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ABSTRACT Train network control management system (TCMS) is an important part of the High-speed

rail train. Because of the TCMS’s complex and redundant structure, long-term operation environment,

etc., breakdowns inevitably in the long-time running. Based on the historical fault data of the TCMS

accumulated during their online service, the working principles, failure modes, and effects analysis of TCMS

are researched and the dynamic fault tree (DFT) model of TCMS failure is built. Then, the dynamic fault

tree model is transformed into the Bayesian network (BN) model, which can model the reliability of such

types of systems. Finally, combining DFT with BN is used for fault probability estimation and reliability

assessment. The results present that increasing the reliability of key modules for the TCMS would be of

great help to High-speed rail train engineers in the fault diagnosis field.

INDEX TERMS Train network control management system, dynamic Fault tree analysis, Bayesian network,

fault diagnosis.

I. INTRODUCTION

With the fast development of China’s Railway, the High-

speed rail train, which is a large-scale intelligent system with

sophisticated structures, has become a significant mode of

transportation in China. However, the High-speed rail train

breaks down inevitably in the long-time running. Fault diag-

nosis will play a very significant role in the safety and effi-

cient operations. One crucial technical system of high-speed

rail train is the Train network Control Management System,

which is the core of ensuring safe and efficient train oper-

ation. The failure of TCMS will seriously threaten the safe

running of the High-speed rail train. Therefore, the research

of TCMS fault diagnosis has a great significance to the further

development of the High-speed railway.

Complexity is defined in two forms: structural complexity

and fault complexity. The High-speed rail train system is a

complex system with redundancy, both in its structure and

in its failure modes. Although the structure of the TCMS

seems relatively simple, the working principles and failure
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modes of TCMS are particularly complex [11]. For instance,

there are a lot of complex failure modes for the TCMS,

which are related to training operation, mechanical structures,

electrical facilities, network control, and many other aspects.

The operation of the TCMS on a High-speed rail train is

dominated by on-board equipment and microprocessors.

The TCMS involves mechanical structures and electrical

equipment such as CCU, TCN Gateway, WTD, REP, RIOM,

and HMI. The complex failure modes of the TCMS consists

of power supply anomaly, equipment anomaly, circuit board

failure, communication anomaly, and system failure. The

relationship between different failures is complicated and

uncertain.

Hence, the TCMS of High-speed rail trains is regarded as

a complex system, which is designed to achieve high levels

of reliability and redundancy. Failure of any such subsystems

will have a heavy impact on the service itself, resulting in

obvious deterioration of performance, reduction of perceived

quality, and increment of costs. A beneficial approach com-

bining dynamic fault tree analysis and Bayesian network

is applied to resolving the TCMS’s fault diagnosis with

uncertainty reasoning, solving complex and polymorphism
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problems, which will be appropriate for the fault diagnosis

and maintenance decision for High-speed Railways.

The traditional fault tree analysis is a graphical method that

models how failures propagate through the system and how

component failures lead to system failure. It provides meth-

ods and tools to compute a wide range of properties and mea-

sures [12]. FTA technique is widely used for both qualitative

and quantitative assessment. However, with the development

of modern engineering, the equipment is becoming more

and more complex. Systems designed to achieve high levels

of reliability frequently employ high levels of redundancy,

dynamic redundancy management, and complex fault & error

recovery techniques, Dugan et al. [6] presented dynamic

fault tree modeling techniques for handling these difficulties.

This method solves the reliability analysis of three advanced

fault-tolerant computer systems.

Volk et al. [1] have presented a DFT modeling approach,

which can serve to provide additional insights into the criti-

cality of field elements, for infrastructure reliability analysis

of railway station areas. Kabir et al. [2] have proposed a

hybrid modularization scheme where independent sub-trees

of a DFT are identified and quantified in a hierarchical

order. This method could provide an approximate solution to

DFTs without unacceptable loss of accuracy. Volk et al. [4]

have presented a new state-space generation approach for

dynamic fault trees (DFTs) that exploits several successful

reduction techniques from the field of model checking. Ghad-

hab et al. [5] have proposed the approach of constructing

dynamic fault trees, which can be used to evaluate various

quantitative measures by model checking, to model a variety

of safety concepts and E/E architectures for drive automation.

