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Abstract In order to accurately identify a bearing fault on

a wind turbine, a novel fault diagnosis method based on

stochastic subspace identification (SSI) and multi-kernel

support vector machine (MSVM) is proposed. First, the

collected vibration signal of the wind turbine bearing is

processed by the SSI method to extract fault feature vec-

tors. Then, the MSVM is constructed based on Gauss

kernel support vector machine (SVM) and polynomial

kernel SVM. Finally, fault feature vectors which indicate

the condition of the wind turbine bearing are inputted to the

MSVM for fault pattern recognition. The results indicate

that the SSI-MSVM method is effective in fault diagnosis

for a wind turbine bearing and can successfully identify

fault types of bearing and achieve higher diagnostic accu-

racy than that of K-means clustering, fuzzy means clus-

tering and traditional SVM.

Keywords Wind turbine, Bearing, Fault diagnosis,

Stochastic subspace identification (SSI), Multi-kernel
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1 Introduction

Recent decades renewable energy sources have received

increasingly wide attention. As one of the most promising

new clean renewable energy sources, wind power genera-

tion is in large-scale development around the world [1–4].

However, wind turbines are prone to various failures due to

long-term operation under tough conditions, complex

alternating loads and variable speeds [5]. The bearing is a

critical component of a wind turbine and bearing failures

form a significant proportion of all failures in wind tur-

bines. These, can lead to outage of the unit and a high

maintenance cost [6, 7]. Hence, the development of an

accurate fault diagnosis method for wind turbine bearing

would be extremely valuable for improving safety and

economy.

Vibration analysis is an effective condition monitoring

method, especially suitable for rotating machinery. So far,

a vast number of vibration signal processing methods have

been used in fault detection of the gear box and bearing for

wind turbines, such as spectrum analysis [8], wavelet

transform [9], Wigner-Vile distribution [10] and empirical

mode decomposition (EMD) [11]. Compared with the

former three methods, EMD performs better in processing

the vibration signal but it has the drawback of being time-

consuming [12]. Variational mode decomposition (VMD)

[13] and empirical wavelet transform (EWT) [14] achieve

better signal processing performance than EMD and avoid

mode aliasing, and they have strong noise robustness. In

the past 20 years, the application of the stochastic subspace

identification (SSI) method in vibration signal analysis has

also developed very fast [15, 16], especially in the fault

diagnosis field related to buildings and rotating equipment

[17, 18]. However, the SSI method has so far seldom been

used to diagnose a bearing fault for a wind turbine. The SSI
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method directly constructs a model based on time-domain

data and can identify the mode parameters. This is suit-

able for mining the most essential fault information [19]. In

this paper, SSI is employed to extract fault features by

processing the collected vibration signal of the wind

turbine.

In recent years, intelligent diagnosis methods have been

widely applied in diagnosing a bearing fault in a wind

turbine. As one of the artificial intelligence methods, the

support vector machine (SVM) has many special advan-

tages in solving with small samples, nonlinear and high

dimensional pattern recognition. Reference [20] used SVM

to classify different states of a rolling bearing and con-

ducted experiments to validate the effectiveness of the

proposed method. Reference [21] proposed a method based

on wavelet packet and a locally linear embedding algo-

rithm to extract fault features, and then intelligently clas-

sified the different fault degrees of a rolling bearing using

SVM. Reference [22] combined EMD and SVM to identify

different fault states of a rolling bearing. A single kernel

function is used in the traditional SVM method to solve the

classification problem of simple data. However, traditional

SVM cannot effectively solve a complex classification

problem, especially for a heterogeneous and imbalanced

data classification problem. In order to improve the per-

formance of SVM, a multi-kernel support vector machine

(MSVM) is adopted for pattern recognition in this paper.

MSVM not only integrates the generalization ability but

also the self-learning ability of the traditional single kernel

SVM [23–25], thus having better adaptability and

robustness.

We use wind turbine bearing vibration data to construct

the subspace model and to realize the bearing feature

extraction, then use the MSVM algorithm to classify the

feature parameters for bearing fault diagnosis. The paper is

organized as follows. The principles of SSI and MSVM are

respectively introduced in Section 2 and Section 3. The

procedure of fault diagnosis method based on SSI-MSVM

is described in Section 4. Diagnostic performance is tested

by applying the SSI-MSVM method to a bearing experi-

mental signal of a wind turbine in Section 5. Finally,

conclusions are drawn in Section 6.

