
Copyright © 2000 by the Center for Reliable Computing, Stanford University.
All rights reserved, including the right to reproduce this report, or portions thereof, in any form.

Center for 
Reliable 
Computing

TECHNICAL
REPORT

Fault Escapes In Duplex Systems

Subhasish Mitra, Nirmal R. Saxena and Edward J. McCluskey

00-1 Center for Reliable Computing
Preliminary Version Gates Building 2A, Room 236

Computer Systems Laboratory
(CSL TR # ??) Dept. of Electrical Engineering and Computer Science

Stanford University
January, 2000 Stanford, California  94305-9020

Abstract:

Hardware duplication techniques are widely used for concurrent error detection in
dependable systems to ensure high availability and data integrity.  These techniques are
vulnerable to common-mode failures (CMFs).  Use of duplex systems with diverse
implementations of the two modules has been proposed in the past for protection against
CMFs.  In this paper, we define a category of faults, called non-self-testable faults that
undermine the data integrity of dependable systems.  These faults produce identical errors at
the outputs of the two modules of a duplex system and can potentially be caused by CMFs.
The main contributions of this paper are: (1) techniques that identify non-self-testable faults in
duplex systems, and (2) design methods that reduce the number of non-self-testable faults by
test point insertion.  We show that our algorithm for identifying non-self-testable faults runs
orders of magnitude faster than exact techniques with minimal loss of accuracy.  Also, there is
a significant reduction in the number of test points required for duplex systems with diverse
implementations compared to duplex systems with identical implementations.  Thus, we can
detect common-mode failures in diverse duplex systems using very few test points.  These
results are especially useful for systems with user-programmable logic elements that enhance
the practicality of using diverse designs in duplex systems.

Funding:

This work was supported by the Advanced Research Projects Agency under prime
contract No. DABT63-97-C-0024.

Imprimatur:  Philip Shirvani and Santiago Fernandez-Gomez



1



2

Fault Escapes In Duplex Systems

Subhasish Mitra, Nirmal R. Saxena and Edward J. McCluskey

CRC Technical Report No. 00-1
(CSL TR No. ??)

January 2000

Center for Reliable Computing

Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University, Stanford, California  94305

Abstract

Hardware duplication techniques are widely used for concurrent error detection in dependable

systems to ensure high availability and data integrity.  These techniques are vulnerable to

common-mode failures (CMFs).  Use of duplex systems with diverse implementations of the

two modules has been proposed in the past for protection against CMFs.  In this paper, we

define a category of faults, called non-self-testable faults that undermine the data integrity of

dependable systems.  These faults produce identical errors at the outputs of the two modules

of a duplex system and can potentially be caused by CMFs.  The main contributions of this

paper are: (1) techniques that identify non-self-testable faults in duplex systems, and (2)

design methods that reduce the number of non-self-testable faults by test point insertion.  We

show that our algorithm for identifying non-self-testable faults runs orders of magnitude faster

than exact techniques with minimal loss of accuracy.  Also, there is a significant reduction in

the number of test points required for duplex systems with diverse implementations compared

to duplex systems with identical implementations.  Thus, we can detect common-mode

failures in diverse duplex systems using very few test points.  These results are especially

useful for systems with user-programmable logic elements that enhance the practicality of

using diverse designs in duplex systems.



3

TABLE OF CONTENTS

1.  Introduction .................................................................................................................1

2.  Self-Testing Properties of Fault Pairs in Duplex Systems ......………………............2

3.  Identifying Non-Self-Testable Fault Pairs ………………………..............................3

4.  Enhancing Self-Testing Properties Using Test Points ………………………............5

5.  Simulation Results …..................................................................................................10

6.  Fault Equivalence Relationships and Test Point Insertion .....................……............12

7.  Conclusions .................................................................................................................14

8.  Acknowledgments .......................................................................................................15

9.  References ..............................................................…..................…...........................16



1

1.  INTRODUCTION

Concurrent Error Detection (CED) techniques are widely used for designing systems

with high availability and data integrity.  A duplex system is an example of a classical

redundancy scheme that has been used in the past for concurrent error detection.  There

are many examples of commercial dependable systems from companies like Stratus and

Sequoia using hardware duplication [Kraft 81, Pradhan 96].  Hardware duplication has

also been used in the IBM G6 processor.  Figure 1.1 shows the basic structure of a duplex

system.