The DFT model can reveal clear failure mechanisms and

clear logical relationships between failures, however, as to

the complex and redundancy system, they cannot compute

the importance measure of basic event and have bidirectional

inference. The Bayesian network takes advantage of proba-

bility theory and graph theory reasoning uncertainty relation

of events, which is more clearly on the logic. Moreover,

the Bayesian network has bidirectional inference and update

related information according to the circumstance. From this

point of view, the Bayesian network is better than DFTA.

Cai et al. [7] have proposed a novel real-time reliability

evaluation methodology by combing the root cause diagnosis

phase based on Bayesian networks, which can calculate

the real-time reliability of the entire system by forwarding

inference of BNs. Cai et al. [8] have proposed a dynamic

Bayesian network-based fault diagnosis methodology, which

can identify the faulty components and distinguish the fault

types, in the presence of TF and IF for electronic systems.

Cai et al. [9] have proposed using object-oriented Bayesian

networks to reduce the overall complexities of BNs for

diagnosis and the reporting of faults that immediately occur.

Cai et al. [10] have presented a hybrid physics-model-based

and data-driven remaining useful life estimation method-

ology of structure systems considering the influence of

multiple causes by using dynamic Bayesian. A case study

showed that the estimation methodology could calculate the

RUL of structure systems with multiple influencing causes.

Yang et al. [18] have presented the Bayesian network-based

software reliability modeling method and task flow-oriented

software reliability simulation prediction method, which can

utilize the prior information of software architecture, his-

tory data, and software task flows to conduct the dynamic

reliability prediction and find the reliability weaknesses.

He et al. [19] have applied the dynamic fuzzy subset theory

into the Bayesian network, in which the fault probability of

the leaf node fault state and fuzzy dynamic fault probability

was developed and calculated. Halabi et al. [22] have applied

the Bayesian network and multivariate logistic regression

to model the relationship between sources of information.

Boudali and Dugan [23] have presented a novel reliability

modeling and analysis framework based on the Bayesian

network formalism.

However, there is another problem worth considering: it’s

not easy to build the Bayesian network model for complex

engineering systems. The surprise is that transforming the

dynamic fault treemodel into the Bayesianmodel will resolve

the problem well.

Hamza and Hacene [13] have discussed the advantages of

the Bayesian network over the fault tree in reliability and

safety analysis. Zheng et al. [16] have presented the transfor-

mation algorithm from the fault tree to the Bayesian network,

aiming to develop a bridge crane spreader fault diagnosis sys-

tem, which can effectively use historical fault data to support

subsequent maintenance. Bobbio et al. [25] have introduced

the basic inference techniques of FTmapped into a BN,which

can obtain some additional power both at the modeling and at

the analysis level. Kabir et al. [26] have applied the fault tree

analysis and the dynamic Bayesian network to assess the reli-

ability of flare systems. Khakzad et al. [27] have presented

the application of BNs in safety analysis and introduced the

similarity between FTs and BNs. Rahman et al. [28] have

built up the fault tree model of marine logistics, then a

Bayesian network approach is used to develop the risk model

considering interdependencies and conditional relationships

among the contributing factors. Zhang et al. [29] have intro-

duced a fuzzy AHP index system of respective expert judg-

ment ability and built up an event tree, then quantitative risk

reasoning and sensitivity analysis of foundation pit collapse is

achieved by using fuzzy Bayesian inference. Feng et al. [30]

have established a fault tree model of gas pipelines and

mapped this model to the Bayesian network. Qiao et al. [31]

have presented an event tree of the analytic hierarchical pro-

cess for the evaluation of expert capability, and then built up

a Bayesian network model of maritime accident scenarios.

Xiao et al. [32] have transformed a seaplane risk evaluation

indicator system into an event tree, and then proposed a novel

approach to modeling the risk of seaplane operation safety

using a Bayesian network.

The rest of the paper is organized as follows: Section II

describes the analysis of the Dynamic fault tree method.

An overview of Bayesian network analysis is also provided
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in this section. The structural analysis of TCMS and DFT

modeling of TCMS are described in section III. The descrip-

tion includes the structural analysis and working principle

of TCMS, failure mode, and effects analysis of TCMS,

and the dynamic fault tree modeling of TCMS. Section IV

shows the fault diagnosis progress of TCMS. The process

includes the method of mapping DFT into BN, the method

verification and case study, the Bayesian network model-

ing of TCMS, the results of experimental analysis, and the

comparison of other methods. Finally, Section V presents the

concluding remarks.

