
Fault Injection Attacks on Cryptographic Devices:
Theory, Practice and Countermeasures

Alessandro Barenghi
Politecnico di Milano

Milan, Italy

barenghi@elet.polimi.it

Luca Breveglieri
Politecnico di Milano

Milan, Italy

luca.breveglieri@polimi.it

Israel Koren
University of Massachussets

Amherst, MA, USA

koren@ecs.umass.edu

David Naccache
Ecole Normale Supérieure

Paris, France

naccache@ens.fr

Abstract—Implementations of cryptographic algorithms con-
tinue to proliferate in consumer products due to the increasing
demand for secure transmission of confidential information.
Although the current standard cryptographic algorithms proved
to withstand exhaustive attacks, their hardware and software
implementations have exhibited vulnerabilities to side channel
attacks, e.g., power analysis and fault injection attacks. This
paper focuses on fault injection attacks that have been shown
to require inexpensive equipment and a short amount of time.
The paper provides a comprehensive description of these attacks
on cryptographic devices and the countermeasures that have been
developed against them.

After a brief review of the widely used cryptographic algo-
rithms, we classify the currently known fault injection attacks
into low cost ones (which a single attacker with a modest budget
can mount) and high cost ones (requiring highly skilled attackers
with a large budget). We then list the attacks that have been
developed for the important and commonly used ciphers and
indicate which ones have been successfully used in practice.
The known countermeasures against the previously described
fault injection attacks are then presented, including intrusion
detection and fault detection. We conclude the survey with a
discussion on the interaction between fault injection attacks (and
the corresponding countermeasures) and power analysis attacks.

I. INTRODUCTION

Cryptographic algorithms are being employed in an in-

creasing number of consumer products, e.g., smart-cards, cell-

phones and set-top boxes, to meet their high security require-

ments. Many of these products require high-speed operation

and include, therefore, dedicated hardware encryption and/or

decryption circuits for the cryptographic algorithm. Unfortu-

nately, these hardware circuits, unless carefully designed, may

result in security vulnerabilities

The cryptographic algorithms (also called ciphers) that are

being implemented, are designed so that they are difficult to

break mathematically [1]. To obtain the secret key, which al-

lows the decryption of encrypted information, an attacker must

perform a brute force analysis that requires a prohibitively

large number of experiments. For the most commonly used

cryptographic algorithms, there is no known methodology to

significantly reduce the secret key search space.

However, it has been shown that secret information (such

as the key of the encryption algorithm) can leak through

side channels. Examples of such side channels are the time

needed to perform the encryption or the power consumed

by the device implementing the encryption algorithm. Timing

and power side channel attacks are based on the fact that

the individual computation steps that are needed during the

encryption are dependent on the bits of the secret key and

thus, the time needed for these steps and the power consumed

by them are directly correlated to the secret key bits. These

attacks have proven to be effective and incur a relatively low

cost. Furthermore, once a side-channel attack technique has

been developed and made public, high technical skills and/or

expensive equipment are not required to apply it in practice.

Another type of a side-channel attack is based on the

electromagnetic radiation that emanates from the individual

circuits executing the encryption/decryption. This attack is

even more dangerous than power analysis since it can be

performed at some distance from the circuit, and a direct

contact with the circuit, that can be detected by suitable

sensors, is not necessary.

Side-channel attacks have become a major industrial con-

cern in the last fifteen years and resulted in an intensive

research effort to develop suitable countermeasures that can

defeat the attacks, or at least make them more difficult

and time consuming to perform. Many different types of

countermeasures have been developed, including: restructuring

of the algorithm, shielding of the device, randomizing the

computation, using power independent implementation, and

others.

A different type of side-channel attack that proved to be very

effective, is realized through the injection of deliberate (mali-

cious) faults into a cryptographic device and the observation of

the corresponding erroneous outputs [2], [3]. Using this type of

attack and analyzing the outputs of the cryptographic device,

called differential fault analysis (DFA) [4], the number of

experiments needed to obtain the bits of the secret key can be

drastically reduced. This kind of active side-channel attacks (in

contrast to the previously described passive ones) has been in

the last decade the subject of intense and expanding research,

as it has been demonstrated to be highly effective [5]–[7].

Thus, incorporating countermeasures against fault injection

attacks into cryptographic devices through some form of fault

detection and possibly tolerance, is necessary for security

purposes as well as for the more common objective of data

integrity [8]–[10].

We start this survey paper with a brief overview of the two

important classes of ciphers, namely symmetric (or private)

key and asymmetric (or public) key. We then explain the

general approach to fault injection based attacks and describe

the DFA technique. Next we present the state-of-the-art in

fault injection attacks that can be mounted against symmetric

and asymmetric key ciphers, and we illustrate them using

two ciphers of each type. Finally, we present the currently

known countermeasures against fault injection attacks in-

cluding algorithmic changes, sensors and shields, and fault

detection or correction techniques. A comprehensive list of

references completes the survey and provides pointers to the

main literature contributions to this rapidly evolving scientific

and technological topic.

II. DESCRIPTION OF CRYPTOGRAPHIC ALGORITHMS

Cryptographic algorithms use secret keys for encrypting the

given data (known as plaintext) thus generating a ciphertext,

and for decrypting the ciphertext to reconstruct the original

plaintext. The keys used for the encryption and decryption

steps can be either identical (or trivially related), leading to

what are known as symmetric key ciphers, or they can be

different, leading to what are known as asymmetric key (or

public key) ciphers. Symmetric key ciphers have simpler, and

therefore faster, encryption and decryption processes compared

to asymmetric key ciphers. The main weakness of symmetric

ciphers is the shared secret key which may be subject to

discovery by an adversary, and therefore, must be changed

periodically. The generation of new keys, commonly carried

out using a pseudo random number generator, must be very

carefully executed because, unless properly initialized, such

generators may result in easy to discover keys. The new

keys must then be distributed securely, preferably by using a

more secure (but more computationally intensive) asymmetric

cipher.

Symmetric key ciphers can be either block ciphers which

encrypt a block consisting of a fixed number of plaintext bits

at the same time, or stream ciphers which encrypt one bit at

a time. Stream ciphers are not as frequently used as block

ciphers, but still play a role in certain applications as we will

see below.

Some well-known block ciphers include the Data Encryp-

tion Standard (DES) and the more recent Advanced Encryption

Standard (AES). DES uses 64-bit plaintext blocks and a 56-

bit key, while AES uses 128-bit blocks and keys of size

between 128 and 256 bits. Longer secret keys are obviously

more secure, but the size of the data block also plays a role

in the cipher’s security. For example, smaller blocks may

allow frequency-based attacks, such as relying on the higher

frequency of the letter “e” in an English text.

The encryption process for symmetric ciphers is designed

with the goal of scrambling the plaintext as much as possible.

This is done by repeating a computationally simple series of

steps (called a round) several times to achieve the desired

scrambling. This process must still be reversible so that the

reverse process followed during decryption can generate the

original plaintext using the same secret key.

In contrast, asymmetric key (public key) ciphers allow users

to communicate securely without having access to a shared

secret key. Here, the sender and recipient each have two

cryptographic keys called the public key and the private key.

The private key is kept secret, while the public key may be

widely distributed. In a way, one of the two keys can be used

to “lock” a safe; while the other key is needed to unlock it.

If a sender encrypts a message using the recipient’s public

key, only the recipient can decrypt it using the corresponding

private key.

Another noteworthy application of public key ciphers is

sender authentication: the sender encrypts a message with her

own private key. By managing to decrypt the message using

the sender’s public key, the recipient is assured that the sender

(and no one else) has generated the message.

A. Simple symmetric key stream cipher: SNOW 3G

The simplest ciphers in use nowadays are stream ciphers that

generate a pseudo-random stream of key bits that is bitwise

XOR-ed with the plaintext to generate the ciphertext. The main

advantage of stream ciphers is that they can be implemented

using a small hardware circuit and can operate at a high speed,

making them extremely suitable for power constrained devices

such as mobile phones.

As an example of a lightweight stream cipher, we describe

below SNOW 3G that has been chosen by the 3GPP committee

(of the European Telecommunication Standards Institute) as

one of the data confidentiality standards for phone calls [11].

SNOW 3G is the third instance of the SNOW cipher family

proposed in [12]. It improves its predecessor - the SNOW

2.0 cipher, which was included in the ISO/IEC CD 18033-

4 [13] standard, by enhancing robustness with respect to

algebraic cryptanalysis. The cipher generates a sequence of

32-bit words from a 128-bit key and a 128-bit initialization

variable following the scheme depicted in Figure 1. The circuit

includes a shift register (composed of sixteen 32-bit wide

elements, s15 . . . s0) and a finite-state machine (composed of

three 32-bit registers, R1, R2 and R3) that is included to

render the output highly non-linear. The ⊞ symbol denotes

addition modulo 232, while the ⊕ symbol denotes a 32-bit

bitwise XOR. The two boxes marked S1 and S2 are lookup

tables implementing nonlinear mappings of the input four

bytes into different output four bytes, while a and a−1 denote

multiplications over Z232 by fixed coefficients.

The cipher is initialized by filling the state and the three

registers R1, R2 and R3 with material from the key and the

initialization vector. It is then updated for a number of cycles

with no output produced. After this initialization phase, the

circuit outputs 32 bits of keystream every cycle while updating

the internal state as shown in the block diagram.

B. Symmetric key block ciphers: DES and AES

The more complex block ciphers like DES and AES can

provide high security levels when large amounts of data must

be encrypted and the available computing system is not overly

constrained.