In a duplex system there are two modules (shown in Fig. 1.1 as Module 1 and Module

2) that implement the same logic function.  The two implementations need not be

identical; for example, one could be the complement of the other.  A comparator is used

to check whether the outputs from the two modules agree.  If the outputs disagree, the

system indicates the presence of an error.  Data integrity is the property of a system

which either produces correct outputs or generates an error signal when incorrect outputs

are produced.  For a duplex system, data integrity is maintained as long as both the

modules do not produce identical erroneous outputs (assuming that the comparator is

fault-free).  Since the comparator is crucial to the correct operation of the duplex system,

special designs are needed to ensure that the data integrity of the system is not

compromised due to comparator failure.  The comparator design in [Hughes 84] can be

used for this purpose.

Module 1 Module 2

Comparator

Error

Figure 1.1.  A Duplex System

Any duplex system is vulnerable to common-mode failures (CMFs) that affect both the

modules of the system [Lala 94].  Design diversity through independent generation of



2

different implementations of the two modules was identified as a possible solution to this

problem [Avizienis 84].  In the presence of CMFs, the data integrity of a duplex system is

not guaranteed to be preserved.  Hence, CMFs must be detected using special techniques.

The main contributions in this paper are:

• An efficient algorithm for identifying non-self-testable faults (formally defined in

Sec. 2) in duplex systems.  These faults undermine the system data integrity.

• New techniques that use test points to detect all non-self-testable faults.

Our results indicate that the number of test points required for duplex systems with

diverse implementations is significantly lower than those required for duplex systems

with identical implementations.

We discuss the effects of diversity on the detectability of faults in duplex systems in

Sec. 2.  In Sec. 3, we present techniques to identify non-detectable faults in a duplex

system that can potentially cause data integrity problems.  Section 4 describes test point

insertion techniques to detect these faults.  We present simulation results in Sec. 5 and

conclude in Sec. 6.

2.  Self-testing Properties of Fault Pairs in Duplex Systems

Consider a duplex system consisting of two implementations N1 and N2 of the

same logic function and a comparator comparing their outputs.  The duplex system is

self-testing with respect to a fault pair (f1, f2) (f1 affecting N1 and f2 affecting N2) if

there exists an input combination for which the two implementations produce different

outputs in the presence of the faults.  The corresponding fault pair is said to be self-

testable.  If the two implementations produce different outputs in the presence of the fault

pair, then the comparator will produce a Mismatch signal that can be used to initiate

repair action.

Common-mode failures can have permanent effects on the behavior of redundant

systems.  This has been observed in the past [Lala 94].  For example, in dependable

adaptive computing systems [Saxena 00] using SRAM-based FPGAs (e.g., Xilinx 4000

and Vertex series), single and multiple event upsets from radiation sources [Reed 97] can

have permanent fault effects on the configuration bits.  These faults can potentially be

non-self-testable.  The objective of our technique is to ensure that these faults are

detected.  In this paper, we consider all single stuck-at fault pairs pair (f1, f2), f1 affecting



3

N1 and f2 affecting N2.  This model includes common-mode failures that manifest

themselves as single stuck-at faults in the individual implementations.

Table 2.1.  Self-testing properties of duplex systems
Circuit
Name

Modules # Single-stuck-at fault
pairs (millions)

% non-self-
testable

Z5xp1 Identical 0.30 0.73
Diverse 0.36 0.02

clip Identical 0.49 0.58
Diverse 0.46 0.02

inc Identical 0.26 0.84
Diverse 0.25 0.03

rd84 Identical 0.16 1.1
Diverse 0.23 0.04

In Table 2.1, we show simulation results comparing the percentage of non-self-

testable fault pairs in duplex systems with identical and diverse implementations.

Diverse implementations were obtained by synthesizing the logic functions in different

ways.  More detailed information about the synthesis of different implementations can be

obtained from Sec. 5.

For duplex systems with identical implementations, a common-mode failure

(CMF) can be considered as one for which the corresponding leads in the two

implementations are stuck at the same value.  It is obvious that the self-testability of

common-mode failures is 0 % in a duplex system with identical implementations.