II. METHODOLOGIES USED

The TCMS consists of many parts and complex structure,

moreover, the logical relationship, and the operating environ-

ment is not clear. The lack of effective data in the field data is

also a problem to be considered in TCMS’s fault diagnosis.

Meanwhile, to deal with the limitations of redundancy anal-

ysis, the static fault tree is extended to a dynamic fault tree

by introducing a dynamic logic gate [6]. Dynamic fault tree

refers to the fault tree that contains at least one dynamic logic

gate so that it has can model and analyze the dynamic system.

Bayesian network is suitable for handling multi-state

description of events. By setting different values of node

variables to represent different states of the subsystem, and

by setting the CPT of corresponding nodes to conveniently

express the logical relationship between variables, the char-

acteristics of multi-state systems can be clearly described.

The combination of Dynamic fault tree analysis and the

Bayesian network method to achieve the reasonable expres-

sion of multi-source information will provide a new idea for

fault uncertainty processing of TCMS.

A. DYNAMIC FAULT TREE ANALYSIS

In the static fault tree analysis method [16], OR gate andAND

gate are the two most commonly used forms. The graphical

notations are shown in Fig. 1 and Fig. 2.

FIGURE 1. OR gate.

1) OR GATE

When at least one of the input events corresponding to the OR

gate is in a failure state, the output event of the logical gate

will fault occur.

2) AND GATE

When all input events corresponding to AND gate are in a

failure state, the output event of the logical gate will fault

occur.

FIGURE 2. AND gate.

In the dynamic fault tree analysis method, Priority-AND

(PAND) gate, and Functional Dependency (FDEP) gate are

used to describe the timing of part failure. Spare gate (SP)

is mainly used for reliability modeling and evaluation when

some equipment has spare parts in some complex systems [6].

3) PAND GATE

The input events of the PAND gate can be either the basic

event or the output event of another logic gate. The failure

mechanism is as follows: when the input events of PAND

break down from left to right and the output events of the

logic gate will fault occurs.

Assume PAND has three input events, and its graphical

notation is shown in Fig. 3. When B fails before A, C fails

before A, or B and C fail simultaneously before a fails. Then

the output event of the logic gate will break down.

FIGURE 3. Priority-AND gate.

4) FDEP GATE

FDEP contains one triggering event and the related events

can be one or more. The failure mechanism is that related

events fail individually or triggering events failure leading to

all related events fail, then the output events of the logic gate

will fault occurs.

Assume FDEP has two related events A and B, and one

triggering event Tr. Then its graphical notation is shown

in Fig. 4. When A and B fail, or Tr failure leading to A and B

fails, the output event of the logic gate will break down.

5) SP GATE

The SP Gate can be divided into Cold spare (CSP), Warm

spare (WSP), and Hot spare (HSP). The graphical notations

are shown in Fig. 5. Besides, the ratio of failure rate during

the backup period to failure rate during the operation period is

calledDormancy Factor β, and its graphical notation is shown

in Figure 4. Among them, the dormancy factors of CSP,WSP,

and HSP are β = 0, 0 < β < 1, and β = 1 respectively.
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FIGURE 4. Functional Dependency gate.

FIGURE 5. Spare gate.

Since all the devices in the TCMS are in the state of hot

spare redundancy, we will mainly use the HSP as the dynamic

fault tree logic gate.

In the HSP, both the host and back-up parts enter the

working state at the same time. When the host part fails,

any back-up part can be regarded as the host part to ensure

the normal working state of the whole system. Therefore,

the output event breaks down only when both the host and

back-up components fail.

B. BAYESIAN NETWORK

BN is an organic set of Bayesian methods and graph the-

ory. It is a directed acyclic graph (DAG), which contains a

probability table and is composed of network structure and

parameters. The network structure of BN includes two parts:

node-set and directed edge set. Each node can be regarded as a

variable with discrete or continuous values, and each directed

edge represents the dependency between nodes. BN parame-

ter refers to a set of conditional probability distributions of the

Bayesian network model, which represents the conditional

probability distribution (CPD) of a node under a certain

value state of its parent node. In the case of discrete values

of network nodes, CPD can be expressed as a conditional

probability table (CPT).