R
1 R

2
R

3

a
-1 a

s
15

s
11

s
5

s
2

s
1

s
0

Output

Figure 1. Snow 3G Block Diagram

Two crucial properties that every good block cipher must

have are called confusion and diffusion. Confusion refers to

establishing a complex relationship between the ciphertext and

the key, while diffusion implies that any natural redundancy

that exists in the plaintext (and can be exploited by an

adversary) will dissipate in the ciphertext.

DES has been the first official standard cipher for commer-

cial purposes [14]. In DES, most of the confusion is provided

by the SBoxes: lookup tables representing nonlinear functions

which are applied repeatedly to the input, while bitwise

expansions and permutations provide the required diffusion.

In 1999, a specially designed circuit was successful in

breaking DES in less than 24 hours [15], thus proving that the

security provided by a 56-bit key is insufficient. Consequently,

a newer standard (the Advanced Encryption Standard (AES))

has been established in 2002 [16], [17] with key size between

128 to 256 bits. The use of DES is however, still widespread

either in its original form or, more frequently, in its more

secure variation called Triple DES. Triple DES applies DES

three times with different keys, and offers as a result a higher

level of security. One variation uses 3 different keys for a total

of 168 bits instead of 56, while another variation uses only 2
of them (112 bits in total).

The new standard block cipher, AES, is widely used and is

now part of the IEEE P1619 standard for data encryption [18]

and of the IEEE 802.11i standard for network communi-

cation [19]. AES is realized as a sequence of substitutions

and permutations on a 128-bit plaintext, interleaved with the

addition of the key through bitwise XOR. These operations

are organized in so called rounds and the number of these

rounds, denoted by Nr, depends on the length of the key,

namely, Nr = 10, 12, or 14 for a 128, 192 or 256-bit AES

key, respectively. The 128-bit data is usually represented as

a 4 × 4 matrix of bytes called the state of the cipher, and is

denoted by S with the byte elements si,j (0 ≤ i, j ≤ 3). The

state S is modified during each encryption round, until the

final 128-bit ciphertext is produced.

Every round of the encryption process consists of the

following four steps:

1) SubBytes - each state byte undergoes independently

(of other bytes) a non-linear substitution of the form

T (s−1
i,j). Due to the complexity of this transformation,

the 256 possible outcomes of this transformation are

commonly pre-computed and stored in an 256 × 8
bits lookup table called S-Box. The non-linear function

tabulated in the S-Box has been chosen in such a way

that the distribution of the output bytes is robust against

statistical attacks, i.e., small differences in the input

will map to an arbitrary difference in the output. This

property was explicitly required since the DES proved

to be vulnerable to this type of attacks.

2) ShiftRows - the bytes of the first, second, third and

fourth rows of the state matrix are rotated by 0, 1, 2
and 3 bytes, respectively. The state after this step is

S =

s0,0 s0,1 s0,2 s0,3
s1,1 s1,2 s1,3 s1,0
s2,2 s2,3 s2,0 s2,1
s3,3 s3,0 s3,1 s3,2

 (1)

3) MixColumns - the four bytes in each column are used to

generate four new bytes through linear transformations,

as shown below (j = 0, 1, 2, 3)

s0,j = (α⊗ s0,j)⊕ (β ⊗ s1,j)⊕ s2,j ⊕ s3,j

s1,j = s0,j ⊕ (α⊗ s1,j)⊕ (β ⊗ s2,j)⊕ s3,j

s2,j = s0,j ⊕ s1,j ⊕ (α⊗ s2,j)⊕ (β ⊗ s3,j)

s3,j = (β ⊗ s0,j)⊕ s1,j ⊕ s2,j ⊕ (α⊗ s3,j) (2)

where α = x (or 02 in hexadecimal notation), β = x+1
(or 03 in hexadecimal notation), ⊗ and ⊕ are the

modulo 2 multiply and add operations, respectively,

of the polynomial representations of the state bytes,

and the α and β coefficients performed modulo the

generator (irreducible) polynomial of AES which is

g(x) = x8+x4+x3+x+1. Polynomial presentations of

binary numbers and operations modulo a given generator

polynomial are described in [20].

4) AddRoundKey - the round sub-key is added through

bit-wise XOR to the state. Separate round sub-keys are

generated using a key schedule process.

All four steps are performed at each round except the last

one, where the MixColumns step is omitted. In addition, prior

to the first round, the first sub-key is added to the original

plaintext.

The individual round sub-keys are generated using a key

schedule/expansion procedure that computes the 128-bit round

keys, kj , given the input key k that consists of l 32-bit

words where l is equal to 4, 6 or 8. Thus, the key schedule

process generates a total of 4(Nr +1) 32-bit words organized

as a linear array denoted by W [0, . . . , 4(Nr + 1) − 1]. The

first l words of W are loaded with the user supplied key.

The remaining words are generated according to Algorithm

II.1 where RCON is an array of predetermined constants,

SubByte is the byte substitution of AES, and <<< 8 denotes

a rotation of a word to the left by 8 bit positions.

Algorithm II.1: The AES key schedule.

Input: k: secret key, l: key length in words, Nr: number

of rounds

Output: W : array containing round keys

begin1

for i = l to 4(Nr + 1)− 1 do2

if i ≡ 0 mod l then3

W [i] = W [i− l]⊕ SubByte[W [i− 1] <<<4

8])⊕RCON [i/l]
else if l = 8 and i ≡ 4 mod l then5

W [i] = W [i− l]⊕ S[W [i− 1]]6

else7

W [i] = W [i− l]⊕W [i− 1]8

return W9

end10

C. Asymmetric key cipher: RSA

Although a number of asymmetric ciphers are in use, the

most well-known and widely deployed public key cipher is the

RSA algorithm named after its three inventors Rivest, Shamir

and Adleman [21].

To employ the RSA cipher one must first generate a pair

of keys, each one of which is able to decrypt what has been

encrypted by the other one. One of these two keys (henceforth

called the public key) will be publicly disclosed to everyone,

thus allowing any person to encrypt a message and send it

to the owner of the key pair. This owner is the only person

able to decrypt the message, since the second key (which is

referred as the private key and is never disclosed), is the only

one that will enable decrypting the message encrypted with

the public key.

The process required to generate the key pair consists of

the following steps:

1) Select two large prime numbers p and q and calculate

their product n = pq.

2) Select a small odd integer e that is relatively prime to

ϕ(n) = (p− 1)(q − 1)

Two numbers (not necessarily primes) are said to be

relatively prime if their only common factor is 1. For

example, 6 and 25 are relatively prime although none of

them is a prime number.

3) Find the integer d that satisfies the relationship

de = 1 mod ϕ(n)

d is thus the inverse of e if the calculations are done

mod ϕ(n).

(e, n) constitutes the public key, while (d, n) will serve as

the secret private key. The security provided by RSA depends

on the difficulty of factoring the large integer n into its

two prime factors. Since there is no known polynomial time

algorithm to factor a composite number, it is sufficient to select

two very large prime numbers p and q to construct the modulus

n in order to make the key derivation extremely difficult. To

make the factoring time prohibitively large, each of the prime

numbers p and q must have at least hundreds of bits. The

current practice, after massive computational efforts proved the

feasibility of factoring a 768-bit number, is that the required

length of the moduli, for civilian and military applications, are

1024 and 2048 bits, respectively. For confidential data that

must be preserved for long time durations, 4096-bit moduli

are recommended.

If a person wishes to send a message m to the owner of a

key pair, he uses the public key to compute the ciphertext as

c = me mod n. Notice that this encryption scheme makes it

necessary to restrict the message size of m so that is satisfies

0 < m < n. Upon receiving the encrypted message c, the

owner of the key pair will decrypt it using his private key by

calculating cd mod n = mde mod n = m mod n.

The most complex operation required when performing

RSA encryption and decryption is exponentiation modulo n. A

number of techniques are being used to reduce the complexity

of this operation. First, since the only restriction on the choice

of the exponent e is that it is relatively prime with φ(n), a

small prime number is selected, e.g., 3, 17 or 65537, thus

reducing the complexity of encryption. Another speedup in

the exponentiation is achieved by employing a multiplication

technique known as Montgomery multiplication [22] that

greatly simplifies the required modular reductions. To speed up

decryption, for which the private exponent d can not be chosen

arbitrarily, the Chinese Remainder Theorem is used allowing

to perform the computations modulo p and q separately (and in

parallel) and then recombine the two results to obtain the final

result modulo n. The separate computations are performed

modulo smaller numbers (half the size of n), requiring less

time and a smaller circuit.

D. Novel asymmetric algorithm: ECC

Elliptic curve ciphers are based on the use of points on a

cubic curve P over a finite field GF (p) where p is a prime

number. The main idea is that it is possible to define an oper-

ation on the set points of an elliptic curve that behaves exactly

like addition (i.e., it has a neutral element, is commutative and

it is possible to find an inverse for every point of the curve).

By using points on a curve P it is possible to obtain a trapdoor

function akin to the one used in common discrete logarithm

cryptosystems. This trapdoor function relies on the ease of

adding a point of the curve k times to itself, a procedure known

as point-scalar multiplication. Given a point Q = kP , it is

computationally very difficult to find k provided that the curve

has a sufficiently large number of points. A key feature of these

ciphers is the choice the curve. Thus, it is necessary to select a

curve that has a sufficiently large number of points and has no

special properties which could reduce the difficulty of solving

the so called Elliptic Curve Discrete Logarithm Problem.

The advantage of elliptic curve ciphers is the smaller size of

the numbers involved in the computations. Typically, safe sizes

for the prime p so that the curve will have a sufficient number

of points range from 160 to 250 bits. This reduction in operand

size is especially important for computationally constrained

devices such as smart cards [23], or when a large number

of encryptions/decryptions is expected, such as in protecting

Domain Name Systems (DNS) transactions [24].