However, for a duplex system with different implementations, we have very few non-

self-testable fault pairs.  Thus, many of the potential CMFs can be detected by using

diverse implementations.  Self-testability enables on-line detection of faults (and CMFs

included in the fault model) that affect the two modules of a duplex system.  In the next

section, we describe efficient techniques to identify non-self-testable fault pairs in a

duplex system.

3.  Identifying Non-self-testable Fault Pairs

In this section, we describe a technique to identify fault pairs that are not self-

testable in a duplex system.  The technique is approximate and is based on compaction of

output responses for each fault.

We calculate a signature corresponding to each fault in each implementation.  We

call a fault pair non-self-testable if and only if the two faults forming the pair have the



4

same signature.  The reason behind this will be discussed later in this section.  The

algorithm is shown below (Algorithm 1).

ALGORITHM 1: Find Non-Self-Testable Fault Pairs
For each input combination p

Simulate N1 and store response R1

For each fault f1 in N1

    Inject f1 in N1, simulate and store response R1(f1)

If R1 ≠ R1(f1), update signature(f1)

Endfor

For each fault f2 in N2

    Inject f2 in N2, simulate and store response R2(f2)

 If R1 ≠ R2(f2), update signature(f2)

Endfor
Endfor
For each fault f1 in N1 and f2 in N2

If signature(f1) ≠ signature(f2), (f1, f2) self-testable
Else (f1, f2) not self-testable

Endfor

To calculate the signature associated with each fault, we use a Multiple-Input

Signature Register (MISR) and a counter.  The length of the MISR is at least 20 and

greater than the number of outputs.  For example, suppose that we want to calculate the

signature associated with a particular fault f in N1.  For each input combination, if the

response of N1 in the presence of f is different from the fault-free response, then the

counter is incremented and the faulty response is compacted into the MISR.  The counter

counts the number of test patterns that detect a particular fault.  The signature of a fault is

given by the pair <content of the MISR, value of the counter>.  Our results show that

using the counter or the MISR alone results in highly sub-optimal results.  The sub-

optimality arises from the fact that faults f1 and f2 may have the same signature although

the fault pair (f1, f2) may be self-testable.  In this situation, our algorithm will declare the

fault pair (f1, f2) to be non-self-testable.  This situation is referred to as signature

aliasing.  However, as the results in Sec. 5 indicate, using both the counter and the MISR,

we obtain very close to optimum and often fully optimum results with negligible aliasing.

If the signatures for faults f1 and f2 are different, then the fault pair (f1, f2) is self-

testable.  If a fault pair (f1, f2) is non-self-testable, then the corresponding signatures are

equal.  However, the converse may not be true.  For example, signatures for faults f1 and



5

f2 may be equal due to aliasing while the fault pair (f1, f2) is self-testable.  In this case,

we classify a self-testable fault pair as non-self-testable.  Thus, aliasing results in one-

sided error and makes our algorithm pessimistic (unlike fault detection where aliasing

may cause a defective part to be treated as a fault-free part).

A similar argument holds for the number of input patterns that must be applied to

identify the self-testable fault pairs.  In the worst case, we have to apply all the 2n input

combinations for identifying self-testable fault pairs.  If we use a reduced number of

input combinations, a self-testable fault pair may be declared as being non-self-testable.

However, the reverse situation cannot happen.  Thus, using a reduced number of input

combinations produces one-sided errors and pessimistic results.  Thus, depending on the

number of inputs of the circuits, the required execution time, and the desired level of

accuracy, we can appropriately select the number of input combinations.

The running time of Algorithm 1 can be further reduced by using deductive fault

simulation techniques [Abramovici 90, Armstrong 72].  The simulation results presented

in Sec. 5 clearly show a distinct advantage in execution time by using Algorithm 1 over

exact techniques.  In the next section, we describe test point insertion techniques so that

all fault pairs that are identified as being non-self-testable become testable.

4.  Enhancing Self-testing Properties Using Test Points

Test points have been used to enhance fault-coverage of logic circuits

[Eichelberger 83][Abramovici 90][Touba 96].  In this section, we discuss test point

insertion techniques to enhance the self-testability of duplex systems.  There are two

types of test points: control test points and observation test points.  In Secs. 4.1 and 4.2,

we describe self-testability enhancement using control and observation test points,

respectively.

