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 
Abstract— This paper proposes a fault diagnosis method using 

a timed discrete-event approach based on interval observers 
which improves the integration of fault detection and isolation 
tasks. The interface between fault detection and fault isolation 
considers the activation degree and the occurrence time instant 
of the diagnostic signals using a combination of several 
theoretical fault signature matrices which store the knowledge of 
the relationship between diagnostic signals and faults. The fault 
isolation module is implemented using a timed discrete event 
approach that recognizes the occurrence of a fault by identifying 
a unique sequence of observable events (fault signals). The states 
and transitions that characterize such a system can be inferred 
directly from the relation between fault signals and faults. The 
proposed fault diagnosis approach has been motivated by the 
problem of detecting and isolating faults of the Barcelona’s 
urban sewer system limnimeters (level meter sensors). The 
results obtained in this case study illustrate the benefits of using 
the proposed approach in comparison with the standard fault 
detection and isolation approach. 
 

Index Terms— Fault Detection, Fault Diagnosis, Robustness, 
Observers, Intervals, Discrete-event Systems.  
 

I. INTRODUCTION 

HIS paper proposes a fault diagnosis method based on a 
timed discrete-event approach using interval observers to 

solve the problem of fault detection and isolation (FDI) in the 
Barcelona sewer network. This network has a telemetry 
system used in real-time for the control system. Sewer 
networks are complex large-scale systems which in turn 
require highly sophisticated supervisory-control systems to 
ensure that high performance can be achieved and maintained 
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under adverse conditions. Most cities around the world have 
sewage systems that combine sanitary and storm water flows 
within the same network. This is why these networks are 
known as Combined Sewage Systems (CSS). During rain 
storms, wastewater flows can easily overload these CSS, 
thereby causing operators to dump the excess of water into the 
nearest receiver environment (rivers, streams or sea). This 
discharge to the environment, known as Combined Sewage 
Overflow (CSO), contains biological and chemical 
contaminants creating a major environmental and public 
health hazard. Environmental protection agencies have started 
forcing municipalities to find solutions in order to avoid those 
CSO events. A possible solution to the CSO problem would 
be to enhance existing sewer infrastructure by increasing the 
capacity of the wastewater treatment plants (WWTP) and by 
building new underground retention tanks. But in order to take 
profit of these expensive infrastructures, it is also necessary a 
highly sophisticated real-time control (RTC) scheme which 
ensures that high performance can be achieved and maintained 
under adverse meteorological conditions [17]. In particular, 
the optimal real-time global control of a Barcelona sewer 
network aims to minimise flooding and combined sewer 
overflow to the environment, and to maximise the wastewater 
treatment plants utilisation. However, the global optimal 
control of the sewer network is vulnerable to faults. Faults in 
sensors (rain-gauges and limnimeters) and actuators (gates 
and pumps), specially in heavy rain scenarios, are usual. If 
these faults were not detected and isolated, the global optimal 
control would derive in anomalous performance of the 
network system, being necessary to move the control to the 
local mode1. This will make very difficult the success of the 
global control system. One way of achieving fault-tolerance is 
to employ an on-line FDI scheme, such that when a fault is 
detected and isolated, it will activate in response some 
accommodation action, which can be pre-determined for each 
fault.  

In general, when addressing the problem of FDI, two 
strategies can be found in the literature: hardware redundancy 

 
1 When local control is applied, flow regulation devices use only 

measurements taken at their specific locations. On the other hand, when global 
control is used, control actions are computed taking into account real-time 
measurements all through the network, using in the best possible the 
infrastructure capacity and all the available sensor information. 
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based on the use of redundant (extra) sensors and software (or 
analytical) redundancy based on the use of a mathematical 
model that combines measurements from other sensors or 
from the same sensor in past instants [23]. In critical systems 
(space aircrafts, aeroplanes, ...), hardware redundancy is 
preferred. But, for large scale systems (as the case of sewer 
networks), the use of hardware redundancy is very expensive 
and increases the number of maintenance and calibration 
operations. This is the reason why analytical redundancy has 
been recognized to be a good and cheaper alternative. This is 
the approach followed in this paper. In the literature, some 
related works of sensor fault diagnosis in sewer networks can 
be found that address the case of rain-gauges [38] or the case 
of limnimeters [2][3] . 

At the beginning of the research presented in this paper, the 
FDI problem in sewer network limnimeters was addressed 
using the standard well established fault diagnosis 
methodologies coming from FDI community [12]. However, 
several deficiencies were detected either in the fault detection 
or isolation stages when the standard FDI theory was applied 
to solve this problem. Mainly, the deficient performance was 
due to the poor (binary) interface between fault detection and 
fault isolation and the no-consideration of the fault signal 
dynamics, as pointed out by [5] and [27].  This have 
motivated the development of the model based fault diagnosis 
methodology presented in this paper based on the use of 
interval observers (in order to enhance robustness against 
modelling errors) in fault detection and on the use of a timed 
discrete-event isolation algorithm based on several fault 
signature matrices that considers additional information to the 
typical binary one. In particular, fault signature matrices 
containing information about residual fault sensitivity and 
residual time/order activation are used.  Thereby, in the 
proposed approach, fault signals are represented as a temporal 
sequence of discrete events using a qualitative approach while 
fault detection is based on an analytical model represented by 
an interval observer which takes account the parametric model 
uncertainty. This is why this approach can be considered as a 
BRIDGE approach [1] that tries to benefit from the best of the 
FDI and DX diagnosis communities.  

The structure of the paper is the following: a description of 
the case study is given in Section II. Then, in Section III, the 
motivation and overview of the new fault diagnosis approach 
are introduced. The fault detection using interval observers is 
introduced in Section IV focusing on the generation of fault 
signals and on their connection with the residual generator 
structure: the case of study is used to exemplify the obtained 
results. Next, in Section V, the interface between fault 
detection and fault isolation is presented showing how to 
obtain the theoretical fault signature matrices. In Section VI, 
the fault isolation algorithm based on a timed discrete event 
system is exposed. The interval observer-based fault diagnosis 
algorithm will be applied to different fault scenarios of the 
case study to assess the validity of the derived results in 
Section VII. Section VIII closes the paper with the main 
conclusions.  

II. DESCRIPTION OF THE CASE STUDY 

A. Barcelona Sewer Network Description 

The city of Barcelona, with a population of 3,000,000 
inhabitants in an area of 98 square Km2, has a combined sewer 
system (waste and rainwater go into the same sewers) of 
approximately 1,500 Km. Additionally, the yearly rainfall is 
not very high (600 mm/year), but it includes heavy storms 
typical of the Mediterranean climate that cause a lot of 
flooding problems and combined sewer overflows to the sea 
that cause pollution. Such a complex system is conducted 
through the control centre in CLABSA (Barcelona Sewer 
Company) using a remote control system (in operation since 
1994) that includes sensors, regulators, remote stations and 
communications (Fig. 1). Nowadays, for control purposes, the 
urban drainage system contains 21 pumping stations, 36 gates, 
10 valves and 10 detention tanks which are regulated in order 
to prevent flooding and combined sewer overflow to the 
environment. The remote control system is equipped with 56 
remote stations including 22 rain-gauges and 136 water-level 
sensors which provide real-time information about rainfall and 
water levels into the sewer system. All this information is 
centralized at the CLABSA Control Center through a 
supervisory control and data acquisition (SCADA) system. In 
local mode, all regulated elements (pumps, gates and 
detention tanks) are controlled locally, i.e., they are handled 
from the remote control centre according to the measurements 
of sensors connected only to the local station. 

 

 
Fig. 1. Scheme of the mechanical treatment unit to grind and classify a mineral 
flow 

 
 

In global mode, the real-time control of the sewer network 
is based on model predictive control (MPC) which sets the 
references for local controllers located on different actuator 
(gates and pumps) elements of the sewer network using 
measurements taken from sensors distributed along the 
network and rain sensors. These references are computed in 
real-time using an operational model to predict time ahead the 
network dynamics, the current state of the system, provided by 
sensors, the current rain intensity measurements and 
appropriate rainfall predictions [4]. The control objective is to 
minimize flooding and combined sewer overflow to the 
environment, and to maximize the utilization of wastewater 
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treatment plants. CORAL is the application software 
developed to implement in real-time the optimal MPC global 
control of the Barcelona sewer network (Fig. 2). This 
application has been jointly developed by the SAC research 
group at UPC and CLABSA. It is built in three main modules: 
the first one is the model manager, which is the tool used to 
define a model and all its parameters. The second one is the 
event simulator and reproducer, which is used to evaluate the 
system configuration and control strategies, to read a past rain 
from CORAL database and to display the consequent system 
behaviour against rain scenarios. Finally, the third one is the 
online controller, which is used to read all sensor and actuator 
data from the SCADA system, link all this data to the 
optimizer and launching it to calculate/compute the optimal 
control strategy and finally, send this strategy in form of 
actuator set-points to the SCADA. More details about this tool 
can be found in [31]. 