Consider a two-state system with N components, each of

which is represented byXi. Because the Bayesian network has

a strong conditional independent relationship, when given a

parent node of one node, it is conditional independent from

all other nodes except its descendants.

According to the conditional independence and the chain

rule, BN represents the joint probability distribution P(X) of

variables of any BNs as [13]:

P(X1,X2, · · · ,Xn) =

n
⋂

i=1

P(Xi/parent(Xi)) (1)

BN can update the prior probability of any events given

new information (posterior probability), called evidence

M taking advantage of Bayes theorem:

P(X/M ) =
P(X ,M )

P(M )
=

P(X ,M )
∑

X P(X ,M )
(2)

A basic Bayesian network is shown in Fig. 6.

FIGURE 6. Basic Bayesian network.

III. STRUCTURAL ANALYSIS AND DYNAMIC FAULT TREE

MODELING OF TCMS

In this section, we are going to introduce the TCMS system

that belongs to the 200km/h intercity EMU train KDZ15,

which is independently developed by CRRC Corp.

A. STRUCTURAL ANALYSIS AND WORKING PRINCIPLE

OF TCMS

The 200km/h intercity EMU is a fixed grouping of 8 vehicles,

in which a traction unit is defined for every 4 vehicles. And

the names of train marshaling areMc1-Tp2-M3-T4-Tb5-M6-

Tp7-Mc8, Where M represents the bullet train, Mc represents

the bullet train with a cab, which is located at the head of

the train. T represents the trailer, and Tp represents the trailer

with a pantograph.

Among them, TCMS is responsible for the transmission

of instructions and braking control of EMUs and monitoring

the main equipment’s status on the train.What’s more, TCMS

can be capable of fault diagnosis and fault recording function.

The network topology of the KDZ15 train is shown in Fig. 7.

By utilizing the train network, TCMS collects all kinds of

information related to the running condition of vehicles, such

as traction, braking, auxiliary power supply, air conditioning,

and other subsystems, makes a comprehensive logical judg-

ment on these data, and then sends the results back to each

subsystem after processing to realize management of each

subsystem.

The composition of TCMS consists of network topology

lines and network devices, which are attached to High-speed

rail trains via the WTB line and the MVB line. What’s

more, themain components of TCMS include Central Control

Unit (CCU), Input / Output Module in Cab (IOM Cab),

Remote Input / Output Module (RIOM), TCN Gateway

(GW), Repeater (REP), Human Machine Interface (HMI)

andWireless Transmission Device (WTD). Besides, the main

functions of each component are shown in Table 1.

At the beginning of TCMS’s design, the reliability factor

has been taken into account. For instance, the WTB line and

the MVB line are designed with redundancy. Furthermore,
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FIGURE 7. Train network topology.

hot standby redundant design has also been applied to the

important network equipment, such as CCU, TCN GW, IOM

CAB, RIOM, HMI, WTD, and REP. When they work prop-

erly, one is defined as the master device and the other as the

slave device. The master and slave equipment will monitor

the working state of each other in real-time. If the master

equipment fails, the slave equipment will take over its work

automatically. After the switch is completed, the system can

continue to work.

B. FAILURE MODE AND EFFECTS ANALYSIS (FMEA)

OF TCMS

If the TCMS is in normal working condition, each component

must be in normal condition. While the technology of train

control is so advanced, the TCMS’s failure is inevitable.

Hence, it is necessary to make research on fault diagnosis and

reliability analysis of TCMS.

The TCMS of EMU train is a typical and complex system,

its normal operation is done by the cooperation of hundreds

of board cards. When the onboard equipment and its board

cards in the system break down, it will lead to a fault alarm

of TCMS.

Through the way of classifying and researching fault track-

ing records, the most frequent TCMS failure modes can be

summarized as follows.

1) FAILURE MODE 1:

CCU failure, resulting in the CCU communication anomaly.

Probable causes:

(a) MVB equipment board card failure.

(b) Equipment power supply anomaly.

(c) CPU card fault.

(d) CCU system failure.

2) FAILURE MODE 2

TCNGW failure, resulting in the TCN Gateway communica-

tion anomaly.

