current and takes
the fault component as the feature for fault diagnosis.
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Figure 1. Time-domain waveform and power spectral density diagram of stator current and its com-
ponents. (a) Current time domain waveform and (b) current power spectral density. 
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Figure 1. Time-domain waveform and power spectral density diagram of stator current and its
components. (a) Current time domain waveform and (b) current power spectral density.

3. Fault Diagnosis Method Based on Successive Variational Mode Decomposition

In this section, the methodology of the proposed scheme is discussed. Firstly, the
algorithm principle is explained in Section 3.1. Secondly, the parameter initialization of
SVMD and the reconstruction of the fault component are introduced in Section 3.2. Thirdly,
the broken bar faults detection based on the quadratic regression curve of the square value
of the fault instantaneous frequency is put forward in Section 3.3. Finally, the proposed
index for the severity of the broken bar faults is illustrated in Section 3.4.
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3.1. Introduction to SVMD

The principle of SVMD is to construct a variational problem and decompose the signal,
its essence is the successive application of single-mode variational mode decomposition.
Assuming that during the hth SVMD decomposition, the stator current signal i(t) is divided
into two parts: the hth mode ih(t) and the residual signal irh(t), where irh(t) consists of two
parts, namely the undecomposed signal part iuh(t) and the sum of the previous h− 1 modes.
And those part is expressed as follows:

i(t) = ih(t) + irh(t) (2)

irh(t) =
h−1

∑
k=1

ik(t) + iuh(t) (3)

The signal is decomposed into some modes possessing different frequency distribution
by applying SVMD, and each mode is tightly distributed around its center frequency ωh,
where ih(t) satisfies the following constraint:

J1 = min
xh

{
|| ∂

∂t

[
(δ(t) +

j
πt

)ih(t)
]

e−jωht||22
}

(4)

In order to reduce the spectrum overlap of ih(t) and irh(t), the following constraints
should also be met in the frequency domain:

Ĵ2 = min

{
h−1

∑
k=1
|| ih(ω)

α(ω−ωk)
2 ||

2
2

}
(5)

Ĵ3 = min

{
|| irh(ω)

α(ω−ωh)
2 ||

2
2

}
(6)

where α is the penalty factor, which is introduced for the Lagrange multiplier method.
In order to ensure the anti-interference of SVMD algorithm and the fidelity of signal

decomposition, the penalty factor and Lagrange multiplier λ(t) are added to obtain the
following Lagrange function:

L(ih, ωh, λ) = αJ1 + J2 + J3 + ||i(t)− (ih(t) + iuh(t)

+
h−1
∑

k=1
ik(t))||22 +

〈
λ(t), i(t)−

(
ih(t) + iuh(t) +

h−1
∑

k=1
ik(t)

)〉 (7)

where J1 and J2 are Ĵ1, Ĵ2 in the time domain.
The optimal value is obtained through iterative search. SVMD converts the h-dimensional

optimization problem of variational mode decomposition into h one-dimensional optimiza-
tion problems, thus significantly reducing the number of iterations and saving calcula-
tion time.

3.2. SVMD Parameter Initialization and Fault Characteristic Signal Reconstruction

In order to improve the speed of the algorithm and the accuracy of the decomposition
results, the use of SVMD for adaptive decomposition requires to set a suitable initial value
of the center frequency and a penalty factor in advance.

The initialization of the center frequency includes three types: (1) 0, (2) random setting,
(3) the frequency f max with the highest content in the mode. This paper takes 5.5 kW
induction motor as an example for experiment, the parameters are shown in Table 1. The
average running time is shown in Table 2 after multiple broken bar faults experiments. The
shortest execution time is taken by SVMD when center frequency is initialized at the f max,
so this article sets the center frequency to iterate from f max. Until the residual amount is
less than the set value, this modal decomposition ends.
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Table 1. Electrical data of the induction motor.

The Motor Parameters Value

Motor Power 5.5 kW
Voltage (rms) 380 V
No. of poles 3

Number of stator slots 36
Number of rotor bars 28

Full load slip 3%

Table 2. The influence of initial value of center frequency on SVMD decomposition time.