 
Fig. 2. CORAL: MPC control tool for sewer networks 

 

B. Case Study Description 

The case of study used to illustrate the fault diagnosis 
methodology proposed in this paper is based on a part of this 
network that covers a surface of 22,6 Km2 . It is constituted by 
12 catchments (shaded areas of Figure 3) of the twenty 
catchments of the city and contains 3 diversion gates, 5 
overflows and only one real detention tank, whose capacity is 
35000 m3. It includes the main sewer which carries water to 
the treatment plants and the four main seafront sea pollution 
points. Moreover, in this part of the network there are five 
passive flow-diversion (overflow) devices and the network is 
metered by means of 4 rain-gauges and 14 limnimeters. 

 

 
Fig. 3. Part of Barcelona network considered in the limnimeters  FDI case 
study 

 

The water flow in sewers due to runoff is modeled as an 
open-channel and can be described accurately using Saint-
Venant equations2 [17], obtaining a complex non-line rainfall-
runoff model that is being used for high-fidelity simulations. 
However, for on-line purposes, as the global optimal control 
and FDI, a simpler model must be used.  The method used to 
derive a rainfall-runoff real-time model of a sewer network is 
through a simplified graph relating the main sewers and 
catchments as a set of virtual reservoirs [4]. A virtual 
reservoir is a conceptual model of a sewer network catchment 
that approximates the hydraulics of the retention of rain, 
runoff and sewage water. The hydraulics of a virtual reservoir 
can be described by the following equation:  

 
( )

( ) ( ) ( )up down
dV t

Q t Q t P t S
dt

         (1) 

where: V is the water volume accumulated in the catchment, 
Qup and Qdown are flows entering and exiting the catchment, P 
is the rain intensity falling in the catchment and S its surface 
(Fig. 4). 

 I 

Qup Q down =KvV 

V

S

L down = M downQdown

Manning 

Rain 

Level 
Sensor Virtual Tank 

Level
Sensor

Rain-gauge

Lup=MupQup

Manning  
Fig. 4.  Virtual model of a sewer catchment 
 

Input and output sewer levels are measured using 
limnimeters and they can be associated with flows using a 
linearised Manning relation calibrated experimentally [10], as 
follows: ( ) ( )up up upQ t M L t    and   

 
2 Saint-Venant equations are based on physical principles of mass 

conservation and energy, allow to describe accurately the open-channel flow 
in a sewer. However, these partial differential equations can only be solved 
numerically using computer intensive methods.  
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( ) ( )down down downQ t M L t , where M is the Manning 

coefficient that relates the flow value in the sewer with the 
limnimeter measurement and Lup, Ldown are the measured 
levels. Moreover, assuming that the catchments behaves as 
linear virtual tanks: ( ) ( )down vQ t K V t , where Kv is defined as 

the conversion coefficient from volume to flow. Then, 
substituting these relations in (1) and considering that the 
measurement sampling time (Ts=300 s in the Barcelona 
network), the following discrete-time model relating the 
liminimeter measurements of a given virtual reservoir can be 
derived: 

( 1) ( ) ( ) ( )down down down up upL k a L k a L k bP k        (2) 

where: ( )down v sa 1 K T  , /up v s up downa K T M M  and 

/v s downb SK T M .   

Using this modelling methodology, the case of study model 
is presented in Fig. 5. 

 

Fig. 5. Virtual reservoir model of the Barcelona sewer network case study 
 

In this part of the network there are: 14 limnimeters         
(L1, ..., L14) and 4 rain-gauges  (P1, ..., P4). Rain-gauges are 
spatially distributed in Barcelona area and each one affects 
more than one catchment (see Fig. 5).  Applying (2) to each 
virtual reservoir considering the main paths, a set of 9 
discrete-time equations can be obtained and can be expressed 
as follows: 

9 4

, , ,
1

1

ˆ ( 1) ( ) ( ) ( ) 1,...,9i i i i i j j i q q
j i q
j

L k a L k a L k b P k i
 


        (3) 

where following model (2): ai,i is computed as adown; ai,j is 0 if 
the tank j is not a preceding of tank i, otherwise the value is 
computed as aup ; bi,q is 0 if tank j is not affected by Pq, 
otherwise the value is computed as b.  Then, Eq. (3) can also 
be written in discrete-time space state by defining the volumes 
of the virtual reservoirs as state variables (x), the limnimeters 

as output variables (y) and the rain-gauges as input variables 
(u).  

The model related to the case of study has an additional 
equation corresponding to the real tank relating the tank water 
level with the input and output flows 

10 10 2 2 11 11
ˆ ( 1) ( ) ( ( ) ( ))sL k L k T M L k M L k     

Moreover, two additional static mass balance equations can 
be written relating the flows measured by limnimeters: L11 and 
L12, and by L7, L13 and L14, respectively. 

As a result of applying the limnimeter model methodology 
described above, 12 analytical redundancy relations are 
obtained [37].  Table I presents the structural analysis of these 
relations. Each row is a redundant relation, denoted by ri, and 
each column is related to the variable measurements involved, 
either, limnimeters or rain-gauges. Thereby, a cross in a given 
cell indicates that the corresponding variable measurement is 
present in the related relation. 

 
TABLE I 

STRUCTURAL ANALYSIS OF THE LIMNIMETER MODELS ASSOCIATED WITH THE CASE 

OF STUDY  

 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 P1 P2 P3 P4

r1 X              X    
r2 X X             X    
r3   X         X    X   
r4    X             X  
r5   X  X  X       X   X  
r6    X  X            X
r7       X        X    
r8        X     X  X    
r9         X       X   
r10  X        X X        
r11           X X       
r12       X      X X     

 

To exemplify the proposed FDI methodology, fault 
scenarios presented in this paper are focused on detecting and 
locating faults affecting the limnimeters that appear in the case 
study presented in Fig. 5. Thus, the vector of faults   fy to be 
detected is 

1 14

T

y L Lf ,..., f   f        (4) 

It is assumed that just a single fault appears in a certain faulty 
scenario and faults in limnimeters can be modelled additively 
as usually done in the case of sensors in the FDI approach 
[12].  

Conversely, it can be noticed that Table I, which determines 
the limnimeter model structure, also includes rain-gauges. 
However, in [26], it is shown that faults in rain-gauges can be 
handled independently from faults in liminimeters3. The 
complete FDI approach  with faults in rain-gauges and 
actuators (valves and pumps) is presented in [30]. 

 
3 Rain-gauge analytical redundancy relations can be derived relating the 

most correlated rain-gauges, derived using statistical tools that allow 
exploiting the spatial redundancy in the rain-gauge network. Thus, those 
relations allow to detect and isolate faults in rain-gauges independently of 
faults in limnimeters. When a rain-gauge is affected by a fault, it is replaced 
by the most correlated rain-gauges.  
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III. OVERVIEW OF THE PROPOSED APPROACH 

A. Evaluation of the Existing FDI Methods 

Model-based fault detection and isolation is based on a 
certain set of   numerical fault indicators, known as residuals 

( )kr  which are computed using the measured inputs ( )ku  

and outputs ( )ky  of the monitored system:  

( ) ( ( ), ( ))k k kr Ψ y u        (5) 

where Ψ  is the residual generator function. This function 
allows computing the residual set at every time instant using 
the measurements of the system inputs and outputs. Ideally, 
according to [12], residuals should be zero (or less than a 
threshold that takes into account noise and model uncertainty) 
when no fault is affecting the system. The fault detection task 
consists in deciding if there is a fault affecting the monitored 
system by checking each residual ( )ir k  of the residual set 

against a threshold that takes into account model uncertainty, 
noise and the unknown disturbances. The result of this test 
applied to every residual ( )ir k  produces an observed fault 

signature f(k): 1 2( ) ( ), ( ), , ( )nk k k k


      . A basic way 

of obtaining these observed fault signals could be through a 

binary evaluation of every residual ( )ir k  against a threshold ti 

[12]: 

0 if ( )
( )

1 if ( )
i i

i
i i

r k
k

r k





   

        (6) 

The observed fault signature is, then, supplied to the fault 
isolation module that will try to isolate the fault so that a fault 
diagnosis can be given. This module is able to produce such a 
fault diagnosis since it has the knowledge about the binary 
relation between the considered fault hypothesis set 

 1 2( ) ( ) , ( ), , ( )
fnk f k f k f kf   and the fault signal set f(k). 