Probable causes:

(a) MVB equipment board card failure.

(b) Equipment power supply anomaly.

(c) CPU card fault.

(d) CCU system failure.

3) FAILURE MODE 3

IOMCAB failure, resulting in the IOMCAB communication

anomaly.

Probable causes:

(a) MVB equipment board card failure.

(b) Equipment power supply anomaly.

(c) CPU card fault.
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TABLE 1. Main functions of the TCMS component.

4) FAILURE MODE 4

RIOM failure, resulting in the RIOM communication

anomaly.

Probable causes:

(a) MVB equipment board card failure.

(b) Equipment power supply anomaly.

(c) CPU card fault.

5) FAILURE MODE 5

HMI failure, resulting in the HMI communication anomaly.

Probable causes:

(a) MVB equipment board card failure.

(b) Equipment power supply anomaly.

(c) CPU card fault.

(d) CCU system failure.

6) FAILURE MODE 6

WTD failure, resulting in the wireless transmission devices

communication anomaly.

Probable causes:

(a) MVB equipment board card failure.

(b) Equipment power supply anomaly.

(c) CPU card fault.

(d) CCU system failure.

7) FAILURE MODE 7

REP failure, resulting in the Repeater communication

anomaly.

Probable causes:

(a) Equipment power supply anomaly.

(b) Hardware failure of Repeater.

C. DYNAMIC FAULT TREE MODELING OF TCMS

The core function of TCMS is to be able to run normally with-

out failure. Moreover, TCMS adopts a modular structure, and

the component units are designed with a redundant structure.

For instance, the CCU, TCN GW, IOM CAB, RIOM, HMI,

WTD, and REP have applied for the hot spare redundancy.

It is assumed that the failures of the components other than

those with dynamic failure mechanisms are independent of

each other, and the life distribution of the comment units

conforms to an exponential law.

Based on the classification of the High-speed emu system

and the cause of failure of all modules, a dynamic fault

tree was established by taking the TCMS system fault of

KDZ15 emu, as shown in Fig. 8.

The dynamic fault tree model is composed of two logic

gates, one is the ‘‘OR’’ gate, and the other is the ‘‘HSP’’ gate.

The symbol ‘‘T’’ is on behalf of the top event, whichmeans

‘‘TCMS fails to work’’.

The symbol ‘‘M∗’’ is on behalf of the intermediate events,

which consist of M1: CCU communication anomaly, M2:

TCN GW communication anomaly, M3: IOM CAB commu-

nication anomaly, M4: RIOM communication anomaly, M5:

HMI communication anomaly, M6: WTD communication

anomaly, M7: Repeater communication anomaly.

The symbol ‘‘M∗∗’’ represents the redundant events, which

consist ofM11: CCUhost failure,M12: CCUback-up failure,

M21: TCN GW host failure, M22: TCN GW back-up failure,

M31: IOM CAB host failure, M32: IOM CAB back-up fail-

ure, M41: RIOM host failure, M42: RIOM back-up failure,

M51: HMI host failure, M52: HMI back-up failure, M61:

WTD host failure, M62: WTD back-up failure.

The symbol ‘‘X∗’’ is on behalf of the basic events, which

are made up of X1: Power supply board card no output,

X2: MVB board card communication anomaly, X3: CPU

board card failure, X4: DI acquisition boards anomaly, X5:

DO acquisition boards anomaly, X6: Backboard failure, X7:

Power supply board card no output, X8: MVB board card

communication anomaly, X9: CPU board card failure, X10:

WTB boards hardware failure, X11: Backboard failure, X12:

Power supply board card failure, X13: CPU board card fail-

ure, X14: IOM Cab Backboard failure, X15: DI acquisition

card failure, X16: DO output card anomaly, X17: Power

supply board card failure, X18: CPU board card failure, X19:

RIOM Backboard failure, X20: DI acquisition card failure,

X21: DO output card anomaly, X22: Power supply anomaly,

X23: MVB board card communication anomaly, X24: CPU

board card failure, X25: LCD failure, X26: Power supply

anomaly, X27:MVBboard card communication failure, X28:

CPU board card failure, X29: Communication interface card

failure, X30: Backboard failure,X31: Communication func-

tion board card failure, X32: REP host failure, X33: REP

back-up failure.
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FIGURE 8. DFTA modeling of the TCMS.