Initial Value SVMD Time

0 6.717 s
Randomly 8.098 s

f max 6.592 s

The penalty factor α is one of the most important parameters of SVMD. The larger the
α, the narrower the passband of modes. If α is too large, false modes will be generated; if α
is too small, the bandwidth will be too large, which may cause mode mixing. Equation (4)
makes the modes closely distributed around the center frequency, which means that SVMD
is a decomposition that favors narrowband signals. However, Section 2 shows that the
stator starting current contains a power frequency signal with a narrow bandwidth and the
fault component with a wider bandwidth. In order to better extract the energy concentrate
fault component from the stator current dominated by the power frequency, there would
be a tradeoff considered in the setting of α. If the fault component is decomposed into
multiple small bandwidth signals, the utilization of a relatively larger α can give full play
to the narrow-band decomposition advantages of SVMD and ensure the separation of
fault component and power frequency component. Figure 2 shows the distribution curve
of the energy value of the right part of the fault component and α. In order to display
the energy distribution under different faults in the same figure, the energy values in the
Figure 2 are normalized based on the maximum value. It can be seen from Figure 2 that the
energy amplitude of the fault current component is high in the range of α = 50,000~150,000,
the energy value changes in a small range. The objective of the proposed method in this
paper is to obtain energy concentrated fault signals. In the range of α = 50,000~150,000, the
sensitivity of penalty factor parameter change to energy value change is not high. Therefore,
according to the energy distribution of different fault shown in Figure 2, the maximum
value of α is set to 100,000 in this paper.
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When α is large, SVMD is equivalent to a set of bandwidth filters, decomposing the
signal into multiple small bandwidth signals, the starting fault component is a broadband
signal, so the fault component decomposed by the SVMD will be distributed in multiple
modes. Equation (5) minimizes the crossover between the modes. Therefore, the center
frequency can be used to determine the position of the fault frequency in the frequency
band. In order to make the energy of the fault signal concentrated to improve the accuracy
of the diagnosis, this paper adds the modes whose center frequency below the power
frequency to obtain the reconstructed fault component. The actual fault feature extraction
results are shown in Section 5.2.

3.3. Fault Detection Based on Quadratic Regression

The slip s varies from 1 to 0 in the starting time t, and when the power frequency f is
constant, the fault frequency f b = |1 − 2s| f displays a V-shape curve. The increasement
rate of speed presents the tendency of “fast followed by slow”, so the slip s = 0.5 is in the
second half of the starting process, that is, the lowest of frequency-time curve locates in the
second half of starting process. As shown in Figure 3a, the fault frequency f b = |1 − 2s| f
and t present an approximate piecewise linear relationship with f b = 0 as the cut-off point
during the starting process. The relationship between the f b

2 and time t is quadratic which
is illustrated in Figure 3b. Therefore, the curve of f b

2 with time can be established by
the quadratic regression method. When the motor is healthy, the stator current includes
power frequency components and noise, and the signal reconstructed by SVMD represents
noise in this condition. The noise is randomly distributed, and the relationship between its
instantaneous frequency square value and time does not follow the quadratic curve. If the
quadratic regression method is exploited to healthy condition, the quadratic coefficient will
be small.
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Carry out the broken bar faults experiment on the motor to verify the above theoretical
analysis. The specific motor parameters are shown in Table 1. The fault frequency squared
values f bih

2 and f bsh
2 of partial broken rotor bar and healthy motors calculating from the

reconstructed fault signal are illustrated in Figure 4a, and the quadratic regression curves
f bic

2 and f bsc
2 of the f bih

2 and f bsh
2 are shown in Figure 4b. Figure 4 illustrates that only

when the broken bar faults occur, the instantaneous frequency of the characteristic signal
will exhibit the V-shaped trajectory as demonstrated in Figure 4. Even if the fault is partial
broken rotor bar, the change trend of the curve can clearly distinguish the fault state and
the health state of the motor.

This paper is based on the least square method to obtain the quadratic regression
function of f b

2 varying with time, and then diagnoses the broken bar faults according to
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the quadratic coefficient magnitude of the function. The opening size of the quadratic
regression curve can indicate whether there is a V-shaped trajectory, and the quadratic
coefficient can be used to indicate the opening size. When the quadratic coefficient is greater
than the set threshold, it can be judged that the motor has the broken bar faults.
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3.4. Fault Judgment Based on Quadratic Regression

The quadratic coefficient can be used to diagnose whether the broken bar faults occur,
but there is no clear relationship between quadratic coefficient and fault severity, so the
quadratic regression method is not suitable for distinguishing the severity of the broken
rotor bar. It is necessary to find a quantitative factor that can diagnosis the severity of the
broken bar faults. The fault component signal gets more evident with the severity of broken
bar faults increasing. The more serious the fault, the higher the energy that represents
the fault severity degree of the signal. If the energy value of the fault signal is used as a
quantitative factor to define the fault severity, an accurate early warning of the severity of
the fault can be realized [28].