4.1.  Control Test Points

Consider the duplex system consisting of two identical modules each

implementing the logic circuit shown in Fig. 4.1a.  Consider the fault pair in the presence

of which, the signal line corresponding to Z1 is stuck-at-0 in both the modules.  It is

obvious that the duplex system will never produce any mismatch signal in the presence of

these two faults.  Thus, the fault pair is not self-testable.  Next, suppose that for one of the

two modules, we add test points T1 and T2 as shown in Fig. 4.1b.  We make T1 = 0 and

T2 = 0 and apply a test pattern for Z1 stuck-at-0.  If the fault pair is not present, a

mismatch signal will be produced.  If the fault pair or other fault pairs are present, no



6

mismatch signal will be produced.  This observation can be used to detect the presence of

the fault pair.  A similar case with T1 = 0 or 1 and T2 = 1 arises when the fault pair Z1 is

stuck-at-1 in both the modules.  Thus, control test points can enhance the self-testability

of fault pairs in a duplex system.  Note that, in a duplex system with two identical

implementations, the fault pairs affecting the same leads in the two implementations are

not self-testable.  Thus, we have to add test points at each lead of the circuit in Fig.

4.1(a).

&

W1

X1

Y1

Z1

+
P1

&

W1

X1

Y1

Z1 +

& +

T1

(a)

T2

&

W2

X2

Y2
+

(b)

C
om

pa
re

P1

P2

Figure 4.1.  Control Test Points

The primary advantage of using control points is that, we can utilize the available

resources (comparators) of the duplex system for observing the response of the system in

response to an input combination.  Thus, we do not have to store simulated fault-free

responses and compare the system response with these pre-stored responses to detect the

presence of faults.  However, we have to ensure that when the test points are activated,

we apply a test vector for the untestable stuck-at fault pair.  This can be achieved by

using deterministic test patterns or pseudo-random patterns using an LFSR (Linear

Feedback Shift Register).  If LFSRs are used, some technique similar to the mapping



7

logic technique [Touba 95] can be used for test point activation.  For detecting the

presence of faults when the test points are activated, we can XOR the mismatch signal

output of the comparator with a Test signal that is 1 when one of the test points is

activated.  The Test signal may be generated externally or by the test controller.

MUL 1 MUL 2

MOD 1 MOD 2

P P P B

P B

Cycle 1

Cycle 2

Figure 4.2.  L-Modular exponentiation algorithm

During the idle cycles of the system, we can apply input combinations and

activate appropriate test points (if necessary) to detect different fault pairs.  Consider the

example of a computation process shown in Fig. 4.2.  Multipliers MUL1 and MUL2 are

used in every alternate cycle (Cycle 1, Cycle 3, Cycle 5, etc.).  Thus, during every even

cycle, we can apply test patterns to the multiplier inputs.  This can be done by adding

extra instructions if the algorithm is implemented in a processor, or by using an LFSR.

The basic advantage here is that we do not need any extra mechanism to process the

response of the multipliers during the idle cycles.  Use of idle cycles for concurrent error

detection is also described in [Sohi 89].

Control points require extra area, may affect the circuit performance of the circuit

and require more design effort.

4.2.  Observation Test Points

Instead of adding control points, we can increase the self-testability of a duplex

system by using observation test points.  For example, in the duplex system of Fig. 4.1b,

we can observe the logical values on the node Z1 instead of adding any control test point.



8

As a result, we can detect all fault pairs involving a stuck-at fault on Z1.  For observation

purposes, we can perform signature analysis or directly observe the node Z1.

This approach has a distinct advantage over control points because we do not

have to add extra gates.  However, we have to route the observation points to signature

analyzers and perform comparison of the computed signature of the logic values on the

observation test points with golden signature.  For self-testable fault pairs, we can steal

idle cycles of the system to apply test patterns.  For non-self-testable faults, we must

observe the logical values on the added test points (possibly through signature analysis).

Thus, fault simulation and storage of fault-free signatures are necessary.

With observation test points, each application can be preceded and followed by

testing phases. A high-level block diagram of an application with testing phases is shown

in Fig. 4.3.  Input patterns are applied using LFSRs or compiling deterministic finite state

machines.

Header

           Application
       (e.g. Compress,
        FFT, Robotics,
          Encryption)

Activate Test Points

Apply Patterns

Faulty/Correct ?