By analyzing the structure-function and failure process

of the object in detail, the dynamic fault tree model of the

system is established according to the basic flow of fault tree

modeling. This step is the foundation of the entire modeling

and analysis process. It is necessary to accurately and rea-

sonably select the top event and determine the failure logic

relationship between various parts of the system, to ensure

the correctness of the final analysis results. According to the

established dynamic fault tree model, the events in the model

are mapped to the nodes of the Bayesian network model layer

by layer.

The components’ hidden trouble incidence calculated by

field historical data and the reliability parameters obtained by

expert evaluation. Furthermore, we have a deep cooperative

relationship with CRRC Corp thus their experts provide us

with the practical FMECA data, which can be applied in the

field of fault diagnosis and reliability analysis. As is shown

in Table 2.

IV. FAULT DIAGNOSIS OF TCMS

A. THE METHOD OF MAPPING DFT INTO BN

Before modeling, not only the scope and boundary of the

model need to be determined, but also the important variables

and states need to be defined. Dynamic fault tree makes

use of the logic gate to express the relationship between the

event and the Bayesian network is used to connect the edge

nodes. A Bayesian network’s parents’ nodes represent the

input events of the fault tree and the child nodes represent

the output.

Furthermore, the transformation of dynamic fault tree and

Bayesian network model consists of two parts, one is the

transformation of structure between DFT and BN, the other

is the establishment of CPT for non-root nodes. Concrete

TABLE 2. Reliability parameters of basic events.

corresponding relationships between them and the simplified

processes are as shown in Fig. 9.

Note that the dynamic fault tree shown in Figure 8 has

applied static logic gate and HSP logic gate, hence the
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FIGURE 9. Simplified process of Bayesian network based on dynamic
fault tree [26].

FIGURE 10. Transformation of static gate.

transformation of structure and the establishment of CPT on

these two logic gates are presented respectively below.

1) TRANSFORMATION OF STATIC GATE

The transformation of structure for OR gate and AND gate is

shown in the Fig. 10.

Make X1 = [A1, A2, . . . ,Am], m is the number of input

events for OR gate, Ai(i = 1, 2, . . . ,m) is the state variable

of the input event. Make Y1 is the set of state variables for the

output event. There is the conditional probability distribution

of Y1:

P(Y1 = k|X1) =

{

1 k = j

0 k 6= j
(3)

where j = min (A1, A2, . . . ,Am).

Make X2 = [A1, A2, . . . ,An], n is the number of input

events for AND gate, Ai(i = 1, 2, . . . , n) is the state variable

of the input event. Make Y2 is the set of state variables for the

output event. There is the conditional probability distribution

of Y2:

P(Y2 = k|X2) =

{

1 k = j

0 k 6= j
(4)

where j = max (A1, A2, . . . ,An).

FIGURE 11. Transformation of HSP logic gate.

FIGURE 12. Case model of dynamic fault tree.

2) TRANSFORMATION OF HSP LOGIC GATE

The transformation of structure for the HSP logic gate is

shown in the Fig. 11.

Make M = [A1, A2, . . . ,Ag], g is the number of input

events for HSP logic gate, Ai(i = 1, 2, . . . , g) is the state

variable of the input event. Make N is the set of state variables

for the output event. There is the conditional probability

distribution of N:

P(N = k|M ) =

{

1 k = j

0 k 6= j
(5)

where j = max (A1, A2, . . . ,Ag).

B. METHOD VERIFICATION AND CASE ANALYSIS

Taking the dynamic fault tree shown in Fig. 12 as an example.

To verify the accuracy of the above method, which is com-

pared with the computation results of the Binary Decision

Diagrams (BDD) method [33].

The dynamic fault tree model is composed of a static logic

gate and dynamic logic gate, which are the OR gate and the

HSP gate respectively.

Firstly, the topology of the dynamic fault tree model is

transformed into the structure of the Bayesian networkmodel.

Then, according to the constructionmethod of CPT according

to Formula (1) – (3). The input of CPT and the construction

of the BN model were carried out in GeNIe software. Fur-

thermore, the fault diagnosis of the BN model and reliability

analysis was accomplished by GeNIe software.

