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Fault Feature Extraction of Diesel Engine 
Based on Bispectrum Image Fractal Dimension
Jian Zhang, Chang-Wen Liu, Feng-Rong Bi*, Xiao-Bo Bi and Xiao Yang

Abstract 

Fault feature extraction has a positive effect on accurate diagnosis of diesel engine. Currently, studies of fault feature 

extraction have focused on the time domain or the frequency domain of signals. However, early fault signals are 

mostly weak energy signals, and time domain or frequency domain features will be overwhelmed by strong back-

ground noise. In order consistent features to be extracted that accurately represent the state of the engine, bispec-

trum estimation is used to analyze the nonlinearity, non-Gaussianity and quadratic phase coupling (QPC) information 

of the engine vibration signals under different conditions. Digital image processing and fractal theory is used to 

extract the fractal features of the bispectrum pictures. The outcomes demonstrate that the diesel engine vibration 

signal bispectrum under different working conditions shows an obvious differences and the most complicated 

bispectrum is in the normal state. The fractal dimension of various invalid signs is novel and diverse fractal parameters 

were utilized to separate and characterize them. The value of the fractal dimension is consistent with the non-Gauss-

ian intensity of the signal, so it can be used as an eigenvalue of fault diagnosis, and also be used as a non-Gaussian 

signal strength indicator. Consequently, a symptomatic approach in view of the hypothetical outcome is inferred and 

checked by the examination of vibration signals from the diesel motor. The proposed research provides the basis for 

on-line monitoring and diagnosis of valve train faults.
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1 Introduction

Vibration signals are widely utilized for health condition 

assessment and fault diagnosis in diesel engine and fre-

quently transfer active data from mechanical elements. 

Many advanced techniques have been employed to detect 

and extract features from vibration signals [1–6]. Some 

conventional fault diagnosis techniques based on vibra-

tion signals extract the characteristic quantities from the 

time domain and frequency domain, statistical indexes, 

such as peak amplitude, root mean square amplitude, 

kurtosis and frequency components [7]. Obviously, these 

indexes simplify the description of the machine condi-

tion, but the selection of index directly affects the pat-

tern recognition. Moreover, most frequency spectrums 

have similar characteristics, which make misjudgements 

in detecting machine faults [8]. Fourier transforms (FT) 

and fast Fourier transform (FFT) analysis can be utilized 

to examine the signal in the regularity area. �e appli-

cation premise of discrete Fourier is that it is supposed 

that the signal is both stationary and periodic [9]. How-

ever, the diesel engine is a composite system in which the 

combined shock is excited by a complicated mechanism 

motion and combustion. �e vibration signal of the diesel 

engine is not linear and stationary, under steady opera-

tion. Intervallic behavior may or may not occur and the 

presumption of stationarity may not hold when the flag is 

recorded for long spans or the fundamental instruments 

of flag era change. In this manner, the blame vibration 

highlights of diesel motor are not completely be reflected 

by time-area waveform and spectral examination.

As of late, some new strategies for blame flag determi-

nation with non-stationary signs have been proposed, 

such as wavelet transform (WT), wavelet packet trans-

form (WPT), ensemble empirical mode decomposi-

tion (EEMD) and higher order spectral (HOS) analysis 

[10–12]. Of these new techniques, WT has been proved 

to be more appropriate than FT for the vibration signal 
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examination due to its high time–frequency resolution. 

WPT method that evolved from the wavelet can divide 

the signal into an entire frequency band. However, both 

method is unable to excerpt non-linear connections 

within the signal or time sequence and will lose phase 

information between frequency components. Moreover, 

both methods is subject to the selection of the wave-

let basis function. Once the wavelet basis is set, decom-

position and reconstruction will no longer change and 

will no longer be adaptive to signal analysis [13]. EEMD 

investigation has specific benefits for describing sig-

nals at instantaneous frequency. An intelligent diagnosis 

method based on better EEMD and SVM with a small 

number of training sets was proposed by Zhang et al. [14] 

to solve the problems of the poor decomposition accu-

racy for the short signal. Based on EMD, Shi et  al. [15] 

presented a novel procedure to improve the precision of 

signal decomposition. EEMD is a powerful tool for non-

stationary signal analysis, but this method is frequently 

confined to experiments and applied research. Moreover, 

low computational efficiency limits its application for on-

line detection. HOS allows characterization of signals at 

various confinement levels in time and capacity in sig-

nal handling, design acknowledgment, seismology, and 

machine fault analysis.