This relation is stored in the called theoretical binary fault 
signature matrix (FSM). Thereby, an element FSMij of this 
matrix is equal to 1 if the fault hypothesis fj(k) is expected to 

affect the residual ri(k) such that the related fault signal fi(k) is 

equal to 1 when this fault is affecting the monitored system. 
Otherwise, the element FSMij  is zero-valued. 

However, this basic fault detection and isolation scheme, as 
already pointed out in the introduction, has the following 
drawbacks, among others (for more details see [5] and [27]): 
(a) The threshold i should be determined and adapted on-

line according to the system inputs and outputs taking 
into account the model uncertainty. 

(b) The presence of the noise produces chattering if a binary 
evaluation of the residual is used. 

(c) All fault signals fi(k) affected by a certain fault fj(k) 

according to the structure of the matrix FSM should be 
activated at the same time instant and they should be 

persistently observed during the whole fault isolation 
process. Otherwise, a wrong fault diagnosis result could 
be given. Nonetheless, because fault signals have their 
own dynamics, neither they necessarily have to be 
activated at the same time nor they are persistently 
observed.  

(d) Restricting the relation between faults and fault signals to 
a binary one causes a loss of useful information that can 
add fault distinguishability and accurateness to the fault 
isolation algorithm preventing possible wrong fault 
diagnosis results. The occurrence of a fault causes the 
apparition of a certain subset of fault signals such that 
each of them have characteristic dynamical properties for 
this fault which can improve the performance of the fault 
isolation algorithm if they are taken into account.  

Some of these problems should be considered by the fault 
detection module (for example, (a) and (b)), while the others 
by the fault isolation module (for example, (c) and (d)), or by 
the interface between both stages. 

B. Proposed Approach 

To address all these problems when using the standard FDI 
approach to limnimeter fault detection and isolation, a new 
fault diagnosis approach is proposed. Fig. 6 presents an 
overview of the different modules and their role in such 
approach: 
- Fault detection module generates a fault signal 

measuring the system inputs and outputs taking into 
account model uncertainty. This is carried out using a 
fault detection interval observer4 which allows generating 
an adaptive threshold that evolves along time.  

- Fault detection/isolation interface module evaluates fault 
signals generated by the fault detection module in order to 
register their dynamical properties which will allow the 
fault isolation module to isolate the fault among the 
considered fault hypotheses. These properties are 
summarized using several indicators which take into 
account not only the activation value of the fault signal 
but also its fault sensitivity/sign and its activation 
time/order. This improved interface module tries to 
handle the problems associated with the fault signal 
persistence, the residual sensitivity to a fault, the fault 
signal occurrence order and the fault signal occurrence 
time instant. As a result, the interface between fault 
detection and fault isolation modules is improved 
enhancing the performance of the used fault diagnosis 
system, 

- Fault isolation model reasons with the information used 
to build all the indicators provided by the improved fault 
detection and isolation interface using a discrete-event 
fault diagnosis model that can be automatically built 
taking into account temporal aspects related to fault signal 
sequence caused by the fault (fault signal occurrence 
order and time instant). 

 
4In an interval observer, model uncertainty is represented by a nominal 

model plus the uncertainty of every parameter bounded by intervals. 
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Fig. 6. Block diagram of the fault diagnosis system 
 

IV. FAULT DETECTION MODULE 

A. Fault Detection Using Interval Observers 

The main purpose of the fault detection module is the 
generation of fault signals so that the fault can be detected. 
The proposed fault detection algorithm is able to handle 
uncertainty and consequently, it can be considered a robust 
approach. The robustness of a fault detection algorithm is 
given by the degree of sensitivity to faults compared to the 
degree of sensitivity to uncertainty. One of the most 
developed families of approaches to deal with model 
uncertainty, called active, is based on generating residuals, 
which are insensitive to uncertainty (modelling errors and 
disturbances), while at the same time sensitive to faults using 
some decoupling method [33]. On the other hand, there is a 
second family of approaches, called passive, which enhances 
the robustness of the fault detection system at the decision-
making stage [29] using an adaptive threshold. This is the 
approach followed in this paper. 

The FDI methodology proposed in this paper considers that 
the monitored system can be described analytically by a 
MIMO linear uncertain dynamic model in discrete-time and 
state-space form, including faults, as follows   

0 a a

y y

( k 1) ( ) ( k ) ( ) ( k ) ( ) ( k )

( k ) ( ) ( k ) ( ) ( k )

   

 

x A θ x B θ u F θ f

y C θ x F θ f

  

    (7) 

where y(k)ny, u0(k)5nu, x(k)nx  are the system output, 

input and the state-space vectors respectively; A(θ )nxnx, 

B(θ )nxnu and C(θ )nynx are the state, the input and the 

output matrices respectively; θ  is the system parameter 
vector; fy(k)ny and fa(k)nu represent faults in the system 

output sensors and actuators respectively being Fy(θ )nyny 

and Fa(θ )nxnu their associated matrices.  
The system (7) is monitored using a linear observer with 

Luenberger structure based on an interval model. This type of 

model considers that model parameters q are time-invariant 

but bounded by an interval set  n   Θ θ θ   . This set 

represents the uncertainty about the exact knowledge of real 

 
5 It should be noticed that u0(k) is the real system input and does not have 

to be equal to the measured system input since the input sensor might be faulty 
or affected by noise. 

system parameters θ . The resulting interval observer can be 
written as:   

ˆ ˆ( 1) ( ( ) ( )) ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( )

k k k k

k k

    


x A θ ΛC θ x B θ u Λy

y C θ x
   (8) 

where u is the measured system input vector, ˆ ( )kx  is the 

estimated system space-state vector and ˆ ( )ky  is the estimated 

system output vector. Noticing that the relation between the 
measured system, u, and the real system input,  u0,  includes 
the effect of faults in the input sensors, the expression of u 
can be written as 

0( ) ( ) ( ) ( )u uk k k u u F θ f       (9) 

where ( ) nuk uf  is the input sensor fault while 

Fu(q)nunu is its associated matrix. 

The observer gain matrix 6 is designed to stabilize the 
matrix ( ) ( ) ( )o  A θ A θ ΛC θ  and to guarantee a desired 

performance regarding fault detection for all θ Θ . The effect 

of the uncertain parameters q on the observer temporal 

response allows the interval observer (8) computing a system 
output interval estimation ˆ( )y k  at every time instant instead 

of a single value. Thereby,  ˆ ( )ky  is bounded by the interval: 

[ ˆ ( )ky , ˆ ( )ky ], where for each output:  

ˆ ˆ( ) min( ( ))i iy k y k



θ Θ

 and ˆ ˆ( ) max( ( ))i iy k y k



θ Θ

  (10) 

Such interval can be computed using the algorithm based 
on numerical optimization presented in [26]. In case that there 
is no fault, each system output fulfils: 

ˆ ˆ( ) [ ( ), ( ) ]ii i
y k y k y k      (11) 

Alternatively, the observer given by Eq. (8) can be 
expressed in input-output form using the q-transform and 
considering zero initial conditions as follows:  

1 1

1 1 1
0 fu u

ˆ ( k ) ( q , ) ( k ) ( q , ) ( k )

( q , ) ( k ) ( q , ) ( k ) ( q , ) ( k )

 

  

 

  

y G θ u H θ y

G θ u H θ y G θ f        
 (12) 

where 

  11
o( q , ) ( ) q ( ) ( )

  G θ C θ I A θ B θ    (13) 

  11
o( q , ) ( ) q ( )

  H θ C θ I A θ Λ    (14) 

1 1
fu u( q , ) ( q , ) ( ) G θ G θ F θ      (15) 

Model-based fault detection is based on generating a 
residual comparing the measurements of physical variables 

( )ky  of the process with their estimation ˆ( )ky  provided by 

the associated system model: 
ˆ( k ) ( k ) ( k ) r y y         (16) 

where r(k)ny is the residual set. According to (Gertler, 
1998), a generic form of a residual generator can be obtained 
using Eq. (12) and written as:   

 
6 Noticing that when L=0, the observer is in fact a simulator but if LC=A, 

the observer becomes a predictor[29].   
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 1 1( ) ( , ) ( ) ( , ) ( )k q k q k    r G θ u I H θ y   (17) 

This residual expression is known as its computational 
form. In addition, the residual (17)  can be also expressed in 
terms of the effects caused by faults using its internal or 
unknown-input-effect form [12]. This form, obtained 
combining (16), (12)  and (7), is expressed as 

  1 1 1

1

( ) ( ) ( , ) ( , ) ( ) ( , ) ( )

( , ) ( )

fa a fy y

fu u

k k q q k q k

q k


  



    



r r I H θ G θ f G θ f

G θ f

 
 (18) 

where 

 1 1
0 0( ) ( , ) ( ) ( , ) ( )k q k q k

    r G θ u I H θ y    (19) 

1 1( , ) ( )( ( )) ( )fa aq q  G θ C θ I A θ F θ        (20) 

1( , ) ( )fy yq G θ F θ         (21) 

The term r(k) would be the expression of the residual if the 
system were unaffected by faults being only caused by the 
parameter structured uncertainty.  