III. FAULT INJECTION TECHNIQUES

The fault injection techniques that have been developed

in order to alter maliciously the correct functioning of a

computing device currently include: variations in the power

supply voltage level, injection of irregularities in the clock

signal, radiation or EM disturbances, overheating the device

or exposing it to intense light. Since the range of these

techniques is wide and getting wider, we first classify the

methodologies used for the attack according to their cost. We

will also point out in this section the degree of technical skill

and knowledge of the implementation required to perform the

injection, and characterize the achievable faults with respect to

their (temporal and spatial) precision and effectiveness. This

classification would allow circuit designers to determine the

possible threats to their secure implementation depending on

the skill and budget of the perceived attackers.

A. Low cost fault injection techniques

We consider as low cost the injection methods requiring less

than $3000 of equipment in order to set up the attack. This

cost is well within the means of a single motivated attacker,

and thus, these fault injection techniques should be considered

as a serious threat to the implementations of secure chips that

may be subjected to them.

The first fault injection technique we describe is the un-

derpowering of the device. Through running the chip with a

depleted power supply, the attacker is able to insert transient

faults starting from single bit errors and becoming more inva-

sive as the supply voltage gets lower. Since this technique does

not require precise timing, the faults tend to occur uniformly

throughout the computation, thus requiring the attacker to

be able to discard results that are not fit to lead an attack.

This methodology, reported to be effective on large integrated

circuits such as the ARM9 processor [25], [26], as well as on

small ASIC implementations of the ciphers [27], [28], results

in delaying the correct set-up for the logic gates of the circuit.

The voltage underfeeding, achieved by employing a precise

power supply unit, requires the attacker to be able to tap into

the power supply line of the device and connect his power

supply unit. This requires only basic skills and can be easily

achieved in practice without leaving evidence of tampering.

Moreover, no knowledge of the implementation details of the

device is needed.

One refinement of the aforementioned technique is the

injection of well-timed power spikes or temporary brown-outs

into the supply line of the circuit. Using this technique, it

is possible to skip the execution of a single instruction in a

software implementation of the cipher by reducing the feeding

voltage for the duration of a single clock cycle. The authors

of [29] report a successful application of this technique to

an 8-bit microcontroller and over-voltage spikes have been

successfully applied to de-packaged RFID tags in [30]. In

order to inject a timed voltage lapse the attacker needs a

custom circuit capable of dropping the feeding voltage below

a certain threshold. This custom circuit should be supplied

with the same clock that drives the microcontroller allowing

it to correctly time the injection of the spike. The temporal

precision of the fault injection is directly dependent on the

accuracy of the voltage drop both in terms of duration and

synchronization with the target device. The difficulties in

applying this technique increase with the clock rate of the

attacked circuit due to the mutual induction of the feeding

line.

Another viable option for an attacker is to tamper with the

clock signal. For example, it is possible to shorten the length

of a single cycle through forcing a premature toggling of

the clock signal. Such shortening, according to [31], causes

multiple errors corrupting a stored byte or multiple bytes.

These errors are transient and thus it is possible to induce

such faults without leaving any tamper evidence. To alter the

length of the clock cycle, the attacker needs to have direct

control over the clock line, which is the typical case when

smart cards are targeted [31]. It is not possible to attack chips

that generate their own clock signal since disconnecting the

clock line from the circuit is difficult. The attack mentioned

in [31] involves a modified smart card reader that is capable

of shortening the duration of a specific clock cycle through

either forcing the raising edge to occur earlier or delaying

the falling edge, depending on the kind of driven smart card.

The modification to the card reader is not trivial but can still

be performed without any special and expensive tools. Clock

alteration techniques are hindered by the need to supply a

regular clock within the working range of the device, while

retaining the ability of altering a single clock edge. This

implies that the equipment inducing the alteration must be

working at a higher clock frequency than the attacked device,

and this is intrinsically more difficult as the target device

working frequency increases.

Another possibility for an attacker is to alter the environ-

mental conditions, for instance, by causing the temperature to

rise. A temperature rise has been reported to cause multiple

multi-bit errors in DRAM memories [32]. The authors report

a thermal fault injection attack against the DRAM chips

of a common desktop computer. The reported number of

flipped bits is around 10 per 32-bit word, when the working

temperature of the DRAM is brought up to 100 ◦C. The

number of faulty words is also reported to be in the range

of tenths. The equipment used included a 50W light bulb

and a thermometer. The level of heating was tuned through

modifying the distance from the chip. The setup thus requires

minimal technical knowledge, and the equipment is readily

available. One drawback of this technique is that it tends to

cause invasive faults in sensitive devices. Another downside is

that the circuit may be destroyed through excessive heating.

A practical way to induce faults without having to tap into

the device is to cause strong EM disturbances near it. The

Eddy currents induced in the circuit by strong EM pulses

cause temporary alterations of the level of a signal, which

may be recorded by a latch. Since the EM pulse is affecting

uniformly the entire attacked device, it is necessary to shield

the components which should not be subject to faults using

a properly grounded metal plate or mesh. This technique

has been shown to be effective against an 8-bit microcon-

troller [33] by employing, as a source of EM disturbances,

a spark generator and placing it very close to the attacked

chip. The authors have also demonstrated that a more efficient

fault injection can be achieved by first removing the plastic

package of the chip. Their spark generator consisted of a

simple piezoelectric gas lighter that was held directly above

the device. All the parts of the circuit which did not need to be

disturbed were properly shielded through grounded aluminium

plates. The above technique can not be applied to chips that

have a grounded metal packaging (usually as a heat sink)

that acts as an EM shield, unless the chip is decapsulated,

adding a step that requires an uncommon technical skill.

Still, decapsulation can be performed with low cost equipment

(nitric acid and common glassware), thus not raising the cost

of the attack considerably.

Assuming the attacker is able to successfully decapsulate a

chip, he can perform fault injection attacks by illuminating

the die with a high energy light source such as an UV

lamp or a camera flash. The strong radiation directed at the

silicon surface can cause the blanking of erasable EPROM and

FLASH memory cells where constants needed for an algorithm

execution are kept (e.g., the AES S-Boxes). Depending on the

duration of the radiation process, the authors of [34] report

a progressive blanking of all the memory cells as well as

resetting the internal protection fuses of the microcontroller

that was targeted. The authors also show that it is possible to

selectively wipe out a part of the stored data in the memory by

exposing only a part of the die to UV radiation. The required

equipment consists only of an UV lamp that is placed closely

to the exposed die. To shield the circuit parts which need not

be exposed, they can be covered with a readily available UV-

resistant dye. This technique is applicable only if the memory

cells have not been covered by a metallic layer. For example,

metal wires placed above the memory cells may provide a

shield against radiation.

B. High cost fault injection techniques

A class of threats which cannot be ignored if the attackers

have access to a larger budget (above the aforementioned

$3000 and up to millions of dollars) includes fault injection

techniques that rely on having a direct access to the silicon die

and the ability to target individual circuits in a very precise

manner. These techniques, albeit leaving evident traces of

tampering, are very powerful and can considerably increase

the probability of a successful attack.

A simple example of these techniques is based on the use of

a strong and precisely focused light beam to induce alterations

in the behavior of one or more logic gates of a circuit. A strong

radiation of a transistor may form a temporary conductive

channel in the dielectric, which, in turn, may cause the logic

circuit to switch state in a precise and controlled manner

(provided that the used etching technology is not too fine). For

instance, it is possible, through targeting one of the transistors

of an SRAM cell (in the memory of a microcontroller), to

flip it up or down at will [35], [36]. In order to obtain

a sufficiently focused light beam from a camera flash, a

precision microscope must be used. The main limitation of

this technique is the non-polarized nature of the white light

emitted by the camera flash resulting in scattering of the light

when focused through non-perfect lenses. Moreover, it is no

longer possible to hit a single SRAM cell with the current

etching technologies, since the width of the gate dielectric is

now more than 10 times smaller than the shortest wavelength

of visible light.

The most straightforward refinement of the previous tech-

nique is to employ a laser beam instead of a camera flash. The

injected fault model is similar to that obtained when using

a concentrated light beam [35], except for the fact that the

laser beam is capable of always inducing faults. Near Infra-

Red (NIR) lasers can also radiate the silicon die from the

back allowing the attacker to hit circuits which are in the

bottom layers of the chip although with a lower precision

since the silicon substrate scatters the beam (a reduction in

the scattering may be obtained by applying anti-reflective

coatings). It is worth noting that the inability to hit only a

single bit memory cell (due to the size of the concentrated

beam) does not necessarily imply inability to inject a single bit

fault. In [37], Agoyan et al. demonstrated how to inject single

bit fault in a reproducible way, despite the optical precision

of the equipment was not able to target the smallest features

of the target chip.

Currently, commercially available fault injection worksta-

tions are composed of a laser emitter, focusing lens and

a placement surface with stepper motors to achieve a very

precise targeting of the beam. The main foreseen limitation of

this fault injection technique is the fact that it is not possible

to achieve sub-wavelength precision thus limiting the smallest

number of gates hit by the radiation depending on the etching

technology and the laser wavelength.

The most accurate and powerful fault injection technique

uses Focused Ion Beam (FIB) that enables an attacker to

arbitrarily modify the structure of a circuit, reconstruct missing

buses, cut existing wires, mill through layers and rebuild

them. Such FIB workstations are commonly used to debug

and patch chip prototypes, or to reverse engineer unknown

designs through adding probing wires to otherwise inaccessi-

ble parts of the circuit. For instance, [38] reports a successful

reconstruction of an entire read bus of a memory containing

a cryptographic key without damaging the contents of the

memory. State of the art FIBs can operate at a precision of

2.5 nm, i.e., less than a tenth of the gate width of the smallest

etchable transistor. FIB workstations require very expensive

consumables and a strong technical background to fully exploit

their capabilities. The only limit to the FIB technology is

the diameter of the atoms whose ions are used as a scalpel.