2 Principle of SSI

2.1 Stochastic state-space model

The SSI method is a black box identification method

using collected data to establish a linear state space model,

and is very suitable for extracting features of vibration

signals. The stochastic state-space model can be described

as follows:

Xkþ1 ¼ AXk þ wk

Yk ¼ CXk þ vk

�
ð1Þ

where Xk[R
n and Yk[R

l are the state variable and output of

the system in discrete time k, respectively; A[Rn9n is the

system matrix, which describes the dynamic behaviour of

the system; C[Rl9n is the output matrix of the system;

wk[R
n and vk[R

l are system noise and measurement noise,

respectively.

2.2 SSI method

The SSI method can be completed in three steps:

orthogonal projection, singular value decomposition and

system parameter estimation.

2.2.1 Orthogonal projection

First, a block Hankel matrix Y composed of the mea-

surement signal is defined as follows:

ð2Þ

where yk (k=1, 2, …, i?j?N) is the collected signal; Yp is

the past part in matrix Y and its row number is i; Yf is the

future part in matrix Y and its row number is j?1; both i

and j are generally not less than the maximum order of the

system model, namely, minfi; jþ 1g� n; and the column

number of the block Hankel matrix N is generally far

greater than i and j?1, namely, N � maxfi; jþ 1g.
Matrix Y is newly divided into two blocks as follows:
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where Yþ
p is the new past part generated by shifting the first

row of Yf into the last row of Yp; Y
�
f is the new future part

generated by deleting the last row of Yf .

Yf is orthogonally projected to the space of Yp by the

following equation:

Pm ,
Yf

Yp

¼ YfY
T
p YpY

T
p

� �y
Yp ð4Þ

where ð�Þy denotes the Moore-Penrose inverse matrix.

Similarly, Y�
f is orthogonally projected to the space of

Yþ
p as follows:

Pm�1 ,
Y�
f

Yþ
p

¼ Y�
f Yþ

p

� �T
Yþ
p Yþ

p

� �T� �y
Yþ
p ð5Þ

2.2.2 Singular value decomposition

Singular value decomposition is adopted to analyze the

projection matrix Pm as follows:

Pm ¼ U1 U0½ � S1 0
0 S0

� �
VT

1

VT
0

� �
ð6Þ

where U1 and V1 are unitary matrices; S1 ¼
diagfr1; r2; � � � ; ri; � � � ; rng is the diagonal matrix and ri is
the ith singular value of S1; U0, V0, S0 are null matrices.

The projection matrix Pm can also be expressed as the

product of the observable matrix Um and the Kalman filter

sequence X̂m.

Pm ¼ CmX̂m ð7Þ

Similarly, the rejection matrix Pm�1 can also be

expressed as follows:

Pm�1 ¼ CmX̂mþ1 ð8Þ

Where Cm is the new observable matrix generated by

deleting the last row of Um.

According to (6) and (7), the observable matrix Um and

the state variable X̂m can be inferred.

Cm ¼ U1S
1
2

1 ð9Þ

X̂m ¼ S
1
2

1V
T
1 ð10Þ

The state variable X̂mþ1 can also be obtained from (8),

X̂mþ1 ¼ Cmð ÞyPm�1 ð11Þ

2.2.3 System parameter estimation

By plugging state variable X̂m and X̂mþ1 into the

stochastic state-space model, the following formula can be

obtained:

X̂mþ1

Ym mj

� �
¼ A

C

� �
X̂m þ qw

qv

� �
ð12Þ

where qw and qv are residual vectors and not related to

X̂m.

Then the system matrix A and output matrix C can be

estimated by applying the least squares method as follows:

A
C

� �
� Â

Ĉ

� �
¼ X̂mþ1

Ym mj

� �
X̂m

	 
y ð13Þ

where Â and Ĉ denote the estimates of A and C,

respectively.