Thereby, because of the consideration of model uncertainty 
located in the parameters as a fault detection passive 
robustness strategy, one way to compute the residual (18) 

might be using the nominal model ˆ ( , )o oky θ  given by the 

interval observer (8) when using o θ θ Θ . 

ˆ( ) ( ) ( )o ok k k r y y         (22) 

Then, in a non-faulty scenario, ( )o kr should be zero-valued 

at every time instant k considering an ideal situation. 
Nevertheless, it will never be satisfied since the system can be 
affected by unknown inputs (i.e. noise, nuisance disturbances, 
etc.) and the model might be affected by some error 
assumptions (model errors) apart from its considered 
parameter uncertainty. Thus, the residual generated (22) can 
not be expected to be zero-valued in a non-faulty scenario. 
However, propagating the interval observer parameter 
uncertainty to the residual, the values of the nominal residual 
(22) will be bounded by the interval [29]:  

[ ( ), ( )]
oo
iir k r k               (23) 

where: 

ˆ ˆ( ) ( ) ( )o o
ii i

r k y k y k   and ˆ ˆ( ) ( ) ( )o o
i i ir k y k y k   (24) 

being ˆ ( )
i

y k  and ˆ ( )iy k  the bounds of the ith-system output 

estimation computed using the interval observer (8) and 
obtained according to (10). 

As a result, while the nominal residual ( )o
ir k  satisfies the 

following relation, a fault can not be indicated since the 
system outputs satisfy the relation (11).  

( ) [ ( ), ( )]
ooo
ii ir k r k r k        (25) 

where the interval (23) can be seen as an adaptive threshold 
[29]. Then, the main goal of the fault detection module 

consists in checking for every residual ( )o
ir k  if the relation 

(25) holds or not. According to [7], this fault detection 
strategy achieves robustness against model uncertainty by 

generating an adaptive threshold through propagating (instead 
of decoupling) parameter uncertainty to the residual. 

B. Fault Signal Generation 

The fault detection test (25) relies on the comparison of the 

numerical value of the nominal residual ( )o
ir k , which may be 

affected by noise, with its associated adaptive threshold. This 
binary procedure may lead to undesirable decision instability 
(chattering) because of the effect of noise on the sensor 
measurements and consequently, a persistency criterion 
should be introduced [36]. Such as indicated by the DMP-
approach [24], a gradual reasoning involved by the use of 
fuzzy logic is an appealing alternative to bypass this chattering 
phenomenon. Then, as it was proposed in [26], the fault 
diagnostic signal (or fault signal) for each residual is 
calculated in the approach presented in this paper using the 
Kramer function [24]: 

4

4

4

4

( ( ) / ( ))
( ) 0

1 ( ( ) / ( ))

( )

( ( ) / ( ))
( ) 0

1 ( ( ) / ( ))

o o
oi i

io o
i i

i

oo
oi i

ioo
i i

r k r k
if r k

r k r k

k

r k r k
if r k

r k r k







 

 
 

  (26) 

The appealing performance of this function is due to its 
introduced grading when evaluating the residual in order to 
conclude the existence or not of a fault. When using the 
Kramer function (26), the residuals are normalized to a metric 

between -1 and 1,  ( ) 1,1i k   , which indicates the degree 

of satisfaction of (25) for every nominal residual ( )o
ir k : 0 for 

perfectly satisfied, 1 for severely violated high and -1 for 
severely violated low. In this paper, a fault signal will be 

notated as fi(k) and as in [14] it is considered that is activated 

by the fault presence if |fi(k)|³0.5. Otherwise, the fault signal 

is considered non-activated. Conversely, the set of all fault 

signals will be notated as f = {fi : i = 1,2,….ny }. 

C. Fault Signal Dynamics 

 According to [12], the theoretical dynamic properties of a 

fault signal fi(k) caused by a given fault fj are set by what is 

known as the sensitivity of the associated residual ri(k) to this 
fault fj. The concept of the residual sensitivity to a fault set 
according to [12]  can be expressed analytically as  

1( q ) 

f

r
S

f
         (27) 

Thus, the residual sensitivity to a fault is a transfer function 
which describes how a fault is affecting the residual and 
consequently, the dynamic properties of the fault signals 
caused by this fault. 

Concerning fault detection stage whose main task is the 
generation of fault signals, [21] shows the importance of this 
concept both in the residual time evolution and in the quality 
of the fault detection.  
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Analyzing the residual internal form (18), and considering 
the fault residual sensitivity definition (27), the residual 
sensitivity functions to the faults fy, fu and fa are given by the 
following matrices: 

 1 1 1( , ) ( , ) ( , )fy fyq q q    S θ I H θ G θ      (28) 

1 1( , ) ( , ) ( )fu uq q  S θ G θ F θ       (29) 

 1 1 1( , ) ( , ) ( , )fa faq q q    S θ I H θ G θ    (30) 

where Sfy Î nyxny is associated with fy, Sfu Î nyxnu with  

fu and Sfa Î nyxnu  with  fa. 

 
Then, taking into account (28), (29) and (30) in (18), it can 

be seen that this residual form can be rewritten in terms of 
residual sensitivity functions: 

1

1 1

( , ) ( , ) ( , ) ( )

( , ) ( ) ( , ) ( )

fa a

fy fy fu fu

k k q k

q k q k




 

  

 

r θ r θ S θ f

S θ f S θ f
   (31) 

Thereby, as the fault signals fi(k) are generated evaluating 

residual (31) such as indicated by (22) and (23) and applying 
(26), the next conclusions can be obtained: 
- the fault residual sensitivity functions establish which 

residual ri(k) (fault signal fi(k)) is affected by which fault 

(fyj, fuj, faj), 
- the fault residual sensitivity functions establish the 

dynamic of a given fault signal regarding a given fault, 
- the knowledge of the dynamic properties of the fault 

residual sensitivity functions allow inferring the 
theoretical dynamic properties of the fault signal 
sequence generated by the occurrence of a given fault. 

D. Application to the Case Study 

The interval observer equation (12) has been applied to the 
network prototype presented in Section II. Notice, that (3) 
could be easily written as an observer model (8) where the 
system output, input and the state-space vectors are the 
measured sewer level given by the limnimeters, the rain 
intensity measured using rain-gauges and the predicted sewer 
level determined by the limnimeter model,  respectively. The 
element of matrix A placed at the ith-file and jth-column is 
determined by the value ai,j of (8) while the element of matrix 
B placed at the ith-file and qth-column is given by bi,q of (8).  
These values are not null when there is a cross in the 
corresponding positions of Table I,. Concerning matrix C, it is 
assumed to be the identity matrix. Thereby, the related 
limnimeters have been modelled using interval reduced 
observers in order to estimate their output value. 

As example, in this section, the models related to 
limnimeters L4 and L6 are given: 

4,3 4,4
4 3 41 1

4,4 4,4 4,4 4,4

ˆ ( ) ( ) ( )
1 ( ) 1 ( )

b
L k P k L k

a q a q


   

   
 (32) 

6,4 6,4
6 4 41 1

6,6 6,6 6,6 6,6

6,6
61

6,6 6,6

ˆ ( ) ( ) ( )
1 ( ) 1 ( )

( )
1 ( )

a b
L k L k P k

a q a q

L k
a q

 




 



  
   


 

 (33) 

where i,j is the element of the observer gain matrix placed 
at the ith-file and jth-colum and which is parameterized as 
follows: 

, , ,i j i j i jw a  .  

In the case of study presented in Section II, the value of the 
parameters and their associated uncertainty bounded using 
intervals are estimated using real data from the sensors 
installed in the network. This process guarantees that the 
observer estimated interval output includes all the limnimeter 
non-modelled effects, what is achieved using an algorithm 
inspired by the one proposed in [25]. This methodology uses 
the classical identification approaches, such as the least-
squares method, in order to provide the nominal values of the 
model parameters. Then, using optimization tools, the 
uncertainty parameter intervals of the considered reduced 
observer are adjusted using a worst-case approach [26] until 
all the measured data is covered by the model estimated output 
interval for the considered observer gain. Thereby, using this 
methodology, the parameter values of the interval reduced 
observer (32) and (33) are: a4,4 [0.9544, 0.9737], 
b4,3[6.2641e3, 6.3907e3], a6,6[0.8816, 0.9084], 
a6,4[0.0381, 0.0393] and b6,4[1.4469e4, 1.4910e4].  

In the Fig. 7, the time evolution of the measurements 
related to the limnimeters L4 and L6 and their interval 
estimations given by the associated interval reduced observers  
(32) and (33) are plotted assuming a non-faulty scenario and 
using the observer gains corresponding to w44= w66=0.01. 