Currently, the most common choice is Gallium, which sets the

lower bound to roughly 0.135 nm.

Table I summarizes the important characteristics of the

previously described fault injection techniques.

IV. FAULT INJECTION ATTACKS

The variety of known attacks is already large and keeps

on growing, as several new successful ones are demonstrated

yearly. We first describe a few simple fault attacks on the

SNOW 3G cipher to illustrate the differential fault analysis

(DFA) methodology and show some practical implementations

thereof. Then, we list and discuss several more complex fault

attacks targeting the commonly used AES cipher, and several

targeting RSA, exploiting different vulnerabilities. Next, the

few available attacks targeting ECC are briefly presented, with

some comparison to RSA.

A. Simple attacks on 3G-SNOW

A fault attack against SNOW 3G has been proposed by

Debraize et al [39]. Their technique enhances the one proposed

in [40] against SNOW 2.0 proving that the attack can be

successfully extended despite the tweaks applied to the cipher

to raise its security level. In this attack, the cryptanalysis is

based on viewing the output of the cipher as a nonlinear

function of the inner state, and the shift register is seen as

a generator of a series of outputs which are dependent on

the state of the three FSM registers. The proposed approach

assumes that the attacker is able to introduce a fault into

a specific 32-bit cell of the shift register, without a precise

control on the timing of the fault. Since the target of the fault

is a part of a shift register, the fault model may be expressed

also through its dual, i.e., a fault injected with a clock accurate

timing but without proper control on the location of the

injected fault in the shift register. After injecting the fault, the

attacker analyzes the faulty output differences with respect to

a correct key stream and can deduce the position of the fault

in the shift register based on the position of the 32-bit words

which are different in the two key streams. Once the position

of the fault has been determined, the attack continues by

constructing an equation expressing the difference in the inner

state as an unknown, while the difference between the fault

and correct output word is the known term. After collecting

a sufficient number of equations it is possible to remove the

terms dependent on the registers and, in the best case, obtain a

set of linear equations which can be solved through common

Gaussian elimination. The authors have also proposed an

alternative to Gaussian elimination (for the case where a

complete linear set of equations can not be obtained using

the above technique) that is based on Gröbner bases. Through

decomposition in a Gröbner basis of a equation system it is

possible to solve a small set of nonlinear equations, but since

the algorithm has exponential complexity, the problem may

become computationally intractable. The authors report that

their attack was successful with as few as 22 injected faults

in the inner state, regardless of the value of the 32-bit register

after the fault injection (i.e., no assumptions were made on

how many bits were flipped or their positions).

B. Attacks on AES

This section provides an insight into the most common fault

attacks on AES. These attacks attempt to exploit the byte-wise

processing of the state by inserting either single bit or single

byte faults during the computation.

A simple and straightforward attack on the AES cipher has

been proposed by Bloemer et al. in [41] and aims to change

a single bit right after the first key addition. The objective

is to reset a single bit in the internal state S(0) (in general,

S(i) denotes the state at the beginning of the i-th round) and

observe whether the value of the ciphertext has changed. If

the ciphertext has either changed or was detected as faulty by

a fault detection circuit, the attacker knows that the correct

value of the bit is 1, otherwise it is 0. Since the altered bit

is the result of a xor between the known plaintext and the

key, the attacker is able to recover the key one bit at a time.

Although this attack can in principle, recover any length of

the cipher key, it has been deemed practically infeasible due

to the very precise timing required of the fault injection and

the strict requirement on the position of the injected fault.

The most straightforward attack, among the practically

feasible ones, has been presented by Giraud in [42] and

targets directly the state S(i) during the last round. The attack

assumes that the injected fault only alters a single bit of

the state, prior to the last SubBytes operation. The modified

bit then propagates through the last round and results in a

single byte corruption in the computed ciphertext. Once the

attacker obtains a pair of correct and wrong ciphertext c and

c̃, respectively, he can reduce the number of possible key bytes

employed to encrypt the corrupted byte by inverting the effect

of the last round and checking whether the difference between

the two values (obtained with a single byte key hypothesis)

is a single byte prior to the SubBytes operation. This kind of

attack is thus applicable only to the last AES round that does

not include the MixColumns operation, and therefore, a single

byte difference in the state will not spread to other bytes.

A limitation to the practical instantiation of this attack is

the requirement of a very strict time frame in which the

fault must be injected. The authors of [42] were able to

achieve the required precise timing while attacking an 8-bit

smartcard, by focusing the light emitted by a camera flash

through a microscope. Their apparatus was synchronized to the

smartcard clock and was able to inject correctly timed faults

into the device. Note that the attacker can always determine

whether the injected fault has hit the correct point in the

circuit, since the fault would corrupt only a single byte.

The attack by Giraud has been successfully extended by

Barenghi et al. in [43] allowing the exploitation of a single bit

fault corrupting the state even in a regular round of the cipher.

The diffusion of the fault caused by the MixColumns operation

may be coped with by hypothesizing a larger part of the key

(namely, a whole 32-bit word) and trying all the possible

hypotheses. This is still computationally feasible even with a

common desktop. This extended attack is able to reconstruct

the full key schedule, thus recovering all the round keys,

Table I
FAULT INJECTION TECHNIQUES SUMMARY

Technique Accuracy Accuracy Technical skill Cost Hindered by Requires knowledge Damage to
[space] [time] technological advances of the implementation the device

Underfeeding high none basic low no no no
Clock glitch low high moderate low yes yes no
EM Pulses low moderate moderate low no no possibly

Heat low none low low partial yes possibly
Power supply glitch low moderate moderate low no partial no

Light Radiation low low moderate low yes no yes
Light Pulse moderate moderate moderate moderate yes yes possibly
Laser beam high high high high yes yes possibly

Focused Ion Beam complete complete very high very high yes yes yes

provided enough faulty ciphertexts are available. The authors

of [43] report a practical application of this attack against

a software implementation of AES running on an ARM926-

based system.

Dusart et al. [44] have presented an attack on AES that

is based on a more general fault model: it assumes that the

injected fault alters the value of a single byte between the

(Nr−1)-th and (Nr−2)-th rounds of the encryption primitive,

where Nr is the total number of rounds. This attack is able

to obtain the last round key, and relies on the key schedule

properties to reconstruct the entire AES-128 cipher key. To

exploit the injected fault, an hypothesis on a single word

of the last round key is made in order to invert the last

round and obtain the state right before the last MixColumns

operation. After the removal of the last round, the algorithm

checks if the key hypothesis made is compatible with a single

byte difference in the state through inverting the MixColumns

operation (which is linear with respect to the xor-based key

addition) and checking whether the difference between the

faulty and correct values of the state S(Nr−2) is a single

byte. This method of paring down the candidate keys is quite

efficient and yields a single candidate with as few as three

faulty ciphertexts per key word, thus enabling an attacker to

retrieve the complete AES 128-bit key with only 12 injected

faults. This attack has been practically carried out against a

hardware implementation of AES on a smartcard in [27] and

against a software implementation running on an ARM926

system in [26].

It is possible to further generalize the fault model of the

above attack to a faulty word in the same position assumed by

Dusart et al. This extension, proposed by Moradi et al. in [45],

considers the possible faults occurring in a single word through

splitting them into two categories: the ones affecting all four

bytes of a word and those that affect fewer than four bytes. For

each category the authors provide a bound on how fast they

were able to reduce the keyspace. They show that it is possible

to recover the key with around 1500 faulty ciphertexts. This

key recovery method assumes that the attacker knows to

which of the two categories the fault belongs, since having

a generic word sized fault, without any hypothesis on the

structure, yields no information for the attacker. Moreover,

it is impossible to distinguish a-posteriori if the injected fault

complies with the model needed to perform the key extraction,

thus insisting on the fault injection method to be reliable in

terms of the kind of fault induced. Although relying on quite

reasonable fault injection hypotheses, this attack has not yet

been validated in practice.

Another possible extension of the attack presented by Dusart

et al. has been proposed in [26] and aims at overcoming the

limitation of the attack that allows to retrieve only the last

round key. The main difficulty of retrieving a round key before

the last one is due to the effect of the MixColumns operation

which is present in all the rounds of the cipher except for the

last, and provides full diffusion of the injected fault over the

whole cipher state after two applications. The key to work

around this issue is to compute the difference between the

correct and faulty cipher state at the end of the Nr − 1 round

(thus eliminating the effect of the Nr−1 key), and then invert

the effect of the MixColumns on the differential value (which

is not difficult since MixColumns is linear with respect to

the xor operation). After obtaining the difference between the

faulty and the correct states right before the SubBytes step

of the Nr − 1 round, a guess is made on the correct value

of a single word of the state, deriving the value of the faulty

word from the difference. After obtaining both values it is

possible to roll back the SubBytes operation, which was not

possible while holding only differential information due to

the non-linear nature of the SubBytes. The last step of the

attack checks whether the predicted fault fits the fault model

and consequently, discards the inner state hypothesis if it does

not. This allows the attacker to fully recover the internal state

of the cipher before adding the last key, thus enabling the

recovery of this round key. In [26] the authors provide a

practical validation of the proposed attack technique against a

software implementation of the AES cipher.