HOS examination can be utilized as an intense device 

for the non-straight dynamical investigation of the 

engine vibration signals. Firstly, this theoretical approach 

can suppress Gaussian noise. If a non-Gaussian signal 

contains Gaussian noise, the noise will be eliminated by 

calculation of the HOS. Secondly, HOS preserves phase 

information. �irdly, HOS can assume a key part in 

identifying and portraying the sort of non-linearity in a 

framework from its signals [16]. HOS hypothesis would 

be a superior approach than conventional time-area and 

recurrence space strategies for analysis of the engine 

vibration signals, particularly for the weak and noisy 

signals. �e appliance of HOS for health state assess-

ment and fault judgement of diesel engine has not been 

widespread. Gu et al. [17] made some excellent work for 

motor fault diagnosis by analysis of the HOS features of 

electrical motor current. Other researchers used theory 

and experiments to analyze gear fault diagnosis using 

analysis of the bispectrum of vibration signals [18]. Feng 

et  al. [19] used bispectrum analysis technique in fault 

trait mining of the diesel engine piston-pin. He consid-

ered the bispectral feature frequency face as the feature 

parameter and then used a neural network for pattern 

recognition. However, the feature frequency face may 

lose fault information.

Bispectrum is the most extensively used approach 

and the lowest order of all HOS analysis methods. �e 

bispectrum plan provides supplementary data of the 

relationships among the dissimilar frequency mecha-

nisms. �ese plans can be used to distinguish diverse 

conditions of engine, and the features derived from these 

plans will guide the identification of different kinds of 

signals. Extracting fit features from the bispectrum plan 

to provide decision support for fault diagnoses is an 

important and difficult research topic. �e bispectral 

characteristic plane in frequency field was used to char-

acterize the data [20]. By bispectral analysis of the vibra-

tion data and searching the field of bispectral modulus, 

characteristic planes in data were determined. �e fault 

characteristics of crankshaft bearing can be extracted 

efficiently. Bispectrum estimation based on a AR model 

which is not Gaussian was used to describe the nonlin-

ear and non-Gaussian features of the cylinder vibration 

response signal [21]. �e diesel engine valve train fault 

type was identified by extracting the maximum peak 

frequency and amplitude from the main cross slice of 

the bispectrum. However, the main diagonal slice and 

the characteristic frequency surface contain part of the 

bispectrum information, limiting the practical effect of 

the fault features.

�e color spatial distribution is considered to be the 

texture features of the 2D bispectrum plot and reflects 

the distribution and intensity of the additional infor-

mation in the dual frequency domain, and exhibits its 

self-similarity characteristic. �erefore, it can be charac-

terized by the fractal dimension (FD). FD is broadly uti-

lized as a part of numerous ranges of science, permitting 

quantitative estimation for fractal qualities of nonlinear 

frameworks and space-filling limit estimation for signals. 

Numerous techniques are utilized to evaluate FD [22]. In 

this investigation, FD of the bispectrum was assessed by 

the crate checking strategy.

Whatever remains of this paper is organized as takes 

after. Section  2 presents the essential hypothesis of the 

bispectrum, picture preparing, and fractal measure-

ment. In Section 3, the blame recreation framework and 

information procurement framework are displayed. �e 

exploratory outcomes and investigation are appeared in 

Section 4. At long last, the conclusions are given.

2  Bispectrum Calculation

2.1  Definition of Bispectrum

HOS is a spectral representation of greater order cumu-

lants of an arbitrary process. For a cyclostationary, dis-

crete stochastic process x(n), the nth-order cumulants 

of x(n) is denoted by cn,x(m1, m2, …, mn − 1). First-order 

cumulants of a stationary process is known to be the 

average:

(1)c1,x(0) = E(x(n)),
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where E(•) is mathematical expectation. �e second and 

third-order cumulants of a motionless procedure are 

demarcated by Eq. (1) as follows:

HOS are demarcated as FT of the equivalent higher-

order cumulants arrays. Actually, the Fourier transform 

of a second-order cumulant is the conventional power 

spectrum:

�e third-order spectrum is the FT of the third-order 

cumulants, which is also called the bispectrum [23]:

Note that in the expressions above, these spectra are 

given by products of the deterministic time-domain sig-

nals Fourier transforms. �e bispectrum is a represen-

tation of the correlation of the spectrum values and two 

frequency component, reflecting the skewness of signal 

features. For linear systems, the bispectrum amplitude is 

zero when all three are independent. For a nonlinear sys-

tem, there will be strong correlation at some frequencies. 