 
Fig. 7. Time evolution of the limnimeter output measurements and their 
interval estimations. 
 

According to (16), the estimations given by the interval 
reduced observers related to the modelled limnimeter set 
(Table I) allow obtaining a set of 12 residuals. As an example, 
the computational form of the nominal residuals associated 
with the limnimeters L4 and L6 are given by  
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1 1

4 4 31 1

4,4 4,3

4,4 4,4 4,4 4,4

1
( ) ( ) ( )

1 ( ) 1 ( )
o

o o

o o

b
L P

a q q
r k k k

a q a q 

 

 


 

   
  (34) 

1 1
o

6 6 41 1

1

41

o o
6,6 6,4

o o
6,6 6,6 6,6 6,6

o
6,4

o
6,6 6,6

a
L L

P

1 a q q
r (k ) (k ) (k )

1 ( a )q 1 ( a )q

b q
(k)

1 ( a )q

 



 

 






  

   


 

 (35) 

where ,
o
i ja and ,

o
i jb  are the nominal values of the  interval 

parameters ai,j and bi,j. 

The values of 4 ( )o kr and 6 ( )o kr are bounded by the intervals 

44 ( ), ( )
oo k r kr 

  
and 66 ( ), ( )

oo k r kr 
  

respectively, which are 

computed using the expression (24). Thereby, for the case of 
residual r4(k): 

44 4
ˆ ˆ( ) ( ) ( )o or k L k L k   and 4 4 4

ˆ ˆ( ) ( ) ( )o or k L k L k    (36) 

Concerning to the residual sensitivity to a fault whose 
general expression is given by (27), the sensitivity of the 

residual 4 ( )o kr  in (34) to an additive fault in L4 (fL4) is given 

by  

4 L4

1
1

r ,f 1

o
4,4

o
4,4 4,4

S q
1 a q

( )
1 ( a )q









 
     (37) 

Regarding the residual 6 ( )o kr  in (35), its sensitivity to an 

additive fault in L6 (fL6)  and in L4 (fL4)  are respectively 

6 L6

1
1

r , f 1

o
6 ,6

o
6 ,6 6 ,6

S q
1 a q

( )
1 ( a )q









 
    (38) 

6 4

1

1
, 1

6,4

6,6 6,6

( )
1 ( )Lr f

o

o

a
q

q
S

a q




 
 

     (39) 

 

V. FAULT DETECTION AND ISOLATION INTERFACE 

A. Background 

Regarding the connection between fault detection and fault 
isolation modules, these stages are generally considered 
separately in model-based fault diagnosis (either using FDI or 
DX methods). The typical interface between these two 
modules is through a binary codification of the evaluation of 
every residual or every analytical redundancy relation (ARR) 
what generates a fault signature. These last years, the 
integration between fault detection and fault isolation tasks in 
FDI model-based fault diagnosis has been a very active 
research area (see among others[32][35][22][15][39][40]). In 
this line, the dynamic properties of the fault signals caused by 
a certain fault depends mainly on the dynamic properties of 
the residual generator used in fault detection since the 
evaluation of this element at every time instant allows the 
generation of the fault signals [20]. Thus, it can be said that 
the fault isolation result is closely affected by the fault 
detection stage since the residual generator structure (used by 
the fault isolation module to locate the fault) determines the 

relationship between faults and the dynamical properties of 
fault signals [18]. Thus, in order to diagnose accurately, fault 
detection and fault isolation can not be considered 
independently. Besides, when observers are used as fault 
detection mechanism, the result of the fault detection stage is 
influenced by the observer gain matrix because it deeply 
affects the dynamic properties of the residual generator [19]. 
Therefore, the theoretical dynamic properties of the fault 
signal sequence generated by a certain fault will be also 
influenced by the observer gain. 

In this way, it will be shown that all available and useful 
information of the fault detection and isolation tasks is 
considered.  The interface between fault detection and fault 
isolation considers the degree of fault signal activation and the 
occurrence time of the diagnostic signals using a combination 
of several theoretical fault signature matrices which store the 
knowledge of the relationship between diagnostic signals and 
faults. Thus, the diagnosis result will be enhanced since the 
occurrence of a fault generates a unique sequence of 
observable events (fault signals) that will be recognized by the 
isolation module implemented as a timed discrete event 
system, as discussed in Section VI. 

B. Proposed Interface 

The used interface in this paper is based on a generalization 
of the theoretical fault signature matrix (FSM) [12] concept 
where the binary interface is extended taking into account 
more fault signal properties [28]. In this approach, there are as 
many FSM matrices as different properties are taken into 
account: Boolean property (FSM01), fault residual sensitivity 
property (FSMsensit), occurrence order property (FSMorder) 
and the occurrence time instant (FSMtime). Those matrices 
store the influence of the considered faults on the residual set: 
the element FSMij of a matrix contains the expected influence 
of fault fj on ri

0. The following subsections illustrate how to 
obtain matrices FSMsensit and FSMtime using the interval 
observer model of the monitored system while the other two 
matrices can clearly be derived from them. 

C. FSMsensit: Evaluation of Fault Signal Sensitivities 

The value of an element of the table FSMsensit, 
FSMsensitij, describes how easily a fault fj (fyj, fuj, faj) will 
cause the ith-residual ri

o(k) to violate its associated adaptive 
threshold given by the interval (23) originating the occurrence 

of the fault signal fi(k) (26). Thereby, according to the 

residual internal form  (31) and the main results of Section 
IV.C, every element FSMsensitij must be directly proportional 
to the fault residual sensitivity function Sf(q

-1) ((28), (29), (30)
) and inversely proportional to the associated threshold 

( )o
ir k or ( )o

ir k  . Thereby, the following equation describes 

how to compute the entries FSMsensitij: 
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1
, 0

0

1
, 0

0

1
0

( ) ( )
if ( ) 0 and 

( )

( ) ( )
if ( ) 0 and 

( )

0 if  or ( )= 0

i j

i j

r f o
io

i

r fij o
io

i

rifj

S q k t
r k k t

r k

S q k tsensit
r k k t

r k

k t S q











 
  


  

 


 

FSM  (40) 

where h(k) is an unitary abrupt step input, 1
, ( )

i jr fS q  is the 

sensitivity associated to the nominal residual ( )o
ir k  regarding 

the fault hypothesis fj (fyj, fuj, faj) and t0 is the fault occurrence 
time instant. When t0 is unknown, it must be estimated using 

the occurrence time instant kfi of the first observed fault signal 

fi(k). As consequence of the fault residual sensitivity time 

dependency, FSMsensitij evolves dynamically since the fault 
occurrence time instant t0.  

The consistency between the observed sequence of fault 

signals fi(k) and the theoretical information stored in 

FSMsensit for the jth-fault hypothesis can be evaluated 
computing factorsensitj  as follows: 

 
1

1

( )

( )

ny

i ij
i

j jny

ij
i

k sensit

sensit k

sensit











FSM

factor zvf

FSM

  (41) 

 0,      if  1,...,  with  sensit 0

        and ( ) 0.5

1,  otherwise                                              

ij

j i

i n

k

   


 



FSM

zvf  (42) 

Thus, this factor uses the values fi(k) of every fault signal 

weighted by the corresponding elements FSMsensitij related to 
the fault hypothesis fj in order to set the occurrence probability 
of this fault hypothesis. Thus, when computing factorsensitj 
such as it is indicated by (41), the following behaviour is 
obtained: those expected and observed fault signals support 
the fault hypothesis fj while the observation of an unexpected 
fault signal let reject that fault hypothesis of the final 
diagnosis result. Moreover, those missing fault signals also 
affect indirectly the supportability of the fault hypothesis via 
the denominator of (41). 

Concerning matrix FSM01, known as the binary theoretical 
fault signature matrix [12], it must be noticed this matrix can 
be easily derived from FSMsensit (40) applying the following 
conversion: 

ij
ij

ij

1 sensit 0
01

0 sensit =0

   


FSM
FSM

FSM  
    (43) 

In this case, the consistency between the observed sequence 

of fault signals fi(k) and the theoretical information stored in 

FSM01 for the jth-fault hypothesis can be evaluated 
computing factor01j  as follows: 

  
1

1

( ) 01

01 ( )

01

ny

i ij
i

j jny

ij
i

boolean k

k











FSM

factor zvf

FSM

 (44) 

with 

0, if ( ) 0.5
( ( ))

1,     if ( ) 0.5      
i

i
i

k
boolean k

k





   

  (45) 

D. FSMtime: Evaluation of fault signal occurrence time 
instant 

When a fault fj occurs, the affected residuals need different 
times to start indicating that fault or equivalently, the fault 
signals requires different times to appear. Each element of the 
jth -column of the matrix FSMtime contains the time interval 

[
ij ,

ij ] in which the fault signal fi(k) is expected to appear. 