In (13), the matrix A contains the feature information of

the system model built by the bearing vibration data. That

is, the eigenvalues of matrix A correspond to different fault

modes.

The eigenvalue decomposition of the matrix A is given

by:

A ¼ URVT ð14Þ

where U is the left singular matrix of the system matrix A;

VT is the transpose of the right singular matrix of the

system matrix A; R ¼ diagfk1; k2; � � � ; kng is a diagonal

matrix and ki is the ith singular value of the system matrix

A.

3 Principles of standard SVM and MSVM

3.1 Standard SVM

The basic principle of the SVM is to map the input

samples from original space to high dimensional feature

space by a kernel function. Given a sample

setfðx1; y1Þ; ðx2; y2Þ; � � � ; ðxn; ynÞg, where xi[R
n is the

input samples and yi[{-1, ?1} is the output samples, SVM

maps the input samples to the n dimensional feature space

using the kernel function, in which the optimal classification

hyper plane
Pn
i¼1

wikðx; xiÞ is constructed, where wi is the ith

element of the coefficient vector w. The classification

interval in optimal hyper plane 2/||w|| is expected to achieve

a maximum in the SVM method. By introducing slack

variables, the optimal hyper plane is transformed into the

following constrained optimization problem:

min Jðw; eÞ ¼ 1

2
wTwþ C

Xn
i¼1

e2i

s:t: yiðwT/ðxiÞ þ bÞ� 1� ei

ei � 0

8>>>><
>>>>:

ð14Þ

where i ¼ 1; 2; � � � ; n; ei is the ith element of the slack

variable vector e; C is penalty coefficient; b denotes the
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distance from the hyper plane to the origin; /ð�Þ is mapping

function.

The Lagrange multiplier ai is used to transform the

constrained optimization problem into the dual optimiza-

tion problem. Thus, the final classification decision func-

tion is described as follows:

f ðxÞ ¼ sgn
Xn
i¼1

yiaikðx; xiÞ þ b

 !
ð15Þ

3.2 MSVM

In the process of fault identification using the SVM, the

selection of kernel function is a key segment. Different

kernel functions correspond to different discriminant

functions, which directly affect the identification accuracy

of the SVM. The kernel functions of the SVM mainly

include a local kernel function and a global kernel function.

And the Gauss kernel function is a typical local kernel

function and can be described as follows:

KRBFðxi; xjÞ ¼ exp
� xi � xj
�� ��

r2

� �
ð16Þ

where r is the kernel parameter.

As a typical global kernel function, the polynomial

kernel function can be described as follows:

Kployðxi; xjÞ ¼ xTi xj þ 1
	 
d ð17Þ

where d is the kernel parameter.

A single kernel function is used in the traditional SVM

method and can solve the classification problem of simple

data. However, the traditional SVM has some limitations

for a complex classification problem such as bearing fault

diagnosis. In order to improve the performance of the

SVM, it is proposed to combine the local and global ker-

nels to construct the MSVM, which can be described as

follows:

Kminðxi; xjÞ ¼ kKRBFðxi; xjÞ þ ð1� kÞKployðxi; xjÞ ð18Þ

where k (0\k\1) is the tuning parameter.

According to (18), it can be readily seen that the multi-

kernel function degenerates into the Gauss kernel function

under the condition that k=0 and into the polynomial

kernel function under the condition that k=1. The multi-

kernel function can adapt to different input samples by

adjusting the tune parameter k. The MSVM integrates prior

knowledge of specific problems in the process of selecting

the kernel function, and thus it has the ability of learning

and generalization combined.

4 Fault diagnosis model based on SSI method
and MSVM

In this section, a novel fault diagnosis method based on

SSI-MSVM is proposed for the wind turbine bearing. The

flow chart of the SSI-MSVM method is shown in Fig. 1.

The detailed procedure is described as follows:

1) Vibration signal acquisition. Setting the mounting

position of vibration sensors and sampling rate, the

vibration signal of the wind turbine bearing is acquired

through a signal acquisition system.

2) SSI analysis. First, the collected vibration signal is

used to construct a stochastic state-space model of a

wind turbine bearing as shown in (1). Then, the SSI

method is applied to estimate the system matrix A,

eigenvalues of which are extracted as fault feature

vectors.