In this way, it can distinguish stage coupling between two 

frequencies which show up as a third recurrence as the 

total or distinction of the initial two with a stage that is 

likewise the aggregate or contrast of the initial two [24]. 

�is marvel is called quadratic stage coupling (QPC) [25].

Generally, a power range is utilized to break down the 

signs into a progression of recurrence segments. In any 

case, a power range can’t decide if crests at agreeably 

related positions are stage coupled or not on account of 

the power range utilizes just the size of the Fourier seg-

ments and stage data is ignored. HOS, as bispectrum, are 

equipped for recognizing stage coupling by utilizing stage 

data. In this manner the bispectrum can give extra recur-

rence data that the established power range can’t give.

�e upsides of utilizing HOS examination can be con-

densed as takes after [25]:

(1) HOS can be used to suppress the influence of the 

additive colored noise.

(2) HOS can identify the cause and effect, non-min-

imum phase system or reconstruction non-mini-

mum phase signal.

(2)c2,x(m) = E(x(n)x(n + m)),

(3)c3,x(m1,m2) = E(x(n)x(n + m1)x(n + m2)).

(4)S2,x(ω) =

∞
∑

m1=−∞

c2,x(m) exp
(

−jωm
)

.

(5)

S3,x(ω1,ω2) =

∞
∑

m1=−∞

∞
∑

m2=−∞

c3,x(m1,m2)

× exp
(

−j(ω1m1 + ω2m2)
)

.

(3) HOS can provide additional information due to the 

Gaussian deviation.

(4) HOS can be used to detect and characterize the 

nonlinearity of signals and identify the nonlinear 

systems.

(5) Additional QPC information is available.

2.2  Calculation of Bispectrum

�ere exist a few methods for bispectrum approximation, 

including models with our without parameters. Each 

model includes direct and indirect methods. Although 

the parametric model can provide higher resolution and 

more phase information using less signal data samples, 

there may be loss in important feature information, and 

the method cannot reflect the characteristics of the fault 

signal. Nonparametric bispectrum estimation usually 

uses more data samples, but this approach can reduce the 

estimation variance and improve accuracy. In the pre-

sent work, the straight method of nonparametric model 

approximation was accepted and the calculation algo-

rithm process is as follows.

(1) Let x = (x1, x2,…, xn) be the zero mean observa-

tion samples and fs is the sampling frequency. In 

the domain of the bispectrum, the sampling value 

of the frequency number is N0 and the segment of 

frequency sampling is Δ0 = fs/N0. Next, segment 

the data into k possibly overlapping records, where 

each subgroup contains M notation samples.

(2) Remove the average of each subgroup.

(3) Perform the Fourier transformation for each set of 

data:

 

where λ = 0, 1,…, M/2, i = 1, 2, …, K.

(4) Calculate the bispectrum of each record founded 

on the numbers gained from DFT:

 

(5) At last, find the mean and smooth the bispectrum 

among the values.

 

where ω1 = 2π fs�1/N0,ω2 = 2π fs�2/N0.

(6)xi(�) =

1

M

M
∑

n=1

xi(n) · exp
(

−j2πn�/M
)

,

(7)

b̂i(�1, �2) =

L1∑

p1=−L1

L1∑

p2=−L1

xi(�1 + p1) · xi(�2 + p2)

·xi(−�1 − �2 − p1 − p2).

(8)B̂x(ω1,ω2) =
1

K

K∑

i=1

b̂i(ω1,ω2),
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2.3  Bispectrum Image Processing

�e picture processing handling was created utilizing 

Matlab. �e schematic portrayal of the picture handling 

technique is delineated in Figure 1.