The value 
ij  is associated with the minimum fj-type fault 

which is considered to be isolated, while 
ij  is associated with 

the maximum fj-type fault the monitored system might suffer. 
Thus, the values 

ij  for a given fault fj could be estimated 

carrying out a test for every residual. This tests is based on 
comparing the residual disturbance caused by a fault in the 

nominal residual ( )o
ir k  with the adaptive threshold given by 

(23) related to the observer when the system is unaffected by a 
fault [21]. Derived from fault detection test (25) and from the 
residual internal form (31), this test can be written as: 

01 *
, 0( ) ( ) [ ( ), ( )]

i j

oot
ir f j iS q f k q r k r k k t       (46) 

where *( )jf k  is the worst case of a fj-type fault the monitored 

system might suffer and ,i jr fS  is the sensitivity of the residual 

ri(k) regarding a fault fj(k). Then, the time the residual requires 

to start indicating the fault ( ij ) is obtained using the 

minimum time instant kmin that satisfies (46). 

min 0ij k t           (47) 

When monitoring a system, the fault occurrence time 

instant t0 is unknown in general. Hence, the values ij  

associated to the fault hypothesis fj must be referred to the first 
observed fault signal. Then, 

min( )ij ij ij
i

  


         (48) 

The value 
ij  might also be calculated using test (46) but in 

this case, *( )jf k  is the minimum fj-type fault which is 

considered to be isolated. Thus, the values 
ij  are obtained 

and then, 

min( )ij ij ij
i

  


         (49) 

Regarding the elements of matrix FSMtime,  
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1
,

1
,

[ , ]  if  ( ) 0

[ 1, 1] if  ( ) 0

i j

i j

ij ij r f

ij

r f

S q
time

S q

  



  
  

FSM   (50) 

it is remarkable the influence of the observer gain on the 
interval [

ij ,
ij ]. Consequently, a proper design might help so 

that all the fault signals were observed at the same time 
instant.  

Derived from FSMtime, one of the most important 
parameters of the fault isolation algorithm can be obtained. 
This is the time window Tw which determines the maximum 
period of time required once the first fault signal is observed 
so that all fault signals can appear. In other words, Tw is the 
period of time needed, once the first fault signal is detected, to 
give an accurate fault diagnosis result, unless there were only 
one fault hypothesis left supporting the observed fault signal 
temporal sequence before Tw would have ended. Thereby, Tw 
can be obtained as follows: 

,
max( )w ij

i j
T 


          (51) 

 On the other hand, in order to compare the occurrence time 
instant of the observed fault signal sequence with the stored 
one in matrix FSMtime, the factor factortimej is calculated for 
every fault hypothesis as follows: 

  
1

1

( )

)

ny

i ref ij
i

j jn

ij
i

ckecktime k k time

time k

boolean time











, ,FSM

factor zvf

(FSM

 (52) 

where kfi is the occurrence time instant of the fault signal 

fi(k), kref is the occurrence time instant of the first observed 

fault signal,   

 
0 if  or ( ) 0.5

1 if  and ( ) 0.5

i ref ij

i ref ij i

i ref ij i

ckecktime k k time

k k time k

k k time k













   


  

, ,FSM

FSM

FSM

  (53) 

0, if [ 1, 1]
)

1,     if [ 1, 1]       

ij
ij

ij

time
boolean time

time

      

FSM
(FSM

FSM
 (54) 

Concerning the occurrence order property of the fault 
signals affected by the fault hypothesis fj, the jth-column of the 
table FSMorder contains their theoretical occurrence order 
which is codified using ordinal numbers, starting with ‘1’. 
Regarding those fault signals which are theoretically not 
affected by that fault hypothesis, they are coded with ‘0’ in the 
corresponding cells of the matrix FSMorder. Thus, the 
elements of this matrix for a fj-type fault can be derived from 
FSMtime applying the following rule: 

 where  ( )

and [ 1, 1]

0 if =[-1,-1]

j ij

ijij

ij

timeorder

time

  


   



δ

FSMFSM

FSM

 

 (55) 

where dj is a vector that contains the non-repeated elements
ij   

of the jth-column of FSMtime  ordered ascendant  and whose 

values are not equal to -1. According to the residual internal 
form (31), it can be seen that the fault signal occurrence order 
for a given fault hypothesis is determined basically by the 
fault residual sensitivity function and by the adaptive 
threshold. 

Then, comparing the fault signal observed information with 
the theoretical one stored in the matrix FSMorder, the 
occurrence probability of every fault hypothesis can be 
calculated computing factororderj: 

  
1

1

( )

( )

)

ny

i ij
i

j jny

ij
i

ckeckorder k order

order k

boolean order











,FSM

factor zvf

(FSM

 (56) 

where 
( ( ), )

if    ( ) 0.50

0 if    ( ( )) ) and ( ) 0.5

1 if    ( ( )) ) and ( ) 0.5

i ij

i

i ij i

i ij i

ckeckorder k order

k

order k order k

order k order k





 

 



 


 
  

FSM

FSM

FSM

 

 

   (57) 

and ( ( ))iorder k  is the observed occurrence order of the fault 

signal fi(k). 

E. Application to the case study 

Considering the set of interval reduced observers (Section 
IV.D) used to monitor the limnimeter outputs of the Barcelona 
sewer network presented in Fig. 5, the value of the matrices 
FSMsensit and FSMtime are given in this section. These 
matrices are computed taking into account the observer gains 
w i,j   (i,j = w i,j a i,j) of all interval observers are equal to 0.01 
(Section IV.D) and the occurrence of the first fault signal is 
detected at time instant t0=4000 s.  

Regarding to FSMsensit (see Section V.C), it must be taken 
into account that each element of this matrix is a time function 
mainly based on the sensitivity of the residual related to a 
certain fault signal to a given fault hypothesis (40). Thus, in 
the following, the elements of FSMsensit matrix illustrated in 
Table II are just the fault residual sensitivity steady-state 
values instead of the ones derived from (40). However, the 
presented fault isolation algorithm does use this equation to 
obtain the elements of FSMsensit. In this table, fLj is a fault 

affecting the limnimeter Lj while fLi is the fault signal 

associated with the residual rLi obtained using the interval 
observer model of Li. For instance, considering the column of 
FSMsensit associated with the fault hypothesis fL4, the value 

of the cell related to the fault signal fL4 is given by the steady-

state value of the sensitivity function 
4 L4

1
r , fS q( )  (37) when 

applied an unitary abrupt step input h(k) at t0=4000 s . 

Table III presents FSMtime  matrix (see Section V.D), 
where the fault occurrence time intervals are expressed in 
seconds. According to the value of the presented FSMtime 
and (51), the value of the diagnosis time window for this 
scenario is Tw = 30600 s, taking into account that Ts=300 s is 
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the sample time period. 
 

TABLE II 
THEORETICAL FAULT SIGNATURE MATRIX RELATED TO THE FAULT RESIDUAL 

SENSITIVITY PROPERTY, FSMsensit 
 fL1 fL2 fL3 fL4 fL5 fL6 fL7 fL8 fL9 fL10 fL11 fL12 fL13 fL14 

L1 0.964 0 0 0 0 0 0 0 0 0 0 0 0 0 

L2 -0.908 0.955 0 0 0 0 0 0 0 0 0 0 0 0 

L3 0 0 0.977 0 0 0 0 0 0 0 0 -0.255 0 0 

L4 0 0 0 0.789 0 0 0 0 0 0 0 0 0 0 

L5 0 0 -0.552 0 0.952  -0.406 0 0 0 0 0 0 -5.162

L6 0 0  -0.340 0 0.921 0 0 0 0 0 0 0 0 

L7 0 0 0 0 0 0 0.802 0 0 0 0 0 0 0 

L8 0 0 0 0 0 0 0 0.933 0 0 0 0 -0.150 0 

L9 0 0 0 0 0 0 0 0 0.946 0 0 0 0 0 

L10 0 -57.243 0 0 0 0 0 0 0 0.362 97.484 0 0 0 

L12 0 0 0 0 0 0 0 0 0 0 -14.085 1 0 0 

L14 0 0 0 0 0 0 -0.183 0 0 0 0 0 0.265 1 

 
TABLE III 

THEORETICAL FAULT SIGNATURE MATRIX RELATED TO THE FAULT SIGNAL 

OCCURRENCE TIME INSTANT PROPERTY, FSMtime 
 fL1 fL2 fL3 fL4 fL5 fL6 fL7 fL8 fL9 fL10 fL11 fL12 fL13 fL14 

L1 [0,0] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] 

