
Fault Diagnosis Using Dynamic Time Warping

Rajshekhar2, Ankur Gupta2, A.N. Samanta2, B.D. Kulkarni1,�,
and V.K. Jayaraman1,�

1 Chemical Engineering Division, National Chemical Laboratory, Pune-411008, India
{bd.kulkarni,vk.jayaraman}@ncl.res.in

2 Department of Chemical Engineering, Indian Institute of Technology,
Kharagpur-721302, India

Abstract. Owing to the superiority of Dynamic Time Warping as a
similarity measure of time series, it can become an effective tool for
fault diagnosis in chemical process plants. However, direct application
of Dynamic Time Warping can be computationally inefficient, given the
complexity involved. In this work we have tackled this problem by em-
ploying a warping window constraint and a Lower Bounding measure. A
novel methodology for online fault diagnosis with Dynamic Time Warp-
ing has been suggested and its performance has been investigated using
two simulated case studies.

1 Introduction

The process deviation from the normal operating range leads to deterioration in
product quality and can be source of potential hazard. The control of such de-
viations comes under abnormal event management (AEM) in chemical process
industry. The first step in AEM consists of timely detection and diagnosis of
fault, so that it can lead to situation assessment and planning of supervisory de-
cisions to bring the process back to a normal and safe operating state. However
due to the size and complexity involved in the modern process plants, tradi-
tional method of complete reliance on human operators has become insufficient
and unreliable. The advent of computer based control strategies and its suc-
cess in process control domain has lead to several automated fault diagnosis
methodologies.

Currently available fault diagnosis techniques can be classified into three broad
categories: quantitative model based, qualitative model based and process his-
tory based approaches. In this work, a novel process history based approach
for fault detection has been proposed. It employs the concept of Dynamic time
warping (DTW) for the similarity measurement. Direct application of DTW
leads to poor computational efficiency of the methodology. This problem has
been rectified in this work by using window warping constraint in DTW with
the application of lower bounding technique. We demonstrate the efficiency of
our proposed methodology by performing online fault diagnosis on two simulated
case studies.
� Corresponding author.

A. Ghosh, R.K. De, and S.K. Pal (Eds.): PReMI 2007, LNCS 4815, pp. 57–66, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



58 Rajshekhar et al.

2 Dynamic Time Warping

Consider two multivariate time series Q and C, of length n and m respectively,

Q = q1, q2, q3, . . . . . . , qi, . . . . . . , qn (1)

C = c1, c2, c3, . . . . . . , cj, . . . . . . , cm (2)

such that, qi, cj ∈ IRp. Since the DTW measure is symmetric with respect to the
order of the two time series, without any loss of generality we can assume that
n ≥ m in our work. To align these two sequences using DTW, we construct a
n − by − m matrix where the (ith, jth) element of the matrix corresponds to the
squared distance,

d(i, j) =
r=p∑

r=1

(qi,r − cj,r)2 (3)

In order to find the best match between these two sequences, one finds a path
through the matrix that minimizes the total cumulative distance between them.
Such a path will be called a warping path. A warping path W is a contiguous
set of matrix elements that characterizes a mapping between Q and C. The kth

element of W is defined as W (k) = (i, j)k. The time-normalized distance [1]
between the two time series is defined over the path as,

DTW (Q, C) = min
W

⎡

⎢⎢⎢⎢⎣

√√√√√√√√

k=K∑
k=1

d(W (k)) · φ(k)

k=K∑
k=1

φ(k)

⎤

⎥⎥⎥⎥⎦
(4)

Where, φ(k) is the non-negative weighting co-efficient and K is the length of the
warping path W , which satisfies the condition,

max(m, n) ≤ K ≤ m + n − 1 (5)

The normalization is done to compensate for K, the number of steps in the
warping path W , which can be different for different cases. The symmetric nor-
malization, owing to its established superiority [1] has been used for purpose,
given as,

φ(k) = (i(k) − i(k − 1)) + (j(k) − j(k − 1)) (6)

The warping path however, is constrained to the following conditions [2]:

Boundary conditions: The path must start at W (1) = (1, 1) and end at
W (K) = (n, m).