A practically feasible attack worth mentioning is the one

involving the complete blanking of the S-Box lookup tables

of the cipher, achievable through resetting the memory where

they are stored. This attack effectively reduces the whole AES

cipher to the last AddRoundKey operation, which is performed

on a known cipher state, i.e. the null values fetched from the

blanked S-Box. This in turn allows the immediate recovery of

the last round key by the attacker, although it does not allow

to recover the other round keys thus limiting the effectiveness

of the attack to AES-128. This attack has been proved to be

feasible on a number of microcontrollers where the S-Box

was stored in the internal flash memory. The devices had to

be decapsulated before being radiated with ultraviolet light

in order to wipe clean the memory. Proper targeting of the

memory locations which had to be blanked was achieved using

a UV-resistant dye to cover the parts which needed to be

protected.

A number of fault injection attacks targeting the key

scheduling algorithm (employed to generate round keys from

the user supplied key) have been developed. These attacks

exploit the highly regular structure of the AES key schedule

in order to infer bytes of the key through corrupting one or

more bytes during the expansion of the last round key bits. In

particular, the attacks proposed by Giraud et al. in [42] and by

Chen et al. in [46] exploit a single byte corruption introduced

after the key schedule procedure has been performed, and are

thus able to obtain a precise fault that does not propagate to

the keys which are derived from it. While this fault model

is reasonable whenever the key schedule is precomputed and

its result stored in some kind of permanent memory, it is not

possible to attack AES implementations which perform key

expansion on the fly.

In [47], Peacham et al. proposed an attack which takes into

account not only a single fault injection in the cipher, but also

its effect on the computation of the following parts of the key.

This can be done by propagating the fault through the xor and

the SubBytes steps since their structure is not dependent on

the employed key. The fault model employed by the attack

is a single 32-bit word corruption during the computation of

the penultimate round key, thus it is employable also in the

practical scenario where the key expansion is computed on the

fly, even if the attacker is not able to inject a precise fault into

a single byte. The authors of [47] describe a successful attack

mounted using laser induced fault injection on a commercial

grade secure implementation of AES, that did not include any

countermeasures against fault attacks, and employed an all-at-

once key scheduling strategy. This attack was further enhanced

in [48] to reduce the number of faults required to deduce the

entire last round key to four instead of more than 10.

Table II summarizes the key charachteristics of different

fauly injection attacks on AES that were described in this

section.

C. Attacks on RSA

Due to the asymmetric nature of the RSA cipher two kinds

of attacks are possible. The first one attempts to recover

either the factorization of the public modulus n or the secret

exponent d. The second one tries to decrypt the ciphertext c
with no knowledge of the secret key whatsoever. This section

starts with a description of the former, which can only be

applied during the phase that uses the secret exponent d.

This can be either the decryption phase of a message that

has been encrypted with the public key or the signature

phase of a message sent by the private key owner for sender

authentication purposes.

The first attack which has been proposed to factor the RSA

secret modulus, and actually the very first fault attack tech-

nique to be developed, is the so called Bellcore attack [5]. This

technique enables the attacker to factor the modulus n through

inducing an error during the computation of the exponentiation

phase of an RSA implemented using the Chinese Remainder

Theorem.

Consider, for example, the signature phase where the signa-

ture s is computed as s = md mod n using a CRT recombina-

tion of the two values sp = md mod p and sq = md mod q.

The recombination, denoted by CRT (sp, sq), is accomplished

using the so-called Garner method:

s =
(
sp + p ((sq − sp)(p

−1 mod q) mod q)
)
mod n

The main benefit of this method is that it achieves sig-

nificant time and area savings by performing the expo-

nentiations with smaller exponents. Since sp = md mod
p = md mod (p−1) mod p and sq = md mod q =
md mod (q−1) mod q, the exponents to be used are dp =
d mod (p− 1) and dq = d mod (q − 1) which are of order p
and q, respectively, instead of n.

Unfortunately, this simpler way to compute the signature

also yields an easy path for attackers. The main idea behind the

Bellcore attack is to corrupt only one of the two computations,

i.e., either sp or sq . If, for example, a fault is injected during

the computation of sq while the computation of sp remains

error free, the faulty result may be used to successfully factor

the modulus n. Denoting the faulty value of sq by s̃q = sq+∆,

we can rewrite the faulty result of the CRT recombination as

s̃ = CRT (sp, s̃q), which is equal to:

s̃ = s+ p
(
∆(p−1 mod q) mod q

)
mod n

One can now compute the quantity s̃ − s that shares the

factor p with the modulus n. Therefore, it is possible to extract

p = gcd(s̃ − s, n) efficiently using Euclid’s Algorithm, thus

factoring n.

Moreover, as shown in [7], the modulus factorization is

feasible using only the message m and one faulty computation

of the signature s̃ by exploiting the knowledge of the public

exponent e to calculate p = gcd(s̃e −m,n). This allows an

attacker to factor the modulus even in the case the value of

the correct signature s is not available.

The simplicity of the fault model assumed by this attack

is the most important property of this technique: any random

fault perturbing one part of the computation is able to break the

cipher. A number of practical implementations of this attack

have been attempted. For example, the authors of [49] have

induced errors into a smartcard through voltage spikes injected

into the power supply line of the device. Even with such a

simple setup, the attack was successful in more than 90% of

the attempts, further proving the serious threat posed by this

attack technique.

The second way to attack RSA is to retrieve the private

exponent d while the device is signing messages. This attack

is applicable when the RSA implementation performs the

exponentiation through a sequence of square-and-multiply

Table II
AES ATTACKS SUMMARY (KS IS THE KEY SCHEDULE)

Attack Fault model Spots usable faults Fault Position Cipher / KS Max Key Length Practically applied
[41] Single bit No First ARK Cipher Any No
[42] Single bit No Last round Cipher 128 No
[43] Single bit Yes Last 3 rounds Cipher Any Yes
[44] Single byte No Last 2 rounds Cipher 128 Yes
[45] Single word No Last 2 rounds Cipher 128 No
[26] Single byte Yes Last 3 rounds Cipher Any Yes
[34] Whole SBox Yes SBox Cipher 128 Yes
[46] Exact byte Yes 9th round key KS 128 No
[42] Single byte No 9th round key KS 128 No
[47] Single word Yes 9th round key KS 128 Yes
[48] Single word Yes 9th round key KS 128 No

steps. In this attack scenario the attacker has free access to

the device and is allowed to choose arbitrary ciphertexts to

be fed while injecting faults. It is also assumed that there is

no limit to the number of fault injection experiments that the

attacker can perform. This assumption restricts the technique

to non destructive fault injections.

The key point of the secret exponent recovery attack, first

proposed in [6], is to induce a number of faults during the

signature process, with each fault leaking the value of a single

bit of the exponent. Two types of injected faults can achieve

the desired outcome. One is a single transient flip of a bit in d
during the computation of the RSA signature. Another way to

achieve an analogous effect is to induce a fault that will result

in skipping the condition check which determines whether

the current intermediate value must be multiplied by the base

in a common left-to-right square and multiply exponentiation

procedure. As a result of either fault, the corrupted signature

s̃ may assume one of the following two possible values:

s̃ = sd−2i mod n or s̃ = sd+2i mod n depending on whether

the value of the single bit in position i was flipped up or

down. Consequently, either s/s̃ mod n or s̃/s mod n would

be equal to m2i mod n, where i ∈ [0, v − 1] and v is the bit

size of the secret exponent d.

To simplify the attack, all the possible values of m2i (for

i ∈ [0, v−1]) can be precomputed and stored in a lookup table,

A. After a fault has been injected and the faulty signature s̃
observed, the lookup table A is searched for a match with

either s/s̃ mod n or s̃/s mod n. If the first value matches

an entry in the table the attacker knows that the i-th bit value

is 1 and was changed to 0 by the fault, while if the second

value produces a match, the original value of the i-th exponent

bit was 0. This procedure can be iterated as necessary.

This attack can also be successful if the injected fault hits

two bits of the secret key d. The main difference would be

that a bigger lookup table would need to be prepared with v2

instead of v entries.

To estimate the number of randomly positioned single-bit

faults needed to discover the values of v unknown key bits

define a random variable X counting the number of faults

injected until all the bits have been hit. Assume that j key

bits have already been hit and denote by Xj the random

variable indicating the number of faults that should be injected

in order to increase the number of bit hits to j+1. Xj follows

a geometric distribution with parameter v−j
v

. Therefore, the

probability that after k injections a yet untouched (single)

bit gets hit is given by Prob(Xj = k) = v−j
v

(
j
v

)k−1
. The

expected value of Xj is E[Xj] = v
v−j

. Since the random

variable X satisfies X =
∑v−1

j=0 Xj , its expected value is

E[X] = v
∑v

j=1
1
j
≤ v ln(v + 1).

This implies that on the average R = v ln(v + 1) single-

bit faults should be injected in order to retrieve all the bits

of the secret key. For example, if the RSA implementation

uses a 1024-bit key, the attacker will need approximately R =
1024 ln(1024) ∼= 3083 restarts of the device and successful

fault injections in order to extract the entire secret exponent.

As in any such attack, the attacker can stop the fault injections

when a brute force search of the remaining key bits becomes

feasible.

A variant of this attack has been proposed and applied

in practice by Schmidt et al. in [29]. The authors caused

the skipping of the squaring step in the square and multiply

algorithm by introducing glitches into the clock signal of the

attacked microcontroller. The employed methodology allows

a very precise control of which instruction is skipped and the

authors were therefore, successful in recovering all the bits of

secret exponent d one bit at a time.

An example of applying the technique proposed by Bao [6]

that is worth mentioning is the one reported in [50]. Yen et

al. have used the technique under a safe error assumption.