As appeared in Figure  1, the transformation of RGB 

pictures into grayscale pictures and the ensuing back-

ground amendment ought to be done first. Next, the 

grayscale pictures were improved by histogram evening 

out and the commotion was evacuated by low-pass filter-

ing. In this progression, work histeq and fft2 gave by Mat-

lab picture handling tool compartment were connected; 

the low-pass filter was modified freely. A versatile limit 

determination named OSTU method [26, 27], which can 

break down picture histograms consequently and acquire 

the best edge esteem, was utilized to get paired pictures 

after the computerized pictures were upgraded. �is 

technique was performed by calling capacity graythresh 

from the Matlab picture handling tool stash. Next, dou-

ble pictures were furthermore prepared by picture disin-

tegration, calling capacity strel and imerode. At long last, 

with the capacity edge, shapes of the pictures were gotten 

by Candy administrator.

2.4  Fractal Dimension Calculation

In fractal geometry, the FD is a measurable amount to 

demonstrate how totally a fractal seems to fill space 

[28]. FD is a compelling parameter to evaluate fractal 

attributes.

In this paper, FD of the bispectrum were approximated 

by the container checking technique as indicated by 

�eiler [29] with some modification. All the more deci-

sively, each electronic picture was overlaid by a progres-

sion of matrices of square boxes of the span of 1–1024 

pixels. For a progression of boxes of side length s pixels, 

the quantity of boxes meeting the shapes of picture by 

the set (N) was tallied. Fractal structures comply with the 

power law connection over a scope of length scales, such 

that [30]:

where DB is the case checking fractal measurement, N(s) 

is the aggregate number of boxes of side length s that 

cross forms of the bispectrum picture, and c is a consist-

ent. DB is evaluated as the negative slope of a relapse line 

through the direct piece of the plot of lgN(s) against lg s, 

for a succession of scales s:

3  Test Setup and Data Acquisition

In this paper, an inline 6-cylinder diesel engine was 

tested. �e engine works under 1600 r/min (40% loads). 

As shown in Figure 2, the experimental test fix comprises 

of the six-barrel in-line turbo-charged diesel motor, 

dynamometer, LMS SCADA III multi-analyzer frame-

work (piezoelectric accelerometer vibration sensors and 

an information securing framework with 25.6 kHz exam-

ining recurrence) and a PC.

�e experiment comprises engine valve clearance 

normal and fault conditions. At the intake and exhaust 

valve of the first cylinder, vibration signals were collected 

under preset working fault. �e acceleration transducer 

was installed between the intake valve and exhaust valve. 

Table 1 shows the fault parameter of the conditions. After 

the experimental work, the fault and normal vibration 

signals were recorded by 9 accelerometer sensors using 

a data acquisition system. �e positions of the trembling 

sensors are shown in Figure 3. �e sample time was 30 s. 

10 fragments were cut from the collected signals; each 

fragment lasts 1 s: 2‒3 s, 5‒6 s, 7‒8 s, 10‒11 s, 13‒14 s, 

16‒17  s, 19‒20  s, 22‒23  s, 24‒25  s, 27‒28  s. Each frag-

ment contains 26.67 working cycle. 

4  Fault Feature Extraction

�e change of valve clearance can result changes of 

engine mechanism or the gas exchange process. Chang-

ing the engine mechanism will transform the whole char-

acter of the engine system. In this case, with the change 

of valve chain’s dynamic character, driving force such as 

valve-seating impact and impact between valve stems 

and rocker will also be different. �us the vibration 

(9)N (s) = cs
−DB ,

(10)lgN (s) = lg c + (−DB) lg s.

Image acquisition

Background correction

Histogram equalization

Candy operator

Threshod segmentation

Low-pass filter

Contour extraction

Erosion

Figure 1 Image processing
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response will change. Changing the gas exchange process 

will influence the combustion process. �e cylinder pres-

sure will change accordingly and the vibration response 

of cylinder head, cylinder block, piston and other engine 

parts may also be different. �ese changes impact the 

whole integrated engine system, changing the nonlinear 

character of the engine vibration response.