The transformed Bayesian network model is shown

in Fig. 13. Moreover, the corresponding relationship between

the nodes of each layer and the events in Fig. 12 is described

as follows:

i) The First layer: Node 1, 2, 3, 4, and 5 corresponds to the

basic event X2, X3, X4, X5, and X1.
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FIGURE 13. Case model of Bayesian network structure.

TABLE 3. Comparison of BN and BDD simulation results.

ii) The Second layer: Node 6 and 7 corresponds to the

intermediate events M1 and M2.

iii) The Third layer: Node 8 corresponds to the top event T.

Assuming that the failure rate of each basic event in the

dynamic fault tree respectively are P1(X1 = 1, X2 = 1,

X3 = 1, X4 = 1, X5 = 1) = (0, 0, 0, 0, 0), P2(X1 = 1,

X2 = 1, X3 = 1, X4 = 1, X5 = 1) = (0.1, 0.2, 0.3, 0.4,

0.5), P3(X1 = 1, X2 = 1, X3 = 1, X4 = 1, X5 = 1) = (0.9,

0.8, 0.7, 0.6, 0.5), P4(X1 = 1, X2 = 1, X3 = 1, X4 = 1,

X5 = 1)= (0.1, 0.7, 0.5, 0.8, 0.2), P5(X1 = 1, X2 = 1, X3 =

1, X4 = 1, X5 = 1) = (0.6, 0.3, 0.7, 0.2, 0.9), P6(X1 = 1,

X2 = 1, X3 = 1, X4 = 1, X5 = 1) = (0.5, 0.5, 0.5, 0.5, 0.5),

P7(X1 = 1, X2 = 1, X3 = 1, X4 = 1, X5 = 1) = (1, 1, 1,

1, 1), among them the number ‘‘1’’ in parenthesis mark after

the letter ‘‘P∗’’ represents the corresponding event has failed.

And the numbers in parenthesis mark after the equal sign

represents the failure rate of each basic event. According to

the hypothesis, the fault diagnosis simulation of the Bayesian

network model is carried out, which is compared to the

TABLE 4. Node definition.

TABLE 5. The CPT of node M11.

computation results based on the Binary Decision Diagrams

method [34], as shown in Table 3.

It can be seen from the Table 3 that the results calcu-

lated by the two methods are extremely close, which verifies

the effectiveness of the Bayesian network for the reliability

assessment of the system.

C. THE BAYESIAN NETWORK MODEL OF TCMS

The Bayesian networkmodel has the function of bidirectional

inference, which can express the association relation between
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TABLE 6. The CPT of node M1.

FIGURE 14. Bayesian network model of TCMS.

TABLE 7. The CPT of node T.

elements more clearly and intuitively, providing a solid foun-

dation for security modeling.

According to the corresponding relationship and trans-

formation rules, the dynamic fault tree model in Fig. 8 is

transformed into the Bayesian network model in Fig. 14.

TABLE 8. Posterior probability.

The meanings of the nodes represented are shown

in Fig. 14.

Due to the limited space, the CPT of leaf node T and inter-

mediate node M1 and M11 were given in Table 5, 6, and 7.

Moreover, the number ‘‘0’’ represents the normal state and

the number ‘‘1’’ represents the failure state.

D. RESULTS OF THE EXPERIMENTAL ANALYSIS

We utilize the simulation software named GeNIe version

2.0 for the inference usage of the developed BN models.

Cheng et al. [17] modeled the dynamic Bayesian network,

which is based on the GeNIe software, to locate the fault

of the train control system and deduce the system main-

tenance strategies. Yang et al. [18] modeled the integrated

and sub-Bayesian network of TCMS, which is based on the

GeNIe software, to utilize the prior information and find the

reliability weaknesses. Halabi et al. [22] presented the BN of

reliability and risk model, which is modeled in the GeNIe

version 2.0. Kabir et al. [26] built the DBN of the FT model

for the flare system, which is based on GeNIe software.

Rahman et al. [28] built the modified BN model for marine

offshore logistics operation, which is based on GeNIe soft-

ware, to address the interdependencies and conditional rela-

tionships among the critical factors. Feng et al. [30] modeled

the Bayesian network of pipe failure and risk diagnosis-based
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FIGURE 15. Simulation diagram of Bayesian network.