First, the (t-f ) distribution diagram of the fault component is drawn, and then energy
integration on the (t-f ) region of the fault current is performed to obtain the energy value.
Finally, the severity of the broken bar faults according to the energy value magnitude is
distinguished. The calculation formula of the energy value Er in this paper is as follow:

Er =
∫ f2

f1

∫ t2

t1

ω(t, f )dtd f (8)

where f 1 and f 2 are the upper and lower limits of frequency integration, respectively set to
0 Hz and 45 Hz; t1 and t2 are the upper and lower limits of time integration; and ω(t, f ) is
the fault frequency on the (t-f ) distribution diagram.

Figure 4a shows that during the starting period, the changing trends of the left and
right parts of the fault instantaneous frequency are different. The electromagnetic oscillation
of the motor is severe at the start beginning, and there are low-frequency fluctuations in the
stator current. In the meantime, the energy value of the right half of the fault component is
higher than that of the left half, and it is not distorted by low-frequency interference [10].
Therefore, this paper takes the energy value of the right half of the fault component as a
quantitative indicator of the severity of the fault. Setting the upper and lower limits of time
t1 and t2 in Equation (8) as the start and end times of the right half of the fault component,
the integral result is the energy value of the right half.
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4. Successive Variational Mode Decomposition Based Broken Bar Faults
Diagnosis Process

In view of the fact that it is difficult to identify the broken bar faults under low slip,
this paper proposes the fault diagnosis scheme based on SVMD to analyze the starting
stator current. The specific process is shown in Figure 5, which is mainly divided into three
stages. The first stage is the fault feature extraction. Firstly, the parameters of the SVMD
are initialized, and then the stator starting current is decomposed into a series of modes by
SVMD. Finally, the modes whose center frequency was below the power frequency were
added together to obtain the reconstructed the fault component. The second stage is fault
diagnosis. Firstly, calculating the instantaneous frequency of the fault component, and then
getting the quadratic regression function of frequency square value. Finally, diagnosing
the fault according to the magnitude of the quadratic coefficient, if there are the broken
bar faults, issuing the fault warning. The third stage is the quantification of failure degree.
Firstly, the (t-f ) distribution diagram of the fault component is drawn, and then the (t-f )
region where the fault signal is located according to Equation (8) is integrated to obtain
the energy value which is representing the severity of the fault. Finally, the severity of the
broken bar faults according to the magnitude of the energy is determined.
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5. Experimental Setup
5.1. Experimental Platform

The proposed method has been applied to the analysis of a 5.5-kW 50-Hz IM, whose
parameters are given in the Table 1. The experimental equipment is shown in Figure 6a,
including a power supply system, a data acquisition system, and an experimental motor.
The power supply system includes a voltage regulator that regulates the power supply
voltage of the motor and an E36313A stabilized DC power supply that supplies power
to the sensors. The data acquisition system includes IT 200-S current sensor, DHN-200
torque sensor, DLM4056 oscilloscope and signal switching circuit. Experiments have been
carried out under five different fault conditions: healthy, partial broken rotor bar, one
broken rotor bar, two broken rotor bars, and three broken rotor bars. The broken rotor bars
are obtained by drilling holes, as shown in Figure 6b. In all experiments, the operating
conditions are identical: the supply voltage is 139 V for preventing the experimental system
from excessive surge current and ensuring safety in starting period, the motor is started at
no load, and the sampling frequency of the starting current is 5 kHz. The proposed method
is applied to experimental current signal under five different fault conditions, among them
the starting current of the partial broken bar faults is shown in Figure 7.
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5.2. Validation of Successive Variational Mode Decomposition Method