Footer

Figure 4.3.  Applications with testing phases

Note that, with observation test points, the faults can be detected more easily —

we just have to excite the fault and not worry about sensitizing the fault effect.  Hence,

we have to toggle logic values at the test point sites rather than propagating the fault

effects to the outputs.  Thus, the fault-free signature on the observation points is a 0 or a 1

for a stuck-at-1 or a stuck-at-0 fault, respectively.  Finally, test points can help us perform

quick fault-location and self-repair.  Table 4.1 summarizes the advantages and

disadvantages of the control and observation test points.



9

Table 4.1.  Comparison of control and observation points
Control Points Observation Points

Area
Overhead

Extra gates,
Routing Area

Routing

Performance
Impact

Possible Small

Test Strategy On-line
(Idle Cycles)

Off-line
(Start and End)

Effort Fault
Simulation

Fault Simulation,
Response Analysis

Extra Pins May be required Required

4.3.  Choice of Test Points

For duplex systems with identical implementations, the test points to be inserted

can be determined very easily.  In such a system with m leads in each implementation,

there must be at least 2m single stuck-at fault pairs that are not self-testable.  These are

the same faults on the corresponding lines of the two implementations.  Then we need m

test points to detect all single stuck-at fault pairs [Mitra ??].

For a duplex system with different implementations, we find the non-self-testable

fault pairs using Algorithm 1.  Next, we choose the minimum number of test points that

make all these fault pairs self-testable.  This problem can be formulated as a Covering

problem.  A non-self-testable fault pair (f1, f2) can be detected if we insert a test point on

the signal line corresponding to f1 or f2.  Thus, for each non-self-testable fault pair, we

have two candidate signal lines and at least one of these signal lines has to be selected in

order to detect that fault pair.  We explain the idea with the help of the following

example.

Table 4.2.  Test point insertion example
(A1, B1) (A1, B2) (A1, B3) (A2, B4) (A3, B4)

A1 X X X
A2 X
A3 X
B1 X
B2 X
B3 X
B4 X X

Let us suppose that we have 5 non-self-testable fault pairs, (A1, B1), (A1, B2), …,

(A3, B4), as shown in Table 4.2.  To detect this fault pair (A1, B1), we have to add a test

point at the signal line corresponding to A1 in the first implementation or at the signal

line corresponding to B1 in the second implementation.  The rows of Table 4.2



10

correspond to candidate test points.  We put an X in an entry if the fault pair in that

column can be detected by inserting a test point at the signal line corresponding to the

row of the entry.  Selecting the minimum number rows in order to have X’s under every

column is the same as the classical covering problem encountered while finding the

minimum number of prime implicants to represent a Boolean function [McCluskey 56].

Heuristic Test Point Selection

While there are columns in the table

      Sort rows in decreasing order of the number of X’s

      Choose the row at the top of the sorted list

      Remove columns having X’s in the selected row

Endwhile

The covering problem is NP-complete and has exponential complexity in the

worst case.  We implemented a simple heuristic algorithm as shown above.  For the

example in Table 4.2, we need two test points at the sites A1 and B4.

5.  Simulation Results

In Tables 5.1(a) and 5.1(b), we show results on the number of test points needed

to make all the fault pairs self-testable in a duplex system.  For generating different

implementations, we minimized the truth tables corresponding to some MCNC

benchmark circuits using espresso.  Then, we synthesized logic circuits after applying

multi-level optimizations using the rugged script available in sis [Sentovich 92].  We

subsequently mapped the multi-level logic circuits to the LSI Logic G-10p technology

library [LSI 96].  These implementations are referred to as “T” in Table 5.1(a).

Next, we complemented the outputs in the truth tables of the benchmark circuits

to generate new truth tables.  We used the same synthesis procedure for these new truth

tables.  Finally, we added inverters at the outputs of the new designs obtained.  These

implementations are referred to as “C” in Table 5.1(a).  In the third column of Table

5.1(a), we show the total number of single stuck-at fault pairs (in millions) in a duplex

system containing the two implementations.  This gives an idea of the complexity of the

problem.  In the next three columns we show the number of observation test points

needed to detect all the single stuck-at fault pairs using different techniques.  The exact

algorithm that can find the minimum number of test points is based on ATPG (Automatic

Test Pattern Generation).  The ATPG tool available in Sis is used for this purpose.