Quadratic phase coupling (QPC) is the additive rela-

tionship between different components’ frequencies 

and phases. If the harmonic components are irrelative, 

the third-degree cumulant is equal to 0. If QPC exists 

in harmonic components, the third-degree cumulant is 

not equal to 0. �e bispectrum image has a peak value 

when analyzing the vibration signal with bispectrum of 

third-order cumulant. �is indicated that QPC exists in 

vibration signals. At least in theory, the bispectrum can 

perfectly suppress the Gaussian components, and explain 

the distribution and strength of non-Gaussian compo-

nents in the dual frequency domain, and also the QPC 

information. Fractal dimension shows the complexity 

of images, reflecting the quantification of the character 

of images. By using the fractal dimension, a quantifica-

tional description can be made, allowing evaluation of 

the engine condition and fault diagnosis. �e Signal-flow 

diagram demonstration of the engine culpability diagno-

sis scheme is shown in Figure 4.

4.1  Bispectrum Analysis

Figure  5 shows the vibration signals in Locations 3 of 

the third cylinder under the five different valve clearance 

conditions. From the diagram, we can see that the surface 

of the cylinder trembling signal is composed of an array 

of shock response signals in a certain sequence, indicat-

ing the cycle stationary signal under the steady speed. 

Each signal under different conditions varied slightly in 

the time domain waveform because in the different states 

of valve mechanism, the mechanical stimulation includ-

ing the impact of the valve stem, the rocker arm and valve 

seating are different. At the same time the difference of 

the intake and exhaust cause a change in the combus-

tion status, leading to a change in the combustion exci-

tation. Furthermore, for the diesel engine work process, 

there is fluctuation in the working cycle and the adjacent 

Figure 2 Configuration of the experimental test rig

Table 1 Diesel engine valve clearance fault conditions

Condition Intake valve  
clearance (mm)

Exhaust valve 
clearance (mm)

Fault 1 0.20 0.40

Fault 2 0.25 0.45

Fault 3 0.30 0.50

Fault 4 0.35 0.55

Fault 5 0.40 0.60
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cycle. All of these contribute to the vibration signal, and 

the cylinder head vibration response in the time domain 

waveform experiences fluctuation.

�e nonlinear characteristics of the system have a sig-

nificant impact on the output signal. Determining fre-

quency relationship between the system and its output 

signal can identify the nonlinear characteristics. Because 

the signal bispectrum is highly sensitive to its non-Gauss-

ian components, when these non-Gaussian characteris-

tics of the system signal changes, the bispectrum features 

will change too. Here, the parametric bispectrum esti-

mation was used to analyze the cylinder head vibration 

signal. �e size of information is N = 25,600, the request 

of every subsection perception tests M = 1024, the super-

pose level of every subsection information is half, and 

the quantity of subsection is K = 2N/M − 1 = 49. Next, 

figure the bispectrum of the vibration motion in Loca-

tion 3 of the third barrel under the five conditions. �e 

amplitudes and shapes are appeared in Figure  6. Nor-

malizing frequency f1 and f2 based on the maximum 

Figure 3 Locations of accelerative vibration sensors
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frequency, the frequency f1 and f2 (0‒0.5 Hz) correspond 

to 0‒12,800  Hz, and the frequencies below are normal-

ized values.

In Figure 6, the cylinder head trembling signal for dif-

ferent states of the spectrum and amplitude are not zero, 

indicating that the cylinder trembling signal is a non-

linear and non-Gaussian signal. �e bispectrum under 

the same condition is stable, but under various working 

conditions, the bispectrum shows obvious separability. 

Compared with the normal state (Fault 3), the bispec-

trum peak and phase distribution in other fault status 

is different, and the bispectrum distribution of the nor-

mal state is more complex. Using the normal state as a 

benchmark, from fault 1 to fault 3, the phase distribu-

tion of the bispectrum became gradually complicated, 

and from fault 3 to fault 5, the phase distribution of state 

varied conversely. From the bispectrum amplitudes fig-

ure, we can see that the spectral peak amplitude of fault 

3 (normal state) is lower than the other four kinds of fault 

states, because the valve clearance led to changes in the 

cylinder head trembling of nonlinear features. �e degree 

of nonlinearity of the cylinder head system changes con-

stantly with the deterioration of the condition (due to 

wear and deformation of the working parts).