L2 [300,3900
] [0,0] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] 

L3 [-1,-1] [-1,-1] [0,0] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] 
[300,2400

] 
[-1,-1] [-1,-1] 

L4 [-1,-1] [-1,-1] [-1,-1] [0,0] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] 

L5 [-1,-1] [-1,-1] 
[600,4200

] 
[-1,-1] [0,0] [-1,-1] 

[900,4200
] 

[-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] 
[300,2400

] 

L6 [-1,-1] [-1,-1] [-1,-1] 
[900,6300

] 
[-1,-1] [0,0] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] 

L7 [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [0,0] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] 

L8 [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [0,0] [-1,-1] [-1,-1] [-1,-1] [-1,-1] 
[2100,5400

] 
[-1,-1] 

L9 [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [0,0] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] 

L10 [-1,-1] 
[300,1800

] 
[-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [0,0] 

[300,30600
] 

[-1,-1] [-1,-1] [-1,-1] 

L12 [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [0,0] [0,0] [-1,-1] [-1,-1] 

L14 [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [0,0] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [0,0] [0,0] 

 

VI. FAULT ISOLATION MODULE 

A. Background 

The basic idea of a fault isolation module is that the 
occurrence of a fault will generate a unique sequence of 
observable fault signals (events) that will establish the 
presence of a given fault. In general, the model type 
(qualitative or quantitative) used in fault isolation depends on 
the type of the used fault detection model.  However, since a 
fault signal can be seen as a discrete-time event with a given 
occurrence time instant, dynamics and duration, the use of 
those qualitative models known as timed discrete events 
models follows naturally [13][15]. In this sense, [9] uses a 
labelled transition system (LTS), considering the fault signal 
occurrence order. This LTS is built on the grounds of a causal 
graph that models the behaviour of the monitored system. 
Conversely, temporal dynamic table of states (T-DTS) method 
[14] models the relationship between fault signals and faults 
using the called Fault Information System (FIS). The fault 
isolation algorithm used by this method is based on series 
inference where the occurrence of a new fault signal let 
narrow the possible fault hypotheses checking its observed 
properties and the information stored in the FIS. However, 
this kind of models is not very common when fault detection 
stage is modeled using an analytical model (at least in the FDI 
community). In this paper, the proposed fault diagnosis 
approach will combine a fault isolation qualitative timed 
discrete event model with an analytical model used in fault 

detection. 
 

B. Fault Isolation Algorithm as a DES 

As mentioned before, the fault isolation module can be 
formalized as a discrete events system (DES)7 since a fault 
signal can be seen as a discrete-time event. Thereby, the 
occurrence of a fault will cause a sequence of fault signals 
whose dynamical properties should allow obtaining a fault 
diagnosis result. Taking into account temporal aspects in the 
sequence of fault signals (order and time instant of 
occurrence), a timed discrete event system (TDES) will allow 
to model more accurately the fault isolation process from the 
occurrence of the first fault signal of the temporal sequence 
until a fault isolation result is given. A timed discrete event 
system of this type is known as a timed labeled transition 
system (TLTS). A TLTS can be seen as an evolution of the 
labeled transition system family (LTS) [9] since a LTS does 
not consider the occurrence time instant of the fault signals in 
order to determine the fault isolation result. Using this 
modelling approach, the fault signals would be the events, the 
states would be given by all the fault hypotheses supporting 
the observed fault signal sequence and the transitions would 
be set by the comparison between the theoretical and the 
observed dynamical properties of the fault signals. 

C. Fault Isolation and Interface Module Components  

1) Description: Fig. 8 presents the components of the 
fault isolation and interface modules which derive from an 
evolution of the architecture proposed in [28]. As mentioned 
above, the main idea of this fault isolation process is that a 
given fault affecting the monitored system will cause a unique 
temporal sequence of fault signals which will allow obtaining 
a diagnosis result comparing their observed dynamical 
properties with the ones stored for each fault hypothesis in the 
fault isolation matrices. 

The fault isolation algorithm starts with the occurrence of 
the first fault signal and ends when there is only one fault 
hypothesis supporting the observed temporal sequence of fault 
signals or when the diagnosis time window Tw (51) has ended. 
Thereby, the first element of this algorithm is a memory 
component which registers some information of the observed 
fault signals. The second element is a timed series inference 
component which compares the stored information of a new 
observed fault signal with the information stored in matrices 
FSM01, FSMtime, and FSMorder for those non-rejected fault 
hypotheses. The result of this series inference component is 
the rejection of those fault hypotheses that do not support the 
observations. When there is only one fault hypothesis left, the 
algorithm ends giving that hypothesis as the fault diagnostic 

 
7 Fault isolation methods built using a DES consist of a set of states connected 
by transitions [34]. The transitions are related to events generated by the fault 
effect on the monitored system, while the states indicate a certain situation of 
the whole fault isolation process. Moreover, when these transitions are built 
taking into account some temporal aspects, the discrete event system (DES) is 
known as a timed discrete event system (TDES) [6]. 
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result. Otherwise, when the time window Tw has ended, the 
third element, the pattern comparison component, computes 
factorsensitj for those non-rejected fault hypotheses. Then, the 
last element, the logic decision component, gives as a 
diagnostic result the fault hypothesis with the biggest absolute 
value of the factor factorsensitj. 

 

 
Fig. 8. Components of Interface and Fault Isolation Modules 

 
In the following, a more detailed explanation of the 

performance of the memory component and the timed series 
inference component will be given. 

2) Memory Component: The memory component consists 
in a table which stores some information related to the time 
evolution of each fault signal. Thereby, once the first fault 
signal is observed the memory component stores the 

occurrence time instant (kfi), defined as the first time instant 

where fi(kfi) is activated and the fault signal value (fimax)
8 

whose absolute value is maximum. Every time the fault 

detection module detects a new fault signal fi(k) or an 

observed fault signal reaches a new value fimax, this memory 

is updated with the new information situation. Then, after a 
fault diagnosis result is given by the fault isolation module, 
the memory component is reset being ready to start the 
diagnosis of a new fault. This reset consists of deleting the 
information related to all vanished fault signals and the value 

 
8  max max max( ) max ( )

i
i i i i i

k k
k k



   


   where   

fimax of those fault signals which can still be observed at this 

time instant. 
 
3) Timed series inference component: This component is 

based on the fact that each new fault signal allows rejecting 
those hypotheses that do not support the observations. In 
consequence, a diagnosis result can be given before the time 
window Tw ends. Thereby, the rejection of a certain fault 
hypothesis when a new fault signal is observed is based on the 
comparison of its information stored in the memory 
component with its theoretical one for this fault hypothesis 
stored in the matrices FSM01, FSMtime, and FSMorder. This 
leads to the following performance: the observation of a new 
fault signal will allow narrowing the subset of fault 
hypotheses which are still supporting the observations and 
consequently, the ones which are still candidates to set the 
diagnosis result. When there is just one fault hypothesis left, 
the reasoning process ends giving it as the diagnosis result. 
Otherwise, the process ends once the period of time Tw has 
ended since the observation of the first fault signal.   

This component can be built using a timed labelled 
transition system where the initial state is the non-faulty state, 
then, each fault hypotheses (set f) have a TLTS representation 
which are connected to this initial state. The TLTS 
representation associated with a given fault hypothesis shows 
the fault signal temporal sequence caused by this fault.  In 
each state transition, the properties of the new observed fault 
signal are compared with those stored in FSM01, FSMorder 
and/or FSMtime for this fault hypothesis. The present state of 
a fault hypothesis TLTS representation just indicates that this 
fault hypothesis is still supporting the observed fault signal 
temporal sequence. When a new fault signal occurs, for each 
non-rejected fault hypotheses, the state transition starting at 
the present state is evaluated. If this evaluation fails, the fault 
hypothesis is rejected. At the end of the diagnosis time 
window Tw, those non-rejected fault hypotheses will establish 
the final fault diagnosis result. 

According to the definition given by [9] for a LTS, a TLTS 
can be seen as the following tuple 

j=(Qj,q0,Sj,dj)         (58) 

where Qj is the set of states, q0 is the initial state, Sj is the set 

of labels and dj is the set of transitions. Thus, when applying 

this TLTS definition to model the presented timed series 

inference component, there will be a tuple j related to every 

fault hypothesis fj that belongs to the set f of all the considered 

fault hypotheses. All this set of elements j  will just have one 

component in common: the state q0 related to the non-faulty 

state. Regarding the states QpjÎ Qj, its number nQj is set by the 

number of fault signals fi(k) affected by the fault hypothesis 

fj. This is 

1

01
ny

Qj ij
i

n


FSM         (59) 
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The present state Qpj of j  just have the meaning that the 

fault hypothesis fj is still supporting the observations.  