11

Table 5.1(a).  Test points for 100% self-testability
Circuit Copy # pairs # Observation Test Points
Name (Million) Exact MISR MISR + counter

T, T 0.30 275 275 275
Z5xp1 C, C 0.37 305 305 305

T, C 0.36 9 12 9
clip T, T 0.49 349 349 349

T, C 0.46 13 33 13
T, T 0.24 243 243 243

inc C, C 0.26 253 253 253
T, C 0.25 12 13 12
T, T 93 — 4818 4818

apex4 C, C 74 — 4289 4289
T, C 83 — 46 46
T, T 0.32 284 284 284

rd84 C, C 0.16 199 199 199
T, C 0.23 10 22 11
T, T 84 — 4592 4592

ex1010 C, C 142 — 5961 5961
T, C 109 — 19 15

Table 5.1(b).  Execution time using different techniques
Circuit # pairs

(Million)
Exact Algorithm 1

Z5xp1 0.36 2 min 6 sec
clip 0.46 4 min 34 sec
inc 0.25 1 min 4 sec

apex4 83 > 1 day 85 min
rd84 0.23 2 min 6 sec

ex1010 109 > 1 day 4 hours

The running time of the ATPG-based exact technique is extremely high for large

designs as shown in Table 5.1(b).  The entries marked with ‘—‘ are the cases where the

exact technique ran for more than a day without producing any result.  It follows from

our discussions in Sec. 3 that the number of control test points is twice the number of

observation test points.  In the columns of Table 5.1(b) show the execution time required

for finding the non-self-testable fault pairs using Algorithm 1 and an ATPG-based

approach.  All the programs were executed on a Sun Ultra-Sparc-2 workstation.

The following observations can be made from the data presented in Tables 5.1(a)

and 5.1(b).  It is overwhelmingly clear from Table 5.1(a) that, by adding only a very few

test points in a duplex system with different implementations, we can make all the fault

pairs (and all modeled CMFs) self-testable.  The number of test points needed for duplex

systems with different implementations is orders of magnitude lower than those needed

for duplex systems with identical implementations.  For minimizing aliasing (and hence,

reducing the number of test points to be added), we recommend using both the MISR and



12

the counter during signature analysis in Algorithm 1.  As shown in Table 5.1(b), we

obtain significant speedup by using the signature-based approach (Algorithm 1)

compared to an ATPG-based exact technique.

6.  Fault Equivalence Relationships And Test Point Insertion

In our test point insertion technique presented in Sec. 4, we did not consider the

effects of equivalence relationships among the different faults.  A fault is said to be

functionally equivalent to another fault if and only if the output function realized by the

network with only the first fault present is equal to the function realized when only the

second fault is present.  For example, for any AND gate, all single stuck-at-0 faults at the

inputs and the output of the AND gate are equivalent.  Similarly, for an OR gate, all

single stuck-at-1 faults at the inputs and the output of the OR gate are equivalent.  For an

inverter, a stuck-at-0 (1) fault at the input of the inverter is equivalent to a stuck-at 1 (0)

fault at its output.  For more discussion on fault equivalence, the reader is referred to

[McCluskey 71].  Fault equivalence relationships can be used to further reduce the

number of test points required to make all the fault pairs self-testable in a duplex system.

6.1.  Observation Test Point Reduction Using Fault Equivalence Relationships

Consider the case of observation test point insertion.  Suppose that fault pair (f1,

f2) is not self-testable in a duplex system.  Let us suppose that fault f1 is a stuck-at-0 fault

at the input of an AND gate.  Also suppose that fault f3 is a stuck-at-0 fault at the output

of the same AND gate.  Since f1 and f3 are equivalent faults, (f3, f2) is also a non-self-

testable fault pair.  In order to detect this fault pair (f3, f2), we can put an observation

point at the output of the AND gate and apply an input combination such that the two

inputs of the AND gate have logic values equal to 1.  The fault pair (f1, f2) can also be

detected using the same procedure.  Thus, we do not need an observation test point at the

input of the AND gate in order to detect (f1, f2).  However, inserting an observation test

point at the input of the AND gate and detecting the fault pair (f1, f2), does not detect the

fault pair ( f3, f2).  Similar arguments hold for stuck-at-1 faults at the inputs and outputs of

an OR-gate.