4.2  Fractal Dimension

To determine the effect of valve clearance fluctuations 

in the fractal size of the vibration signal bispectrum, the 

bispectrum image was converted into a digital image 

and equivalent images were treated to evaluate the frac-

tal size. Along with the clearance increase (before fault 

3), the peak frequency became larger and the frequency 

components became complex and then (after fault 3) 

became simple (Figure  7a). �e contours of the corre-

sponding images increased and then decreased near fault 

3 (Figure 7b).

For the five different valve clearance diesel engine 

conditions, the bispectrum contour maps of fractal 

dimension show obvious differences. �e fault 3 fractal 

dimension is the largest. From state 1 to state 3 (normal 

condition), the fractal dimension increased as the valve 

clearance increased. �is is likely because the valve opens 

earlier and closes loosely due to heat expansion under 

state 1, causing cylinder leakage and a drop in combus-

tion pressure. Under this condition, quadratic phase cou-

pling of vibration signal stimulated by cylinder pressure 

(including both low frequency excitation and high fre-

quency oscillation) decreases. Compared to the normal 

condition (state 3), the plot of the bispectrum was more 

simple with less side-band and center band components. 

�e fractal dimension is also smaller. Under state 5 with 

too big valve clearance, the valve timing changed with 

both the intake and exhaust valve open, and the valve 

lift was also reduced. �erefore the gas exchange pro-

cess is compressed, resulting in insufficient intake, partial 

exhaust, and incomplete combustion. �e cylinder pres-

sure also drops under incomplete combustion, causing 

a reduction in quadratic phase coupling and a simpler 

bispectrum of vibration signal.

Figure 4 Signal-flow diagram demonstration of the engine culpabil-

ity diagnosis scheme
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Figure 5 Time waveforms of vibration signals
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Compared to the vibration signal acquired at 1600 r/

min with 40% load at 9 locations, the signal at location 

3 was preferable. In order to accurately acquire the fault 

feature, 10 sets of data were intercepted respectively from 

the different time domain vibration signal under each 

fault condition. Each fragment contained 26.67 work-

ing cycle and lasted 1  s: 2−3  s, 5−6  s, 7−8  s, 10−11  s, 

13−14 s, 16−17 s, 19−20 s, 22−23 s, 24−25 s, 27−28 s. 

Next, the corresponding signals were processed to cal-

culate the fractal dimensions. �e results are shown in 

Figure 8.

Figure  8 shows the bispectrum fractal dimensions of 

10 sets of vibration signal for each fault condition. �e 

bispectrum fractal dimensions of the vibration signal 

under different valve clearance conditions showed obvi-

ous differences. Under the same condition, the frac-

tal dimensions were similar and almost in the specific 

range. �e small difference of the bispectrum fractal 

dimension under the same conditions were caused by 

changes in the non-Gaussian and nonlinear vibration 

signal with the fluctuations of the diesel engine working 

cycle and cycle-to-cycle working conditions. �is under-

lying problem cannot be thoroughly solved, even if sig-

nals from more cycles are selected to reduce the error. 

Fractal dimensions under different fault states are in dif-

ferent ranges. When the diagnosis of conditions is con-

sistent with the certain condition, the fractal dimension 

will be within the range of the specific conditions, allow-

ing fault diagnosis.

5  Conclusions

(1) �e vibration signal of engine is a non-linear, non-

Gaussian and cyclostationary signal. By using the 

bispectrum image and fractal dimension, char-

acteristics that can reflect fault condition can be 

extracted from the vibration signals.

(2) �e bispectrum distribution of the normal state is 

more complex. Using the normal state as a bench-

mark, from fault 1 to fault 3, the phase distribution 

of the bispectrum became gradually complicated, 

and from fault 3 to fault 5, the phase distribution of 

state varied conversely.

(3) Under different states, the bispectrums of vibration 

signal have different fractal dimensions, and these 

dimensions are in different ranges. �us the fractal 

dimension can describe the working condition of 

engines. Additionally, the fractal dimension is con-

sistent with the non-Gaussian characteristic of the 

signal. �erefore, the fractal dimension can serve as 

an index of the Gaussianity.

(4) �e fractal dimension of the bispectrum increases 

at first then decreases as the valve clearance 

increased. Considering the discrepancy of engines, 
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the fractal dimension under the same conditions 

can be different. Building a database could help to 

solve this problem.
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