Regarding the transitions dpj of the set dj, they connect Q(p-

1)j with Qpj being q0, the first state. Thus, there will be for a 

certain j , a transition for every fault signal related to the fault 

hypothesis fj: this is  nQj. In this way, the transition dpj will be 

related to the fault signal fi(k) whose theoretical occurrence 

order for this fault hypothesis is given by ‘p’ (FSMorderij=p). 
Thereby, concerning the sequence of transitions and states in 

j, they have an ascendant order set by p = 1,…, nQj . 

About the labels Spj of the set Sj, there is one for each 

transition dpj and consequently, for each fault signal fi(k) 

related to the fault hypothesis fj. Thereby, the evaluation of all 

the labels Spj is carried out when the pth -fault signal fi(k) is 

observed. If the evaluation of Spj fails, the fault hypothesis fj 

is rejected. Otherwise, the state Qpj becomes the present state 

of j . Thereby, Spj is carried out evaluating the following 

relation 

  
  

( ) andpj i ij

i ref ij

ckeckorder k order

ckecktime k k time

 



,FSM

, ,FSM
   (60) 

where the functions checkorder and checktime are given by 
(57) and (53), respectively. According to the mentioned 

previously, a diagram of the set of elements j which models 

the performance of this timed series inference component is 
presented in Fig. 9. 
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Fig. 9. Timed series inference component modelled using a timed labelled 
transition system 

 

D. Application to the Case Study  

In this section and for the considered case of study (see Fig. 
5), a fault isolation process will be designed following the 
architecture presented in Section VI.C. The main focus will be 
on the timed labelled transition system used to model the 
timed series inference component (see Fig. 9). In this case, 
this fault isolation model will be built just considering a subset 

of  7 fault hypotheses affecting L3, L4, L5, L6, L7, L13 and L14 of 
the fault set fy   (4). In Fig. 10, the label of the transition 

related to the fault signal fLi for the fault hypothesis fLj (fault 

affecting limnimeter Lj)  will be noted as SLi- Lj (60) while all 

the states related to a certain fault hypothesis will be notated 
as fLj .    
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Fig. 10. Limnimeter fault isolation based on a timed LTS 

 

The associated representation of this timed labelled 
transition system can be seen as the integration of all the 
information stored in FSM01, FSMorder and FSMtime in the 
same structure.  

Focusing in a fault scenario9 where a fault affecting 
limnimeter L4 occurs at t0= 4000s, the time evolution of the 

affected residuals, 4 ( )o kr and 6 ( )o kr  (34) and (35) and their 

associated adaptive thresholds ( 44 ( ), ( )
oo k r kr 

  
 and 

66 ( ), ( )
oo k r kr 

  
) are plotted using the observer gains 

corresponding to w44= w66=0.01 ( Fig. 11).  
 
 

 
Fig. 11. Time evolution of the residuals and their adaptive thresholds. 
 

 
Analyzing the time evolution of those residuals and 

according (25) and (26), the first observed fault signal will be 

fL4 (fault signal related to limnimeter L4 observer model) 

 
9 All faults scenarios presented in this paper have been simulated using a 

high-fidelity simulator of the Barcelona sewer network. 
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since time instant t=t0.  The time evolution of  factorsensitj 
(41) and factortimej (52) related to all fault hypotheses of the 
set fy (4) is plotted at every time instant in Fig. 12.  

 
Fig. 12. Time evolution of factorsensitj and factortimej related to all fault 
hypotheses of the set fy. 
 

It can be seen that only those factors related to the fault 
hypothesis fL4 are activated from the fault occurrence time 
instant. Then, according to the fault isolation discrete-event 
model presented Fig. 10 and the information stored in 
FSM01, FSMorder and FSMtime, all fault hypotheses except 
fL4 (fault affecting L4) will be rejected. Afterwards, the fault 

signal fL6 is observed supporting the LTS representation 

associated with fL4 (see Fig. 13). 
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Fig. 13. Isolation of a fault affecting L4 using a Timed LTS model.  

VII. COMPARISON WITH STANDARD FDI APPROACH 

In this section, the proposed timed discrete-event FDI 
approach is compared with the standard FDI approach based 
on the binary diagnostic matrix (FSM01) [12]  using a parallel 
diagnostic inference [12]. Thereby, this method tries to give a 
diagnosis result at every time instant checking the binary 
property of the observed fault signals with the theoretical 
information stored in matrix FSM01. Those fault hypotheses 
whose theoretical fault signature fully matches with the 
observed fault signals are given as a fault diagnosis result. 

In the considered fault scenario, a fault affecting the 
limnimeter L7 occurs at t0= 4000s. In this case, all the interval 
observers used to monitor the limnimeters were tuned using 
the observer gains (i,j= w i,j a i,j) corresponding to w i,j = 0.01 
except the one used to monitor L7 whose observer gain was 
determined by w7,7 =0.5. In Fig. 14, the time evolution of the 

affected residuals ( 5 ( )o kr , 7 ( )o kr , 8 ( )o kr , 14 ( )o kr ) and their 

adaptive thresholds are plotted. In this figure, for every 
residual, a fault detection indicator is plotted to signal out 
when the associated fault signal is observed or not (25). 

 
Fig. 14. Time evolution of the residuals, their adaptive thresholds and the 
associated fault detection indicator. 
 

According to the matrix FSMsensit (Table II) and FSMtime 
(Table III), a fault affecting L7 will cause the observation of 

three fault signals: fL7 and fL14 when the fault occurs and fL5 

once some time has elapsed. Thus, in this scenario fL7 was the 

first observed fault signal.  Moreover, due to the configuration 

of the observer that monitors L7, fL7 is not observed 

persistently and vanishes before fL5 appears. In this situation, 

once fL7 has vanished, the binary fault signature associated 

with fL14 matches the binary property of the observed fault 
signals. In this case, the binary fault isolation approach will 
give fL14 as a fault diagnosis result instead of fL7, which is the 
right result. 

In the following, the time evolution of the binary approach 
fault diagnosis result is given considering a set of possible 
results determined by fL3, fL5, fL7, fL13, fL14. 

 
 Fig. 15. Time evolution of the fault isolation result given by the binary 
approach. 
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Fig. 15 shows how the binary approach gives a wrong fault 
diagnosis result as a consequence of the lack of persistence of 

fL7. 

In Fig. 16 and Fig. 17, the time evolution of  factorsensitj 
(41) and factortimej (52) related to the fault hypotheses  fL3, 
fL5, fL7, fL13, fL14  is plotted at every time instant. 

 
Fig. 16. Time evolution of factorsensitj related to the fault hypotheses fL3, fL5, 
fL7, fL13, fL14. 

 

 
Figure 17. Time evolution of factortimej related to the fault hypotheses fL3, fL5, 
fL7, fL13, fL14. 

It can be seen that in spite of the lack of persistence of fL7, 

the proposed fault diagnosis method is not confused due to the 
used timed discrete event approach that takes into account the 
dynamical properties of the fault signals. 

Then, according to the fault isolation discrete-event model 
presented Fig. 10 and the information stored in FSM01, 
FSMorder and FSMtime, all fault hypotheses except fL7 (fault 
affecting L7) will be rejected (see Fig. 18).  
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Fig. 18. Isolation of a fault affecting L7 using a Timed LTS. 
 
 

VIII. CONCLUSIONS 

Taking into account the importance of fault detection and 
fault isolation on the optimal control of the Barcelona sewer 
network, this paper proposes a model-based fault diagnosis 
method using a timed discrete-event approach based on 
interval observers which improves the integration of fault 
detection and isolation tasks. This proposed approach tackles 
the drawbacks of the classical FDI fault diagnosis methods 
based on a binary interface between fault detection and fault 
isolation without considering the fault signal dynamics. As a 
consequence, when applying these classical methodologies to 
diagnose faults affecting the limnimeters of Barcelona sewer 
network, a poor performance of the control system was 
obtained. Concerning the proposed discrete event fault 
diagnosis approach, the interface between fault detection and 
fault isolation module considers the degree of fault signal 
activation and the occurrence time instant of the fault signals 
using a combination of several fault signature matrices which 
store the knowledge of the relationship between diagnostic 
signals and faults. Such fault signatures matrices can be 
derived from the system model using the fault sensitivity 
analysis. Moreover, exploiting the discrete-time event nature 
of the fault signals generated by the fault detection module, a 
fault diagnoser based on a timed discrete-event model can 
automatically be implemented.  Using such approach, faults 
can be diagnosed since their occurrence generates a unique 
sequence of observable events (fault signals) that can be 
recognized by the isolation module. The states and transitions 
that characterize such a model can be inferred directly from 
the relationship between fault signals and faults. As a further 
research the method would be extended to handle 
multiplicative and multiple faults. Also the extension to non-
linear systems would be considered. 
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