The above observations lead to the following fault collapsing rule (Rule 1) that

can be used to minimize the number of observation test points.  Note that Rule 1 is

different from the conventional fault collapsing procedure used for fault equivalence



13

[McCluskey 71].  For our case, we remove the stuck-at-0 faults at the inputs of an AND

gate.  With the conventional fault collapsing procedure we can remove a stuck-at-0 fault

at the output of an AND gate and keep a stuck-at-0 fault at the input of the same AND

gate.

Rule 1: A stuck-at-0 (stuck-at-1) fault at the input of an AND (OR) gate can be

removed from the list of faults to be considered for each module in a duplex system.  A

stuck-at-0 or a stuck-at-1 fault at the input of an inverter can also be removed.

After performing fault collapsing using Rule 1, we can apply Algorithm 1 for the

reduced set of faults to be considered for each module in the duplex system.  After

finding the non-self-testable fault pairs out of these reduced fault lists, we can apply our

test point insertion procedure to find the minimum number of observation test points

required to make all single-stuck-at fault pairs self-testable.

It may be noted that, for a duplex system with two identical implementations, we

cannot reduce the number of observation test points by using the above rule for gates

other than inverters.  This is because, consider any signal line x in the implementation.

The fault pair x/0 in both the implementations is not self-testable.  If x is the input of an

AND gate, then we can remove the fault x/0 from consideration.  However, we cannot

remove x/1 from consideration and thus we have to insert an observation test point at the

signal line x in one of the implementations.

6.2.  Control Test Point Reduction Using Fault Equivalence Relationships

Fault equivalence relationships can also be used to reduce the number of control

test points in duplex systems.  For example, consider the following scenario.  Suppose

that a fault pair (f1, f2) is not self-testable in a duplex system.  Fault f1 is a stuck-at-0

fault at the input of an AND gate.  Also suppose that fault f3 is a stuck-at-0 fault at the

output of the same AND gate.  Since f1 and f3 are equivalent faults, (f3, f2) is also a non-

self-testable fault pair.  In order to detect the fault pair (f3, f2), we can use a control test

point to inject a 0 at the node corresponding to f3 and apply a test pattern.  If a mismatch

signal is not produced as a result, then the presence of the fault pair (f3, f2) is detected.

However, the fault pair (f1, f2) can also be detected using exactly the same procedure.

Similar arguments hold for stuck-at-1 faults at the inputs and outputs of OR gates.  Thus,

for this case also, we can use Rule 1 (described in Sec. 6.1) to reduce the number of

candidate faults in each implementation in the duplex system.



14

Referring to Fig. 4.1b, if we want to test the fault pair involving only the stuck-at-

0 (1) fault on Z1, then we need only one control test point.  For the stuck-at-0 case we

need T1 and for the stuck-at-1 case we need T2.  This observation can be used to reduce

the overhead associated with control test points in duplex systems.  Suppose that we have

chosen to insert a control test point at the node corresponding to a stuck-at fault f1.  If f1

is a stuck-at-0 (1) fault, we AND (OR) the node corresponding to f1 with T1 (T2).  Thus,

it is not necessarily true that if we use control test points, then the number of test points is

always double the number of observation test points.  For example, consider an

implementation of a logic function with no reconvergent fanout.  Thus, for each node in

the circuit, we have to consider either a stuck-at-0 or a stuck-at-1 fault but not both.  For a

duplex system with identical implementations of this function, the number of control test

points that should be inserted is the same as the number of observation test points (equal

to the number of nodes in the implementation).

7.  Conclusions

In this paper, we demonstrated the usefulness of using diverse implementations in

enhancing the self-testability of common-mode and multiple failures in duplex systems.

This result is significantly useful in the context of adaptive computing systems that

enable easy instrumentation of design diversity.  Our technique for finding the non-self-

testable fault pairs shows orders of magnitude improvement in execution time compared

to other competitive techniques.  An interesting extension to our solution will be to

preprocess a given circuit to identify the subset of inputs that decide the testability of a

given fault.  This preprocessing will be useful for circuits having a large number of inputs

where each output depends on only a very small subset of the inputs.  We have also

described test point insertion techniques to detect all modeled common-mode and

multiple failures.  This enhancement helps in increasing the system data integrity and

availability.  There are further opportunities to reduce the number of test points using

fault equivalence relationships as described in Sec. 6.  The test point insertion techniques

reported in this paper can be combined with other test point insertion techniques used in

the context of digital testing [Touba 96] to reduce the test length and detect different fault

pairs more efficiently.