FIGURE 16. Bayesian network based on the prior failure rate.

BN of Noisy-OR gates, which is conducted on GeNIe

software.

It is assumed that the states of parts and systems are only

normal and failure and the failure of parts is subject to the

exponential distribution. The failure efficiency of basic events

is shown in Table 2. Furthermore, mapping each level of

events and failure logic relationships of the dynamic fault tree

into each level of nodes of the Bayesian network, as can be
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FIGURE 17. The posterior probability of T node failure.

seen in Fig. 15, the BNmodel has 1 leaf node, 19 intermediate

nodes, and 33 root nodes.

After the BN model of TCMS is built, the GeNIe is used to

conduct simulation analysis on it, which is shown in Fig. 16.

When we insert the inputs of each root node into the BN

model, we can get the occurrence probability of intermediate

nodes and leaf node T. The result shows that the probability

of the top event is 2.2214327e−11.

When the TCMS has fault occurs, the state of T is set

to ‘‘1’’ in GeNIe. Therefore, the failure probability of each

basic event is computed by using the reverse reasoning of the

Bayesian network, as is shown in Table 8 and Fig. 17.

The variation trend of the posterior probability of each

basic and intermediate event was illustrated in Fig. 18 and

Fig. 19. The Fig. 20 shows the comparison of prior proba-

bility and posterior probability changes, which indicates that

although the X23 has the maximum original failure rate when

the top event is in the failure state, the X27 and X30 have the

maximum occurrence probability instead.

Through data analysis, we can find that X16 (Status of

IOM CAB’s DO card) has the minimum probability of fail-

ure. Then, X27 (Status of WTD’s MVB board card), X30

(Status of WTD’s CPU board card), and M6 (Status of WTD

communication) have the maximum probability of failure,

the corresponding parts and components are the weak links

of the TCMS reliability service. Therefore, the stability of

WTD equipment is more sensitive to failure and system

reliability.

FIGURE 18. The posterior probability of the basic event.

The higher the module reliability is, the higher the TCMS

reliability is, which makes sense. We can conclude that to

ensure the reliability of TCMS, all events’ reliability should

be improved and the reliability of key modules such as WTD

has a greater impact on the system reliability should be

ensured at a high level.

E. COMPARISON OF METHODS

The experimental data in this paper, which has the features

of long duration and incompleteness, is based on the field

operation data and historical statistics of the High-speed rail

train equipment. Moreover, the fault diagnosis and reliability
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TABLE 9. Comparison between DFT-BN and other methods [16].

FIGURE 19. The posterior probability of the mediate event.

analysis of the TCMS demands a precise inference approach,

which can make full use of the prior information.

The comparison among diverse methods is shown

in Table 9. And the presented method has combined the

advantages of DFT and BN. The DFT model can be easily

built from the FMEA analysis and previous data, and theDAG

and CPT of BN can be acquired. Furthermore, BN is not only

FIGURE 20. The comparison of prior probability and posterior probability
changes.

fit for dealing with the uncertainty problem according to the

prior information, but also diagnosing faults and analyzing

reliabilities of the complex systems. In general, this method

has the best capability in this real instance compared to other

methods.
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V. CONCLUSION

In this paper, we have addressed the limitations of DFT

and BN among their applications in Introduction section.

Then we analyzed and summarized the critical basic events

which contributed to the TCMS failure condition. Moreover,

we systematically discussed the working principles and fail-

ure modes of TCMS. The dynamic fault tree was established

by analyzing the logical relationship between the redundancy

systems. Then, the dynamic fault tree model was transformed

into the Bayesian network model. Hence, we explained the

method of mapping DFT into BN and introduced the features

of the two methods that help to contrast them. BN is one

of the significant ways to resolve the problem for uncertain

inference of the period. The experimental simulation and

fault diagnosis of the BN model were conducted on GeNIe

software.

This method can significantly increase fault analysis effi-

ciency in engineering practice, and it can make full use of

prior knowledge and historical fault data to improve the effec-

tiveness of pursuant fault analysis. The major contribution

of this article is to combine two approaches, which include

dynamic fault tree and Bayesian network, to resolve a signif-

icant and actual case engineering problem and has a certain

promotional value.
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