3) Training MSVM model. Samples in different states are

taken as training samples to train the MSVM, estab-

lishing the fault diagnosis model. The trained model

can be used to distinguish different patterns.

4) Fault diagnosis. The test samples are input to the

trained fault diagnosis model for classification, and the

working state and fault type of the wind turbine

bearing can be determined according to the output of

the MSVM model.

Start

Vibration signal acquisition

Orthogonal projection

Singular value decomposition

System parameter estimation

SSI analysis

Extracting fault feature vectors

Training sample

Training MSVMTesting sample

Trained diagnosis model

Fault diagnosis

End

Traning MSVM model

Fig. 1 Flow chart of fault diagnosis method for bearing based on

SSI-MSVM
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5 Experiment analysis

To validate the practicability and effectiveness of SSI-

MSVM in fault diagnosis, bearing fault experiments are

conducted in a wind turbine test rig, which is shown in

Fig. 2. The test rig is composed of wheel hub, main shaft,

gearbox and generator. The main shaft is supported by two

rolling bearings, which bear mainly the radial and also a

certain axial load. An acceleration sensor, X&K AD500T,

is mounted on the bearing pedestal to acquire vibration

signals and the sampling frequency is 10 kHz. Parameters

of X&K AD500T are as follows: measuring range of

25g (g = 9.8 m/s2), sensitivity of 500 mV per g, frequency

range of 0.3-12000 Hz and resolution of 0.004g. To sim-

ulate the typical faults of a wind turbine bearing, a spark

erosion technique is used to seed a pit in the inner race,

roller and outer race.

In Figs. 3 and 4, the two sets of vibration signals are

collected from wind turbine bearings in different condi-

tions. They respectively simulate strong fault and weak

fault modes of the bearing. Compared with the time

waveform of the normal vibration signal, it can be seen that

there are irregular and large amplitude shock signals in

strong faults in Fig. 3, but in Fig. 4 the shock signals of

weak faults are not obvious.

For the SSI method, the length of each data sample

should be long enough to satisfy the validity of fault feature

extraction. So, each sample is set to contain 9000 data

points in processing the vibration signal of the wind turbine

bearing. Both the Hankel matrix Yp and Yf are 998991

dimensional matrices. The projection matrix is analysed by

singular value decomposition and the results indicate that

the order of the stochastic subspace model is 5. Then the

SSI method is applied to process the collected signal and

eigenvalues of the system matrix are obtained. Figure 5

shows the features of the bearing vibration signal in dif-

ferent conditions extracted by the SSI model. It can be seen

that all the eigenvalues are distributed in the unit circle,

which indicates that the identified bearing stochastic sub-

space model is stable and effective. At the same time, the

distributed locations of eigenvalue corresponding to nor-

mal mode and different fault modes are non-coincident

which illustrates that these different eigenvalues can be

discriminated by a clustering algorithm.

For strong faults and weak faults of bearing in this

study, 320 samples gained from an experimental roller

Blade

Rolling bearing

Main shaft
Gearbox

Generator

High speed shaftAcceleration sensor

Fig. 2 Structure diagram of wind turbine test rig

(b) Inner race fault

(c) Outer race fault

(d) Roller fault
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Fig. 3 Time waveform of bearing vibration signal in normal and

strong faults

(a) Inner race fault

(b) Outer race fault

(c) Roller fault
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Fig. 4 Time waveform of bearing vibration signal in weak faults
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bearing are respectively adopted to verify the superior

diagnostic performance of the SSI-MSVM method com-

pared with that of K-means clustering, fuzzy means clus-

tering (FCM) and traditional SVM. All data are divided

into two data sets: the training and test, in which the

training data sets including 120 samples are used to cal-

culate the fitness function and train the diagnosis model,

and the test data sets are used to examine the classification

accuracy of each model.

In order to prove the stability of the experiment, six

groups of comparative experiments with different unla-

beled testing sample sets are operated. Each experiment is

carried out 10 times. The average test accuracies of dif-

ferent pattern identification methods are presented in

Table 1. Figure 6 shows the visual expression of the

comparison result between the proposed method and other

methods.