Continuity and monotonic condition: From a point (i, j) in the matrix, the
next point must be either (i, j + 1), (i + 1, j + 1) or (i + 1, j).

Warping Window condition: In case of equal length time series, the path as
we know intuitively should not wander too far from the diagonal. For the case



Fault Diagnosis Using Dynamic Time Warping 59

Fig. 1. A sample warping window band. Note the two regions in the band, in black
and grey.

of unequal length time-series, a unique diagonal does not exist, thus we define
a region analogous to the diagonal, which is bounded by the two lines whose
equations are given by (7).

i = j & i = j + n − m where 1 ≤ j ≤ m for n ≥ m (7)

Figure 1 shows an example of such a region for the case of n ≥ m. This region,
analogous to the diagonal has been shown in darker (black) shades in the figure.
It should be noted that this region reduces to a diagonal, in case the two time
series are of equal length. In order to restrict the warping path from straying
away from the diagonal (or defined-region for unequal length time-series), we
limit the distance by which it can wander away from the diagonal/defined-region.
This limits the warping path to a warping-window or a band, which allows the
warping path a distance (say) Ri to wander directly above and to the right of
the diagonal/defined-region. This definition of band makes it symmetric with
respect of the diagonal/defined-region. This is a generalization of the warping
window originally proposed by [2].

We now mathematically define the band as,

j − Ri ≤ i ≤ j + Ri + (n − m) for n ≥ m (8)

Where, Ri = d such that 0 ≤ d ≤ max(m), and 1 ≤ i ≤ n. max(m) is the length
of the longest time-series in the data available, and Ri is the permissible range
of warping above and to the right of the region defined in (7). In the case where
the time series are univariate and of equal length i.e. n = m, the band reduces
to the R-K band as defined in [2].

In general, the above definition of band allows the formulation of any arbitrary
shaped band. However, we are employing the bands for online fault diagnosis pur-
pose and hence the temporal variation in bandwidth should be avoided. Hence, for
current work, Ri has been considered independent of i. In order to solve the op-
timization problem given by (4), we employ the dynamic programming technique
as done in [1,2]. For this cumulative distance matrix is calculated [1,3],

D(i, j) = min

⎧
⎨

⎩

D(i − 1, j) + d(i, j)
D(i − 1, j − 1) + 2 · d(i, j)
D(i, j − 1) + d(i, j)

(9)
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This takes care of the continuity and monotonic conditions along with the path
normalization. This recursive formula for dynamic programming enables us to
find the warping path W , along which the values of d(i, j) can be summed up,
and the final value of DTW distance can be found out as given by (4). However,
when the warping window constraint is employed, (9) admits only those points
which lie inside the warping window or the band. Thus, only those points are
eligible for consideration in (9) which satisfy (8). We can see that application
of warping window constraint drastically reduces the number of paths that are
needed to be considered, thus speeding up the DTW calculation. For a detailed
introduction to DTW, lower bounding measures, warping windows and their
application to classification we refer the readers to [1,2,3].

3 Lower Bounding Measures

Computation of DTW distances is computationally very expensive, consequently
a classification algorithm based on DTW distance as a similarity measure is
bound to be computationally inefficient. This problem has been circumvented
by using a fast lower bounding measure, which saves unnecessary calculations
by pruning off the time-series which cannot be nearest to the given time-series
[3]. The lower bounding measure is obviously computationally cheaper than the
actual DTW calculation, but gives a fairly tight approximation of the DTW
distance. The original method has already been successfully applied to the case
of time series of equal length [2]. In this work, we present a modification of the
lower bounding measure which can be applied to time series of unequal lengths,
which we will call as LB UMV (stands for Lower-Bound Unequal Multivariate).