15

8.  Acknowledgments

This work was supported by Defense Advanced Research Projects Agency (DARPA)

under Contract No. DABT63-97-C-0024.

9.  References

[Abramovici 90]  Abramovici, M., M. Breuer and A. Friedman, Digital Systems Testing

and Testable Design, IEEE Press, 1990.

[Armstrong 72]  Armstrong, D. B., “A Deductive Method of Simulating Faults in Logic

Circuits,” IEEE Trans. Computers, Vol. C-21, No. 5, pp. 464-471, May 1972.

[Avizienis 84]  Avizienis, A. and J. P. J. Kelly, “Fault Tolerance by Design Diversity:

Concepts and Experiments,” IEEE Computer, pp. 67-80, August 1984.

[Eichelberger 83]  Eichelberger, E. B. and E. Lindbloom, “Random-Pattern Coverage

Enhancement and Diagnosis for LSSD Logic Self-Test,” IBM Journal of Research and

Development, Vol. 27, No. 3, pp. 265-272, May 1983.

[FIPS 77]  FIPS PUB 46, “Data Encryption Standard,” FIPS Publication, US Department

of Commerce/National Bureau of Standards, National Tech. Info. Service, Springfield,

Virginia, 1977.

[Hughes 84]  Hughes, J. L., E. J. McCluskey and D. J. Lu, “Design of Totally Self-

Checking Comparators with an Arbitrary Number of Inputs,” IEEE Trans. Computers,

Vol. C-33, No.6, pp. 546-50, June 1984.

[Kraft 81]  Kraft, G. D. and W. N. Toy, Microprogrammed Control and Reliable Design

of Small Computers, Prentice Hall, 1981.

[Lala 94]  Lala, J. H. and R. E. Harper, “Architectural principles for safety-critical real-

time applications,” Proc. of the IEEE, vol. 82, no. 1, pp. 25-40, Jan. 1994.



16

[LSI 96]  G10-p Cell-Based ASIC Products Databook, LSI Logic, May 1996.

[McCluskey 56]  McCluskey, E.J., “Minimization of Boolean Functions,” Bell System

Tech. Journal, Vol. 35, No. 5, pp. 1417-1444, Nov. 1956.

[McCluskey 71]  McCluskey, E. J. and F. W. Clegg, “Fault Equivalence in combinational

logic networks,” IEEE Trans. Computers, Vol. C-20, No. 11, pp. 1286-1293, Nov. 1971.

[Pradhan 96]  Pradhan, D. K., Fault-Tolerant Computer System Design , Prentice Hall,

1996.

[Reed 97]  Reed, R., et al., “Heavy ion and proton-induced single event multiple upset,”

IEEE Trans. Nuclear Science, Vol. 44, No. 6, pp. 2224-2229, July 1997.

[Saxena 00]  Saxena, N. R., et al., “Dependable Computing and On-Line Testing in

Adaptive and Reconfigurable Systems,” IEEE Design and Test of Computers, Jan-Mar.

2000.

[Sentovich 92]  Sentovich, E. M., et al., “SIS: A System for Sequential Circuit

Synthesis,” ERL Memo. No. UCB/ERL-M92/41, EECS, UC Berkeley, CA 94720.

[Sohi 89]  Sohi, G. S., M. Franklin and K. K. Saluja, “A Study of Time-Redundant Fault-

tolerance Techniques for High-Performance Pipelined Computers,” Proc. FTCS, pp. 436-

443, 1989.

[Touba 95]  Touba, N.A., and E.J. McCluskey, “Synthesis of Mapping Logic for

Generating Transformed Pseudo-Random Patterns for BIST,” Proc. Intl. Test Conf., pp.

674-682, 1995.

[Touba 96]  Touba, N.A., and E.J. McCluskey, “Test Point Insertion Based on Path

Tracing,” Proc. VLSI Test Symp., pp. 2-8, 1996.