An error is injected into a single multiply operation during a

square and multiply always algorithm and the attacker needs

only to observe whether the device is behaving correctly. Any

misbehavior (e.g., producing a faulty output value or no output

at all) indicates to the attacker that the injected fault has hit a

useful multiplication, implying that the bit (of d) driving that

multiplication was equal to one. This technique has allowed

to bypass all the countermeasures which were known at that

time, since the actual faulty output was not needed.

A third way to attack the RSA cryptosystem is to devise

a way to extract the e-th root of a number modulo n in a

reasonable time. This has been shown to be feasible in [25],

by exploiting the knowledge of another power of the same

Algorithm IV.1: e-TH ROOT EXTRACTION

Input: e1, e2 ∈ {1, . . . , ϕ(n)− 1}, e1 ≥ e2 ,

c1 = me1 mod n, c2 = me2 mod n
Output: (m,n): either (m,⊥) if the e-th root may be

extracted, (p, q) if the modulus can be factored

or (⊥,⊥) otherwise

begin1

τ ← gcd(c1, n)2

if τ 6= 1 then3

return (τ, n/τ)4

τ ← gcd(c2, n)5

if τ 6= 1 then6

return (τ, n/τ)7

if gcd(e1, e2) 6= 1 then8

return (⊥,⊥)9

γ1, γ2 ← c1, c210

ε1, ε2 ← e1, e211

/* Integer division */

θ ← ⌊ ε1
ε2
⌋, ρ← ε1 mod ε212

γ3 ← γ1γ
−θ
2 mod n13

while ρ 6= 0 do14

γ1, γ2 ← γ2, γ315

ε1, ε2 ← ε2, ε1 − θε216

/* Integer division */

θ ← ⌊ ε1
ε2
⌋, ρ← ε1 mod ε217

γ3 ← γ1γ
−θ
2 mod n18

return (γ2,⊥)19

end20

number. This technique can be used in order to recover the

plaintext message without the need to obtain the secret key.

The fault model assumed by this attack is a modification to

the value of the public exponent e, leading to two encryptions

of the same message sharing the same modulus n. While

this does never happen due to an incorrect generation of two

public-private key pairs (otherwise the two key holders would

be able to mutually read each other’s messages), the encryption

of a same message through exponentiation by two different

public exponents e1 and e2 may be forced through proper

fault injection.

Once the values of the two different ciphertext resulting

from the encryption of the same message are obtained, it is

possible to efficiently extract the e-th root by exploiting the

following observation. Assuming that e1 > e2, the value of

me3 = (me1) · (me2)−1

can be easily computed. The value of e3 is lower than that of

e1 and it is possible to lower it further until it becomes lower

than e2. Notice that the attacker knows the values of e1 and e2
since they are public, so he knows exactly the value of e3. In

order to further lower the value of the exponent it is possible

to compute the value of

me4 = (me2) · (me3)−1

and repeat the procedure until either en+1 = en or en = 1.

This procedure amounts to computing the greatest common

divisor of e1 and e2 and employs the descending sequence

of remainders as a pivot for the divisions among the two

encrypted messages.

Algorithm IV.1 describes an efficient method to retrieve

the plaintext of an RSA encryption using Euclid’s greatest

common divisor algorithm as a pivot to perform operations

on the two known ciphertexts.

In order to compute the value of m−e2 from me2 as required

by the algorithm, it is necessary that gcd(m,n) = 1; if this is

not the case, it is possible to use me2 to factor n by simply

computing their greatest common divisor. This implies that if

the root extraction attack is not applicable, the system may be

easily broken otherwise.

Algorithm IV.1 computes gcd(e1, e2) following Eu-

clid’s algorithm and calculates at each step the value of

me1 mod e2 mod n using the values c1 = me1 mod n and

c2 = me2 mod n (lines 13 and 18). This, under the assumption

that e1 and e2 are co-prime, will lead to the computation of

m1.

If e1 and e2 are randomly chosen, a known result in

number theory [51] states that, provided that two numbers are

randomly chosen from a large enough range, the probability

of them being co-prime approaches 6
π2 ≈ 0.61. This implies

that, on the average, two fault injections will be sufficient to

successfully extract the encrypted message.

We next estimate the computational complexity of the

algorithm. Assuming that e1 ≥ e2, the number of steps that

Euclid’s algorithm must perform is of the order of O(log(e1))
that is equal to O(logϕ(n)) (Lamé’s Theorem [52]). Thus,

taking into account the fact that the complexity of perform-

ing modular multiplication, exponentiation and inversion is

O(log3 n), the complexity of the whole algorithm is O(log4 n)
and therefore, tractable even for large values of n.

In order to employ Algorithm IV.1 in a fault attack scenario,

the values of e1 and e2 must be known: this is equivalent to

a precise fault injection assumption regarding the number of

faulty exponent bits and their positions. This assumption may

be relaxed, at the cost of computing the algorithm for each

fault hypothesis and then checking if the recovered plaintext

is the correct one through re-encrypting it and comparing it

with the correct ciphertext.

Table III summarizes the properties of the attacks on RSA

indicating the required precision of the fault injection and the

practical applicability of the techniques. Many of the proposed

attacks on RSA have been implemented and successfully

mounted against real world devices, thus mandating proper

incorporation of countermeasures into RSA implementations.

D. Attacks on ECC

Developing fault injection techniques to attack ECC-based

ciphers proved to be more difficult than attacking RSA-based

ciphers due to the higher complexity of the mathematical

operations involved.

Table III
RSA ATTACKS SUMMARY

Attack Fault model Required Timing Enc / Sig Algorithm Practically applied
[7] Anything Rough Signature CRT Yes
[6] Single bit flip Precise Signature Plain Yes

[50] Safe error attack Precise Signature CRT No
[29] Instruction skip Precise Signature Plain Yes
[25] Few bits flip Rough Encryption Plain Yes

Most of the attacks on ECC that have been proposed

exploit the structural similarity between the exponentiation

through square and multiply used in RSA and the point-

scalar multiplication through the double and add method used

in ECC. Both ciphers have a common structure where, at

each step, an operation (or a set of operations) is executed

depending on the value of a single bit of the secret key.

This, in turn, implies that it is possible to apply the same

bit flip and check attack which was suggested by Bao et

al. [6] to recover the secret RSA exponent during the signature

operation. Alongside the same attack strategies, also safe

error attacks may be employed if a double and add always

(the ECC’s analog to the RSA’s square and multiply always)

algorithm is employed. A variation of the safe error attack,

relying on the fact that all the computations on elliptic curves

are performed on signed values, is the so-called sign flip

attack [53]. Through flipping the sign bit of the exponent digit

being operated on by the point multiplication algorithm, it is

possible to successfully alter the final result, and recover which

bit had been flipped.

In addition to the attack techniques that are similar to their

RSA counterparts, there are attacks whose goal is lowering

the security of the ECC cipher through changing the group of

points on which it works. In [54] the authors propose injecting

a fault into the base point which gets multiplied k times. This

way, the point will no longer belong to the curve selected

by the designer, but possibly to another one whose number

of points is lower, thus making it possible to attempt a brute

force attack on the scheme.

Another attack, directly targeted at the ECC structure, is

described in [55], where the authors notice that a fault injected

into the point coordinates during the scalar multiplication may

move the point into a subgroup of the main group of curve

points (called a twist of the curve), which has a smaller number

of points. The authors show that their attack technique is able

to successfully break curves standardized by both NIST [56]

and IEEE [57] up to a security level equivalent to the one

provided by the AES with a 128-bit key.

A different approach to attack the elliptic curve signature

algorithm has been proposed in [58]. The key point is to alter

one bit of the inputs of a single-word multiplication during

the final multi-word multiplication employed to produce the

signature value. The value of the wrong signature is exploited

to retrieve one word of the secret key; the attack retrieves the

full value of the secret key word by word. This fault attack

technique has been extended to multiple bit faults in [59].

V. COUNTERMEASURES

This section describes the basic principles underlying the

countermeasures against fault attacks: intrusion detection, al-

gorithmic resistance, and error detection and possibly correc-

tion techniques, and will attempt to systematically classify the

currently known countermeasures.

One approach to protect an implementation of a crypto-

graphic algorithm against fault attacks relies on making the

implementation physically inaccessible. This requires encasing

the device in a tamper-proof box and including sensors to

detect any attempted tampering with the device. This method

has been applied in high-end cryptographic coprocessors such

as the IBM 4764 [60].

Other, more cost-effective, approaches to protect against

fault injection attacks modify the design of the cryptographic

device to allow the detection of the injected faults. One such

approach relies on duplicating the encryption or decryption

process (using either hardware- or time-redundancy) and com-

paring the two results. This approach assumes that the injected

faults are transient and will not manifest themselves in exactly

the same time in these two executions. Although easy to

apply, this approach may often impose a overhead too high

to be practical. Another approach is based on error detection

codes which usually require a smaller overhead compared to

straightforward duplication, although possibly at the cost of

a lower fault coverage. Thus, a trade-off between the fault

coverage and the (hardware and/or time) overhead should be

expected.

When using error detecting codes (EDCs) for detecting

faults during the encryption/decryption process, check bits are

first generated for the input, then, for each operation(s) that

the data bits undergo, the check bits of the expected result

are predicted. Periodically, check bits for the actual result are

generated and compared to the predicted check bits: a fault is

detected if the two sets do not match.

The validation checks can be scheduled at various granu-

larities of the cipher, be it after every operation applied to the

data, following each round, or only once at the end of the

encryption process.