3.1 Lower-Bounding Measure (LB UMV)

Let us consider the two time-series Q and C defined in (1) and (2). Using the
global constraints on the warping path given by (8), we construct an envelope
using the warping window across Q bounded by two time-series U and L given
as,

uj,r = max(qj−R,r : qj+R+(n−m),r) (10)

lj,r = min(qj−R,r : qj+R+(n−m),r) (11)

Using the above definitions of U and L, we define LB UMV as,

LB UMV (Q, C) =

√√√√√ 1
(m + n − 1)

j=m∑

j=1

r=p∑

r=1

⎧
⎨

⎩

(cj,r − uj,r)2 if cj,r > uj,r

(lj,r − cj,r)2 if cj,r < lj,r
0 otherwise

(12)

It is important to note that the lower bounding measure defined in (12) for
the two time series will always be lower than the corresponding DTW distance.
A mathematical proof of this has been provided in [3] for the case of equal
length time series. The same can be proved for the current definition of band by
following a similar approach.
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4 Learning Multiple Bands for Classification Using
Heuristics

A lower value DTW distance implies that the given time series are similar to
each other, while a large value implies dissimilarity between the two. In a clas-
sification task, one usually compares a test sample with the samples from the
reference dataset, and then assigns a label to the test sample of the class to
which it resembles the most. In this work, both the test and reference samples
are time series and we utilize the concept of DTW distance to define the simi-
larity between them. Each class in the dataset will have a warping window or a
band of its own, which will be utilized when the test time-series is compared to a
reference time-series of that class. Our aim is to automatically find these bands
using the reference dataset. Similar to approach employed by [2], we pose this
problem as a search problem and make use of the generic heuristic techniques
to obtain bands. The search can be performed as a either forward or backward
hill-climbing search algorithm, with the aim of maximizing a heuristic function.
An intuitive selection for the heuristic function is the accuracy of classification,
which is defined as the percentage of correct classifications obtained by using a
given set of bands. A backward search begins with maximum bandwidth , above
and to the right of the region defined in (7); the corresponding accuracy is evalu-
ated. The bandwidth of these bands is reduced and the accuracy is re-evaluated.
The change is accepted if an improvement in accuracy is registered. The reduc-
tion in bandwidth is continued until a reduction in accuracy is observed. This is
done until we reach zero bandwidth.

5 Online Fault Diagnosis

We follow the methodology described in Section 4 to obtain a set of trained
bands (one for each class) by using the reference dataset, which is then used
to compute DTW distances wherever necessary. A process plant continuously
provides us with a multivariate time-series in the form of measured variables
at some time intervals. We utilize the DTW concept for the purpose of online
fault diagnosis by using a window wise pattern matching approach. We select
a window from the current sequence of measured variables, which is used as a
test sample to compare with windows (of nearly equal length) from the reference
dataset. This allows us to predict the nature of the current sequence of variables
to be faulty or not as well as the type of fault. The selection of the current and
reference windows has been illustrated in Figure 2.

The approach consists of three major steps:

1. Selection of Current Window: A window is selected from the current batch
of measured variables obtained from process plant, which is then matched
against similar windows from the reference batches. There are three para-
meters involved in this step: Initial point (IP), Window Width (WW) and
Window Shift (WS). We start selecting windows from an Initial Point (IP).
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Fig. 2. (a) Selection of Current Window, the current window shifts by WS. (b) Selection
of Reference Window, the reference window can be of various sizes due to variation in
the neighborhood on both sides.

Initial Point decides the reliability of initial transient part in identifying the
fault type. Window Width is the size of the current window and Window
Shift is the number of time points by which the window shifts. Every current
window acts as a test sample which is then compared with windows from
the reference dataset in order to determine the fault.

2. Selection of Reference Window: The main parameter involved in this step
is the window location in a particular reference time series. We will identify
this window with initial point RI and final point RF. However, in order to
counter the effect of different or uneven sampling time, these parameters will
be updated by two other parameters, FI and FF respectively. A more effective
independence from the sampling variation can be obtained by allowing the RI
and RF to deviate in the neighborhood. This can be achieved by introducing
two parameters, number of neighboring points (N) by which the RI and RF
can deviate and the time (n) by which these points are apart. In a particular
batch of the reference dataset, we consider all the possible windows as a
match against the current window and nearest window is selected as the
reference window. This will also update the FI and FF parameters.