In order to verify the effectiveness of the method proposed in this paper to obtain
reconstructed fault signals based on SVMD, the method is compared with other methods by
applying to the starting current of the partial broken rotor bar experiment shown in Figure 7,
and the (t-f ) distribution of the processing results is shown in Figure 8a. Related to this, the
colored bars on the (t-f ) distribution diagram represent different energy densities. Yellow
indicates higher densities, which means higher severity of failure. The other transforms
(empirical wavelet transform, empirical mode decomposition) are applied to the same
signal, and the consequences are illustrated in Figure 8b,c. Comparing the three processing
outcomes, it can be found that the resolution of the right half of the fault component
trajectory using empirical wavelet transform is misty whether or not noise is added. As the
additive noise increases, the right half of the fault component trajectory in empirical mode
decomposition becomes blurred. In contrast, SVMD displays a clear the right half of the
fault component trajectory, and can also obtain energy-intensive the right half of the fault
signal under the condition of aggravated noise. Therefore, the method of reconstructing
fault signal based on SVMD proposed in this paper is suitable for the diagnosis of the
broken bar faults.

The result of SVMD decomposes the stator starting current under the partial broken
bar faults condition is shown in Figure 9a, where mode 0 represents the starting current
signal, and modes 1 to 5 represent the modes obtained by SVMD decomposition of the
stator current. It can be seen from Figure 9a that both mode 1 and mode 2 present the broken
bar faults characteristics as illustrated in Figure 1, and the center frequencies are 5.9 Hz
and 38.3 Hz, respectively. Therefore, the reconstructed fault components are obtained by
adding the two modes. For the purpose of avoiding the end effect of SVMD decomposition,
30% to 90% of the current signal is intercepted for fault detection, and the consequence is
described in Figure 9b.



Energies 2022, 15, 1196 12 of 16Energies 2022, 15, x FOR PEER REVIEW 13 of 18 
 

 

 

      (a) SVMD    (b) EWT (c) EMD 

Figure 8. (t-f) distribution of fault characteristic signals of partial broken rotor bar processed by dif-
ferent methods. Where No is the representation of no additional noise, 35 dB and 25 dB represent 
the SNR of 35 dB and 25 dB are added to the original signal. EMD is empirical mode decomposition, 
EWT is empirical wavelet transform. 

  

Figure 8. (t-f ) distribution of fault characteristic signals of partial broken rotor bar processed by
different methods. Where No is the representation of no additional noise, 35 dB and 25 dB represent
the SNR of 35 dB and 25 dB are added to the original signal. EMD is empirical mode decomposition,
EWT is empirical wavelet transform.

Energies 2022, 15, x FOR PEER REVIEW 14 of 18 
 

 

   

(a) 

 

(b) 

Figure 9. (a) SVMD decomposition diagram of stator starting current when the bar is partial broken. 
(b) Reconstructed fault characteristic current. 

5.3. Fault Diagnosis 
As discussed before, SVMD has a good resolution in representing the fault frequency. 

In addition, effective pattern recognition technology is needed to distinguish the fault fre-
quency in (t-f) plane. After obtaining the reconstructed fault current, then calculating its 
instantaneous frequency fb, the quadratic regression curve of fb2 is achieved by the least 
square method. Figure 10 illustrates the fb2 curve of the induction motor under healthy 
(Healthy), partial broken rotor bar (Half BRB), one broken rotor bar (1 BRB), two broken 
rotor bars (2 BRB) and three broken rotor bars (3 BRB) conditions. The solid line and the 
dotted line, respectively, represent the square value curve of the fb and the quadratic re-
gression fitting curve of the fb. It can be seen from Figure 10 that when the motor has 
broken bar faults, the fitting curve presents obvious quadratic function characteristic, in-
dicating the linear relationship between fb and time during the starting process. However, 
when the motor is in a healthy state, the quadratic function feature of the fitting curve is 
extremely weak, indicating that fb has a wireless relationship with time (that is, there is no 
V-shaped characteristic and no broken bar faults of the motor). 

Figure 9. (a) SVMD decomposition diagram of stator starting current when the bar is partial broken.
(b) Reconstructed fault characteristic current.