The first step, that of generating the check bits for the

input, is straightforward. The non-trivial part is devising the

prediction rules for the new values of the check bits fol-

lowing each transformation that the data bits undergo during

the encryption/decryption process. The complexity of these

prediction rules, combined with the frequency at which the

comparison is made, determine the overhead of applying the

EDC, rather than duplication, as a protection against fault

attacks.

A. Suggestions for 3G-SNOW

Providing fault attack protection in stream ciphers is par-

ticularly challenging due to the fact that these ciphers are

commonly used in devices with strict timing and circuit size

constraints. This in turn, excludes the use of high overhead

techniques. A viable approach to providing moderate error

checking capabilities is to employ nonlinear error detecting

codes, like the ones described in [61]. These codes check the

integrity of the state and provide a moderate error correction

capabilities thus enabling a reliable functioning of the circuit

even when under attack.

B. Protection options for AES and DES

The countermeasures that have been proposed to protect

symmetric block ciphers mainly rely on the introduction of

redundancy in the execution, either in the form of error de-

tecting codes (information redundancy) or through duplicated

execution (time or hardware redundancy). These schemes are

similar to the conventional redundancy techniques that are

described in [20].

With temporal duplication the encryption (or decryption)

algorithm is executed twice on the same hardware, while with

hardware (spatial) duplication the algorithm is executed on two

separate circuits. In both cases, the two results are compared

and any mismatch indicates an error which may be the result

of a maliciously injected fault. These schemes work under

the assumption that injecting identical faults during the two

independent executions is extremely difficult. Temporal redun-

dancy incurs a performance penalty while spatial redundancy

results in a bigger circuit with higher power consumption.

A variation of the above duplication techniques can be

applied if the system has a separate hardware unit or software

program for executing the inverse of the cryptographic prim-

itive that should be protected. For example, if a device that

encrypts a symmetric block cipher also includes an implemen-

tation (in hardware or software) of the decryption algorithm,

then the calculated ciphertext can be decrypted and if the

result of this decryption matches the original plaintext, the

ciphertext is considered fault-free and safe to output. In [62],

the authors described the application of the above technique at

different levels of granularity, i.e., checking against the inverse

operation at the operation, round or full cipher level. The

proposed scheme allows a precise and early identification of

the step during which the fault occurred.

A technique to mask the high latency introduced when

temporal duplication is applied to the execution of a cipher

has been proposed in [63]. The authors developed a Dual Data

Rate (DDR) architecture for AES, allowing to compute twice

the same cipher with negligible time overhead by operating

at double the frequency of the remaining circuit. The area

overhead is reasonable, since the only parts which must be

duplicated are the registers holding the cipher state.

Parity-based EDCs were proposed as an effective way to

detect faults in the AES in [64], [65] and were previously

shown to be useful also for DES [66].

Parity bits can be associated with entire 32-bit words, with

individual bytes or even with nibbles (sets of 4 bits), with each

such scheme providing a different fault coverage and entailing

a different overhead in terms of extra hardware and delay.

As an example, we illustrate the procedure for developing

parity prediction rules when using a parity bit for each byte

of the AES state. We discuss next the prediction rules for the

four steps included in each round.

The prediction of the output parity bits for the ShiftRows

transformation is straightforward: it is a rotated version of the

input parity bits. Equally simple is the prediction of the output

parity bits of the AddRoundKey step: it consists of adding the

input parity matrix associated with the state to the parity matrix

associated with the current round key.

The SubBytes step commonly uses SBoxes which are 256×
8-bit look-up tables. The input to the SBox will already have

an associated parity bit. To generate the outgoing parity, a

parity bit can be stored with each data byte, increasing the

number of bits in each location in the SBox to 9. To make

sure that input parity errors are not discarded, we will have to

check the parity of the input data, and if an error is detected,

stop the encryption process.

A lower overhead solution would be to propagate the input

parity errors so that they can be detected later on. This can be

achieved by including the incoming parity bit when addressing

the SBox, thus further increasing the table size to 512×9. The

entries that correspond to input bytes with correct parity will

include the appropriate SubBytes transformation result with a

correct parity bit. The other entries will contain a deliberately

incorrect result, such as an all zeroes byte with an incorrect

parity bit.

If fault attacks on the SBox address decoder can be ex-

pected, the above scheme is insufficient. Adding a small table

that will include the predicted parity bit and one (or more)

correct output data bits, as suggested in [64], will allow the

detection of most of the addressing circuitry faults.

The prediction of the output parity bits of the MixColumns

step is the most complex one. Equations for predicting the

parity bits have been derived in [64] and are shown below

p0,j = p0,j ⊕ p2,j ⊕ p3,j ⊕ s
(7)
0,j ⊕ s

(7)
1,j

p1,j = p0,j ⊕ p1,j ⊕ p3,j ⊕ s
(7)
1,j ⊕ s

(7)
2,j

p2,j = p0,j ⊕ p1,j ⊕ p2,j ⊕ s
(7)
2,j ⊕ s

(7)
3,j

p3,j = p1,j ⊕ p2,j ⊕ p3,j ⊕ s
(7)
3,j ⊕ s

(7)
0,j (3)

where pi,j is the parity bit associated with state byte si,j , and

s
(7)
i,j is the most significant bit of si,j .

The question that remains is the granularity at which the

comparisons between the generated and predicted parity bits

will be made. Scheduling one validation check at the end of the

whole encryption process has the obvious advantage of having

the lowest overhead in terms of hardware and extra delay.

Theoretically, this could result in the error indication being

masked during the encryption procedure, yielding a match

between the generated and predicted parity bits in spite of

the ciphertext being erroneous. It can be shown, however, that

errors injected at any step of the AES encryption procedure

will not be masked, and therefore, a single validation check of

the final ciphertext is sufficient for error detection purposes.

Still, not every combination of errors can be detected by

this scheme. Parity-based EDCs are capable of detecting any

fault that consists of an odd number of bit errors. However,

an even number of bit errors occurring in a single byte will

not be detected. Moreover, if errors are injected in both the

state and the round key, some data faults of odd cardinality

will not be detected. Although we cannot expect a 100% fault

coverage when using a parity-based EDC, the fault coverage

has been shown to be very high, even when multiple faults

are considered.

In a similar way, EDCs can be developed for other symmet-

ric key ciphers. Several such ciphers which rely on modular

addition and multiplication will better match residue codes.

Other symmetric ciphers have been shown to require a very

expensive implementations of EDCs, leading to the conclusion

that the brute force duplication is probably a more suitable

solution. The cost of providing protection against fault-based

attacks should be taken into account when selecting a cipher

for a device.

C. Protection of RSA

Protecting the RSA encryption and decryption primitives

without introducing significant overheads, proved to be a

challenging task for researchers. The high complexity of the

required calculations (relative to those for symmetric block

ciphers) results in bigger circuits and/or higher latency, making

full temporal or spatial redundancy too costly, especially for

resource constrained devices such as smart cards. On the other

hand, RSA proved to be very vulnerable to fault attacks,

especially when a CRT-based implementation is used.

A lower overhead can be achieved if an EDC is used. Since

the RSA cipher is based on modular arithmetic operations,

residue codes are a natural choice. At the beginning of the

execution, the check bits for the input are generated based on

the selected modulus c for the residue check (m mod c where

m is the original message). Then, the operations performed

during the RSA algorithm can be applied to the input check

bits to obtain the predicted output check bits. The residue

check will fail to detect an error when the faulty ciphertext

has the same residue check as the correct one. Assuming that

the fault injected is random, this match will happen with a

probability of 1/c and thus, a higher value of c will result in

a higher fault coverage (but also a higher overhead).

Another approach, proposed by Shamir in [67] is based on

randomizing the computation every time the RSA algorithm is

executed. Randomization can serve as a countermeasure not

only against fault injection attacks, but also against timing

and power attacks since the latency and power profile would

depend on some randomly chosen parameters. The proposed

scheme targets CRT-based implementations. A random integer

r is selected and the following two computations are per-

formed: srp = md mod rp and srq = md mod rq. Then, the

correctness of the computations is checked by verifying that

srp = srq mod r. Only if no error is detected the final result

s = CRT (srp, srq) is produced. This scheme however, may

be subject to a Bellcore-type attack by injecting a fault into

either srp or srq after the above check has been done but prior

to the CRT recombination.

To overcome the above vulnerability, a variation of Shamir’s

scheme was proposed by Ciet et al. [68] employing two

different random values which are multiplied with the two

prime moduli of the CRT computation. The effect of the

random numbers is removed only after the CRT recombination

has been performed, thus preventing the Bellcore-type attack.

A generic approach to detecting faults during decryption

by executing the inverse process (i.e., encryption) is a viable

countermeasure for RSA since the public exponent e is often

very small, and consequently, the cost of performing the

encryption is negligible. There are however, two issues to

be resolved if this countermeasure is to be deployed. The

first is that the public exponent e is not always available

in the decryption device (e.g., in a smart card). This issue

was resolved by Joye [69] who proposed the embedding

of the public exponent into the modulus n, thus making it

available to the device. The second problem arises when the

decrypting device employs the CRT-based algorithm. Such

devices are often designed to only perform operations with

small moduli rather than the full RSA module n. Since the

checking involves a modulo n computation, this may cause a

significant slowdown of the process. To solve this problem,

Boscher et al. [70] proposed a way to employ a CRT-based

scheme for the checking thus avoiding the potential slowdown.

To protect RSA encryption and implementations of RSA

decryption that are not CRT-based, a strategy to check er-

rors during modular exponentiation is necessary. Modular

exponentiation is frequently executed using a “square and

multiply” sequence described in Algorithm V.1. The inputs

to this algorithm are the encrypted message c, the modulus n
and the k-bit private key d = dk−1, dk−2, · · · , d0.