3. Fault Diagnosis: After the current window and corresponding reference win-
dows are selected, we rank the reference windows in increasing order of their
distances from the current windows, such that the nearest window is ranked
first. The current batch is expected to be of the same class to which its
nearest neighbor belongs to. However, instead we follow a more robust prob-
ability based approach to identify the class of the current batch as described
subsequently. If the assigned class belongs to a fault type, the process is
likely to be faulty. But if it belongs to normal class, the process is consid-
ered to be operating normally and we modify the current window by shifting
it by WS, and repeat the classification procedure. However, it is possible that
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a current window is falsely assigned a faulty class. In order to suppress such
false alarms, another parameter viz. Fault Count (FC) has been introduced.
This parameter requires the current batch to be assigned a faulty class for
a given number of times (given by FC) before it is declared faulty. It should
be noted that the reference dataset is first used to generate trained bands
and then later to compare with current windows, which are obtained from
the test dataset.

Similarity Measure: To make the similarity search more robust, a probability
based method has been used. The probability value will indicate the chances of
current time series to be a faulty or not. The similarity measurement has been
performed by finding 50 best matched reference windows and based on this set
a probability function was defined as,

Pi =

50∑
j=1
s.t. j∈class i

1
rj×dj

50∑
j=1

1
rj×dj

(13)

Where, Pi is the probability of the current batch to belong to class i (i.e. partic-
ular fault or normal type), rj and dj are rank and distance measure with current
time series of jth reference time series respectively.

6 Simulated Case Studies

6.1 Case Study 1: Batch Acetone-Butanol Fermentation

This case study employs the mathematical model of batch acetone-butanol fer-
mentation, originally proposed by Votruba et al. [4]. This model has been further
explored by Singhal [5]. He introduced different operating parameters consisting
of one normal operation and four abnormal operations.

Generation of historical database: Each abnormal operating condition was
characterized by an abnormal value of a cell physiology parameter. The mag-
nitude of the abnormal parameter varied randomly from batch to batch. The
duration of each batch was 30 h and sampling interval was randomly varied
from 9 to 12 minutes. The operating conditions and parameter ranges can be
found in [5]. Each of the five operating conditions was simulated 60 times to
provide a historical database of 300 batches. Gaussian measurement noise was
added to the measured variables so that the signal-to-noise ratio for a normal
batch run was equal to ten. These batch profiles were divided into two subsets;
a set of 250 profiles (50 profiles per class) was taken as the reference dataset and
another set of 50 profiles (10 profiles per class) was used for the online diagnosis.
The reference dataset was first used to generate trained bands for each class, and
then later to compare with the current window in online fault diagnosis. The test
dataset is used to generate the current windows, and the proposed methodology
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was investigated. In order to exploit the temporal nature of the batch profiles,
we considered each profile in the reference dataset to contain a transient, steady
state and an intermediate part. Thus, each profile was split into three equal
time-series, and a new dataset was created which contained 750 time-series.

Diagnosis Result: The various parameters defined above were tuned with an
objective of achieving maximum diagnosis efficiency. The chosen values of these
parameters are shown in Table 1.

When the fault count parameter was set at 1, the classification accuracy is
100% for all the classes except the normal class. This is because many of the
test batch profiles were declared faulty due to false alarms. These were con-
trolled when fault count was increased to 2. Furthermore, we determine the
reaction time of the proposed methodology in detecting a fault. The detection
times for the four faults lie between 985 minutes and 1308 minutes. We compare
our results with the LLE-SVDD approach, has been found to be superior to
the PCA approach for the given case study, as given by Kumar et al. [8]. We
can see that both the methods are able to perform perfect diagnosis efficiency;
however LLE-SVDD approach detects a fault at an earlier stage than the pro-
posed method. The LLE-SVDD approach however performs only fault detection,
while our proposed methodology performed fault diagnosis. Thus, our proposed
approach is advantageous in cases where it is imperative to diagnose a fault.