Energies 2022, 15, 1196 13 of 16

5.3. Fault Diagnosis

As discussed before, SVMD has a good resolution in representing the fault frequency.
In addition, effective pattern recognition technology is needed to distinguish the fault
frequency in (t-f ) plane. After obtaining the reconstructed fault current, then calculating its
instantaneous frequency f b, the quadratic regression curve of f b

2 is achieved by the least
square method. Figure 10 illustrates the f b

2 curve of the induction motor under healthy
(Healthy), partial broken rotor bar (Half BRB), one broken rotor bar (1 BRB), two broken
rotor bars (2 BRB) and three broken rotor bars (3 BRB) conditions. The solid line and
the dotted line, respectively, represent the square value curve of the f b and the quadratic
regression fitting curve of the f b. It can be seen from Figure 10 that when the motor
has broken bar faults, the fitting curve presents obvious quadratic function characteristic,
indicating the linear relationship between f b and time during the starting process. However,
when the motor is in a healthy state, the quadratic function feature of the fitting curve is
extremely weak, indicating that f b has a wireless relationship with time (that is, there is no
V-shaped characteristic and no broken bar faults of the motor).
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This paper takes the quadratic coefficient of the quadratic regression curve to detect
the broken bar faults, and performs 10 groups of experiments on the induction motor
under five different broken rotor bar conditions. The mean and standard deviation of the
quadratic coefficients obtained in the experiment are instructed in Table 3. It can be found
that the quadratic coefficients of healthy motor and that of broken rotor bars motor have a
large degree of differentiation, so they can be employed to fault diagnosis. In this paper,
the mean value and standard deviation of the healthy motor are applied to set the fault
threshold as described in Equation (9). When the quadratic coefficient of the quadratic
regression curve of f b

2 is greater than Cqf, it is detected as the broken bar faults. Setting Cqf
in this way ensures a minimum of 99.7% effectiveness during the classification process.

Cq f = µ1 + 3σ1 (9)

where µ1 and σ1 are the mean and standard deviation of the healthy motor.

Table 3. Mean and standard deviation of quadratic coefficients.

Motor State Mean Standard Deviation

Healthy 594 558
Half BRB 4200 170

1 BRB 4408 208
2 BRBs 4268 107
3 BRBs 4927 188
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5.4. Quantification of Failure Severity

As shown in Table 3, the magnitude of the quadratic coefficient can be practiced
to diagnosis the broken bar faults, but the severity of the broken bar faults cannot be
distinguished. Therefore, this paper takes the energy of the right part of the fault component
as the fault quantification index to quantify the severity of the fault, so as to provide early
warning of the broken bar faults.

The (t, f ) distribution of the right half of the fault component under different broken
rotor bar conditions are shown in Figure 11. It can be found that the energy density of the
right half of the fault component increases with the aggravation of the fault. The energy
of the right half of the fault component can be calculated using Equation (8), and the
mean (µ) and standard deviation (σ) of the right half of the fault component energy of the
10 experiments is illustrated in Table 4. The fault threshold range is set to [µ − 3σ, µ + 3σ] to
ensure that the accuracy of the fault severity discrimination is above 99.7%. It can be seen
from Table 4 that the right half of the fault component energy scope of healthy and partial
broken bar faults overlap, which explains the necessity of using the quadratic regression
method to judge the fault. However, the energy ranges of different adjacent broken rotor
bars do not overlap each other and have a high degree of differentiation, which proves that
the method proposed in this paper can diagnose the severity of the broken bar faults.
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Table 4. The mean and standard deviation of the right half of the fault component.

Motor State Mean (µ) Standard
Deviation (σ) Regions

Healthy 0.0959 0.0247 [0.02181, 0.17353]
Half BRB 0.1512 0.0389 [0.02836, 0.27419]

1 BRB 1.5481 0.0848 [1.29370, 1.80252]
2 BRBs 9.8031 0.3993 [8.60501, 11.0013]
3 BRBs 20.957 1.2225 [17.2902, 24.6255]

6. Conclusions

According to the features that instantaneous frequency of the fault component of stator
current changing with time during the starting period, this paper proposes a method to
diagnosis broken bar faults and distinguish fault severity. The specific characteristics of the
method are as follows:

• In this paper, SVMD is used to decompose the starting current into multiple small-
bandwidth signals, and the fault components are reconstructed to maximize the energy
of the fault signal, which realizes the signal noise reduction and improves the accuracy
and rapidity of decomposition;

• Based on the linear relationship between the fault frequency and time in the start-
ing process, the fault diagnosis of broken rotor bar is realized by comparing the
quadratic coefficients of quadratic fitting curve of instantaneous frequency square of
the fault component;

• According to the feature that the energy of the right half of the fault component signal
increases with the severity of the broken bar faults, the severity of the fault can be
determined by the energy of the right half of the fault component;

• By analyzing the starting current without measuring the speed, the proposed method
avoids the problem of the fault frequency in the frequency domain analysis method
being submerged by the power frequency when the slip rate is low.
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