From Table 1 and Fig. 6, it can be seen that the fault

diagnosis accuracy of the SSI-MSVM method is in the

range of 90.27%-92.73%, while that of K-means clustering,

FCM and SVM are in the range of 82.53%-88.06%,

86.35%-89.32% and 89.25%-91.03%, respectively. Over-

all, the SSI-MSVM method has a higher diagnostic accu-

racy than that of K-means clustering, FCM and SVM,

which indicates that the proposed diagnosis model is

clearly superior to the traditional diagnosis method.

6 Conclusion

This paper presents a novel fault diagnosis method for a

wind turbine bearing based on SSI and MSVM. The SSI

method directly constructs a model based on time-domain

data and can identify the mode parameters. This is suit-

able for extracting the fault features. The MSVM is an

improved mode recognition method which combines the

Gauss kernel SVM and the polynomial kernel SVM, so it

can identify the fault types of bearing more accurately.

The results indicate that the SSI-MSVM method is an

effective fault diagnosis method for a wind turbine bearing,

and can successfully identify fault types of bearing and

achieve higher diagnostic accuracy than that of K-means

clustering, FCM and traditional SVM.

0
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0.10
x

x2+y2=1

0.5

-0.5

5.05.0-0.1-

y

Normal;Inner race fault; Roller fault; Outer race fault

Fig. 5 Features extracted by SSI in different conditions
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Fig. 6 Classification accuracy comparison with different pattern

recognition methods

Table 1 Fault diagnosis result comparison among K-means cluster-

ing, FCM, SVM and MSVM

No. Total samples Classification accuracy (%)

K-means FCM SVM MSVM

1 40 82.53 86.35 89.25 90.27

2 80 86.27 88.05 91.03 91.46

3 120 87.73 89.02 90.75 92.72

4 160 88.06 89.03 90.81 92.73

5 200 87.71 89.02 90.76 92.47

6 240 87.75 89.32 89.82 92.35

Fault diagnosis of wind turbine bearing based on stochastic subspace identification and… 355

123



Acknowledgment This work was supported by National Key Tech-

nology Research and Development Program (No. 2015BAA06B03).

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted

use, distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

[1] Hang J, Zhang JZ, Cheng M (2014) Fault diagnosis of wind

turbine based on multi-sensors information fusion technology.