Table 1. Fault Diagnosis Results for a particular set of parameters

Parameters Parameter Values Fault Type Diagnosis Efficiency(%)
Fault Count=1 Fault Count=2

Initial Point 51 Normal 80 100
Window Width 50 Fault 1 100 100
Window Shift 10 Fault 2 100 100

N 2 Fault 3 100 100
n 2 Fault 4 100 100

6.2 CSTR Batch Profiles

In the second case study, we have performed fault diagnosis of a jacketed CSTR
in which an irreversible, exothermic, first order reaction (A → B) is taking place
using the proposed methodology. The system is equipped with three control
loops, controlling the outlet temperature, the reactor holdup and the outlet
concentration. A detailed description of mathematical model has been provided
by Luyben [6]. This model has been further explored by Venkatasubramanian et
al. [7] in their work on application of neural networks for fault diagnosis. They
have introduced different ranges of operating parameters resulting in one normal
operation and six abnormal operations. The variables that cause malfunctions
are inlet flowrate, inlet temperature and inlet concentration of the reactant.
Deviations beyond ±5% of the normal values of these variables were considered
as faults, while values within ±5% were considered normal.
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Generation of the historical database: The normal operations were simu-
lated by varying any of the input variables in the neighborhood of the perfectly
normal operation. This variation was kept in the range of 2.0%. The magnitudes
of the input variable were varied randomly in each simulation. The duration of
each simulation was 4 hours and sampling interval was randomly varied from
2 minutes. Each of the seven operating conditions was simulated 50 times to
provide a historical database of 350 batches. Gaussian measurement noise was
added to the measured variables so that the signal-to-noise ratio for the CSTR
profile was approximately equal to ten. These batch profiles were divided into
two subsets; a set of 175 profiles (25 profiles per class) was taken as the reference
dataset and another set of 175 profiles (25 profiles per class) was used for the
online diagnosis.

Diagnosis Result: Various parameters defined above were tuned with an ob-
jective of achieving maximum diagnosis efficiency, as shown in Table 2.

Table 2. Fault Diagnosis Results for a particular set of parameters

Parameters Parameter Values Fault Type Diagnosis Efficiency(%)
Fault Count=2

Initial Point 11 Normal 68
Window Width 50 Fault 1 100
Window Shift 10 Fault 2 88

N 2 Fault 3 80
n 2 Fault 4 96

Fault 5 92
Fault 6 80

We can see that the overall classification accuracy is 86.2857% for the above
case. Very high diagnosis efficiency is obtained for Fault1, Fault4 and Fault5
operations, while the diagnosis efficiency for the case of Normal is quite less.
We compare the results of the proposed algorithm the SVM-based classification
technique, where one-against-all strategy is emplyed to classify the test profiles.
An overall classification accuracy of 80% is achieved by using this approach,
which is significantly less than the classification accuracy of 86.2857% obtained
by the DTW approach. Thus, our method performs better in cases where fault
diagnosis is required.

7 Result

In this work we have proposed a novel methodology for the purpose of online
fault diagnosis employing the concept of Dynamic Time Warping as a superior
distance measure between two time series. Warping window constraints and lower
bounding measures have been utilized for the case of unequal length time-series,
which substantially reduce the computational expense required. The proposed
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methodology is capable of handling time-series of unequal lengths with different
sampling times. This allows the application of our methodology to time-series
with missing time points. A moving window approach has been demonstrated
for the purpose of fault diagnosis in two simulated case studies. In both the
cases, a simulated reference dataset is used to train bands for different classes
using a heuristic hill-climbing approach, which were then employed for similarity
measurement. The diagnosis efficiency is heavily dependent on the parameter
values, however for appropriate set of parameters, the methodology is found to
be satisfactorily efficient in detecting the faults in the process and can predict
the type of the fault also.
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