IET Renew Power Gener 8(3):289–298

[2] Wilkinson M, Darnell B, Delft TV et al (2014) Comparison of

methods for wind turbine condition monitoring with SCADA

data. IET Renew Power Gener 8(4):390–397

[3] Bindi C, Matthews PC, Tavner PJ (2015) Automated on-line

fault prognosis for wind turbine pitch system using supervisory

control and data acquisition. IET Renew Power Gener

9(5):503–513

[4] Djurovic S, Ceartree CJ, Tavner PJ et al (2012) Condition

monitoring of wing turbine induction generators with rotor

electrical asymmetry. IET Renew Power Gener 6(4):207–216

[5] Hu AJ, Yan XA, Xiang L (2015) A new wind turbine fault

diagnosis method based on ensemble intrinsic time-scale

decomposition and WPT-fractal dimension. Renew Energy

83:767–778

[6] Gong X, Qiao W (2013) Bearing fault diagnosis for direct-drive

wind turbine via current-demodulated signals. IEEE Trans Ind

Electron 60(8):3419–3428

[7] Chen JL, Pan J, Li ZP et al (2016) Generator bearing fault

diagnosis for wind turbine via empirical wavelet transform

using measured vibration signals. Renew Energy 89:80–92

[8] Sang TH (2010) The self-quality of discrete short-time Fourier

transform and its applications. IEEE Trans Signal Process

58(2):604–612

[9] Riera-Guaso M, Antonino-Daviu JA, Pineda-Sanchez M et al

(2008) A general approach for the transient detection of slip-

dependent fault components based on the discrete wavelet

transform. IEEE Trans Ind Electron 55(12):4167–4680

[10] Boashash B (1998) Note on the use of the Wigner distribution

for time-frequency analysis. IEEE Trans Acoust Speech Signal

Process 36(9):1518–1521

[11] Rai VK, Mohanty AR (2007) Bearing fault diagnosis using FFT

of intrinsic mode functions in Hilbert–Huang transform. Mech

Syst Signal Process 21:2607–2615

[12] An XL, Jiang DX, Li SH et al (2011) Application of the

ensemble empirical mode decomposition and Hilbert transform

to pedestal looseness study of direct-drive wind turbine. Energy

30:5508–5520

[13] Liu CL, Wu YJ, Zhen CG (2015) Rolling bearing fault diagnosis

based on variational mode decomposition and fuzzy C means

clustering. Proc CSEE 35(13):3358–3365

[14] Zhao MY, Xu G (2017) Feature extraction for vibration signals

of power transformer based on empirical wavelet transform.

Autom Electr Power Syst 41(20):63–69

[15] Bassevill M, Benveniste A, Gach B et al (1993) In situ damage

monitoring in vibration mechanics: diagnostics and predictive

maintenance. Mech Syst Signal Process 7(5):401–423

[16] Bassevill M, Abdelghani M, Benveniste A (2000) Subspace

based fault detection algorithms for vibration monitoring.

Automatica 36(1):101–109

[17] Zhou N, Pierre JW, Hauer JF (2006) Initial results in power

system identification from injected probing signals using a

subspace method. IEEE Trans Power Syst 21(3):1296–1302

[18] Peeters B, Roeck GD (1999) Reference-based stochastic sub-

space identification for output only modal analysis. Mech Syst

Signal Process 13(6):855–878

[19] Nezam SA, Vaithianathan V (2014) Electromechanical mode

estimation using recursive adaptive stochastic subspace identi-

fication. IEEE Trans Power Syst 29(1):349–358

[20] Gryllias KC, Antoniadis IA (2012) A support vector machine

approach based on physical model training for rolling element

bearing fault detection in industrial environments. Eng Appl

Artif Intell 25(2):326–344

[21] Kang SQ, Li ZQ, Yang GX et al (2014) Application of wavelet

packet-locally linear embedding algorithm in rolling bearing

fault degree recognization. Chin J Sci Instrum 35(3):614–619

[22] Yao YF, Zhang X (2013) Fault diagnosis approach for roller

bearing based on EMD momentary energy entropy and SVM.

J Electron Meas Instrum 27(10):957–962

[23] Chen FF, Tang BP, Song T et al (2014) Multi-fault diagnosis

study on roller bearing based on multi-kernel support vector

machine with chaotic particle swarm optimization. Measure-

ment 47:576–590

[24] Shen ZJ, Chen XF, Zhang XL et al (2012) A novel intelligent

gear fault diagnosis model based on EMD and multi-class

TSVM. Measurement 45:30–40

[25] Huang J, Hu XG, Geng X (2011) An intelligent fault diagnosis

method of high voltage circuit breaker based on improved EMD

energy entropy and multi-class support vector machine. Electr

Power Syst Res 81(2):400–407

Hongshan ZHAO received the Ph.D. degree from North China

Electric Power University, China, in 2004, in electrical engineering.

He is now a full professor with the North China Electric Power

University, Baoding, China. His research interests include dynamic

analysis and control of power system, fault prediction, and optimized

maintenance of power system.

Yufeng GAO is currently pursuing the M.S. degree in electrical

engineering at North China Electric Power University. His current

research interests include fault detection and fault diagnosis of

transformer.

Huihai LIU is currently pursuing the M.S. degree in electrical

engineering at North China Electric Power University. His current

research interests include fault detection and fault diagnosis of wind

turbine.

Lang LI received the M.S. degree from North China Electric Power

University, China, in 2017. His main research interests include fault

detection and maintenance strategy of wind turbine.

356 Hongshan ZHAO et al.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Fault diagnosis of wind turbine bearing based on stochastic subspace identification and multi-kernel support vector machine
	Abstract
	Introduction
	Principle of SSI
	Stochastic state-space model
	SSI method
	Orthogonal projection
	Singular value decomposition
	System parameter estimation


	Principles of standard SVM and MSVM
	Standard SVM
	MSVM

	Fault diagnosis model based on SSI method and MSVM
	Experiment analysis
	Conclusion
	Acknowledgment
	References