Algorithm V.1: A straightforward decryption algorithm for

RSA.

Input: c, n, d = [dk−1, dk−2, · · · , d0]: secret exponent

Output: m: plaintext

begin1

a← s2

for i← k − 2 to 0 do3

a← a2 mod n4

if di = 1 then5

a← c · a mod n6

return m7

end8

This algorithm correctly produces the desired result in k

steps, where a squaring operation is always performed, and a

multiplication operation is performed only if the corresponding

bit of the private exponent d is equal to one. Unfortunately, this

algorithm is vulnerable to simple power analysis techniques,

which rely on the different power consumption caused by the

presence or lack of the multiplication, to infer the value of the

private exponent bits. The most straightforward solution to this

issue is to follow a “square and multiply always” strategy, such

as the one described in Algorithm V.2.

Algorithm V.2: A modified decryption algorithm for RSA.

Input: c, n, d = [dk−1, dk−2, · · · , d0]: secret exponent

Output: m: plaintext

begin1

a← s2

for i← k − 2 to 0 do3

a← a2 mod n4

b← c · a mod n5

if di = 1 then6

a← b7

else8

a← a9

return m10

end11

This strategy always performs the multiplication, thus equal-

izing the power consumption of the otherwise different it-

erations. Although this strategy is effective in preventing

power analysis based attacks, it is possible to attack the

aforementioned algorithm through an easy safe error attack.

By disturbing the multiplication, through fault injection, it is

possible to deduce the corresponding bit of the secret exponent

in the following way. If, despite the injection of a fault, the

output is correct then the multiplication was unnecessary while

if the output is incorrect (or no output is produced due to the

fault being internally detected), then the multiplication was

needed.

These safe error attacks can be prevented, as was pointed

out in [71], by computing the exponentiation using the Mont-

gomery Laddering technique depicted in Algorithm V.3. The

technique uses two temporary values a and b whose values are

recomputed every iteration and as a result, any fault injected

during an inner operation will be detected. This technique has

the added benefit that it makes it possible to check at each

iteration whether the relationship ma = b holds [72]. The

number and positions of such checks may be determined by

the designer, according to a trade-off between the computation

time and the security level.

Unfortunately, this technique increases the vulnerability to

power attacks since the computation now includes a condi-

tional construct that results in an imbalance, albeit slight, in

the power consumption. To overcome this problem and obtain

a fault and power analysis resistant exponentiation algorithm,

Fumaroli et al. [73] proposed a variant of the Montgomery

laddering technique that employs a randomization scheme

Algorithm V.3: A Montgomery Ladder algorithm for RSA

decryption.

Input: c, n, d = [dk−1, dk−2, · · · , d0]: secret exponent

Output: m: plaintext

begin1

a← s2

for i← k − 2 to 0 do3

a← a2 mod n4

b← c · a mod n5

if di = 1 then6

a← a2 mod n7

b← a · b mod n8

else9

a← a2 mod n10

b← a · b mod n11

return m12

end13

and substitutes the conditional instruction in the previous

algorithm by a fast multiplication of the temporary values

of the Montgomery ladder with the bit of the exponent. The

randomization of the encrypted message is performed through

exponentiating rm instead of m, where r is a small random

number. In parallel to the exponentiation, r−e is computed

and then used to remove the randomization (also known as

blinding) effect after the computation.

The randomization introduced by Fumaroli prevents an

attacker from knowing the actual result of the exponentiation,

and provides a way to check if the computation proceeds prop-

erly using the same relationship which held for the original

Montgomery ladder. Still, as was later pointed out in [74], it

is possible to inject an undetected error in the result, if the

attacker only corrupts the calculation of the blinding removal

value r−e. Such a fault may constitute a security risk if the

above technique is employed in the computation of one of

the two halves of the CRT-based decryption. If the undetected

faulty value is employed in the CRT reconstruction, it leads

to the same scenario as in the Bellcore attack.

To obtain a protected CRT-based low overhead decryption

algorithm, Boscher et al. [75] combined a checking strategy

for the CRT recombination with a fully protected exponentia-

tion.

An alternate strategy to hinder attacks on RSA relies on

propagating the effects of the injected fault on the whole

computation, leading to a faulty output which is not exploitable

by the attacker. This strategy, denominated fault infective

computation in [76], shifts the focus of the countermeasure

from detecting the faults, to directly hindering the attacker

without altering the computation flow, thus implicitly pre-

venting safe error attacks. A generalisation of this concept,

denominated fault resilient computation, has been presented

in [77], focusing on the design of a circuit which relies on

dual-rail logic to implement the same key concept.

D. Protection of ECC

Elliptic curve cryptosystems can be protected by extending

some of countermeasures that were developed for RSA and

adapting them to the different group operations performed

during ECC encryption/decryption. In [78] the authors present

a list of countermeasures for ECC taking into account all

the previously proposed attacks. In particular, the authors

suggest, as a practical defense against safe error and bit

flipping attacks on the double and add ladder, to compute

the kP through splitting k into two values. Furthermore, to

avoid exploitable deterministic behavior, a random number r
(smaller than k) should be selected leading to the computation

of [k mod r]P + [⌊k
r
⌋]P . A second suggested guideline is to

avoid decision checks in the same way they are avoided in

the Montgomery laddering during RSA exponentiation. This

way, an error during the double and add ladder will yield a

random result avoiding information leakage. Another informa-

tion leakage prevention approach, proposed in [79], involves

randomizing the base point P used in the kP operation. This

countermeasure introduces further randomness into the scheme

hindering the recovery of the value of k regardless of the faults

induced during the computation.

VI. POWER AND FAULT ATTACKS SYNERGIES

Although we have focused in this paper on fault injection

attacks, we must keep in mind that there are other types of

side channel attacks that a possible attacker may follow in an

attempt to breach the security of a system. A commonly used

approach is through power analysis attacks, which measure

the amount of power consumed while performing encryption

or decryption during the normal (fault-free) operation of the

attacked device.

An example of these attacks is the differential power attack

whose goal is to construct a key-dependent model of power

consumption that depends on the switching activity of the

circuit, and try to find which one fits best the actual measure-

ments taken on the device. The most common way to protect

against this kind of attacks is to design the device such that it

has a constant power consumption regardless of the ongoing

computation.

Traditionally, fault attacks and power analysis attacks were

considered disjoint attack methodologies. This lead to the

assumption that protecting the device against each one of these

two possible attacks individually, the device is consequently

protected against any combination of these two types of

attacks. This assumption, however, proved to be false, and

it has been shown that it is possible to exploit fault attacks

in order to enhance the efficiency of power attacks. The

key idea behind the combined attack is that a fault induced

during a computation can alter, in addition to the result of the

computation, also the power consumed by the device due to a

change in the switching activity of the circuit.

The first combined attack technique was reported by Amiel

et al. in [80]. In this work, the authors showed that it is

possible to attack an RSA exponentiation that was protected

against power analysis attacks using a balanced algorithm

with message randomization, by inducing ad-hoc faults. The

technique involves the partial or total blanking of the contents

of the register holding the base value of the message m, which

in turn, reduces the power consumption of the multiplication

by m. Since this multiplication is performed only when the

current bit of the secret exponent d is 1, the authors were

able to obtain the secret key simply by observing which

operations did consume less power after the fault injection.

The authors have also pointed out that this kind of attack

cannot be prevented by simple countermeasures against faults

such as checking the signature at the end of the computation.

This is due to the fact that the information leakage happens

during the computation and a-posteriori checks cannot prevent

it.

One way to protect against these attacks is to detect the

injected fault immediately, rather than wait until the com-

putation of the signature is completed, and upon detection,

abort the process and thus avoid generating the power profile

that divulges the secret key. Well-known examples of this

type of countermeasures are the error detection codes based

on either parity or residue checking. These codes, through

adding redundant check bits to the data processed, are able to

detect on the fly an invalid alteration of the data. However,

the addition of circuitry to process the added check bits may

help differential power analysis attacks since the check bits

are highly correlated to the data bits being processed.

In [81], [82] the authors reported the results of correlation

power analysis attacks (that are more powerful than differential

power analysis) on an implementation of AES where the

output buffer of the S-Box has been extended to include an

error detection circuit. The considered error detection codes

were parity, residue modulo 3 and residue modulo 7. The

results of this study showed that the introduction of error

checking circuits would help the attacker by reducing the

number of power traces needed to discover the bits of the

secret key. The experiments in this study were performed

with an added measurement noise that must be expected

during any practical power analysis attack. A reduction in

the required number of traces has been observed even if the

attacker is unaware of the presence of check bits in the attacked

implementation. Furthermore, the authors observed that the

higher the number of check bits is, the easier the power attack

becomes.

These observations suggest that, albeit targeting different

side channels, substantial synergies between active and passive

attacks exist and these may be exploited by a malicious

attacker. This in turn implies that novel countermeasures

against either power or fault attacks should always take into

consideration their impact on the robustness against the other

type of side channel attacks.

VII. FUTURE RESEARCH DIRECTIONS

We conclude this survey with a brief description of possible

new research directions in the field of fault injection attacks.

One such direction will focus on establishing formal models

for fault injection attacks and exploring their effectiveness.

This will allow a top-down analysis of possible fault attacks

instead of the current bottom-up approach.

The number and types of fault attacks that are being

developed for the various ciphers is steadily increasing but no

clear classification has emerged. The current trend is to model

the injected faults as errors in the underlying mathematical

formulae rather than mistakes in the computations performed

by a certain computer model. This approach makes it difficult

to establish a relationship between the fault model and the

existing technology and consequently, its practical relevance is

becoming questionable. An alternative approach might be the

development of a scientifically rigorous quantification of the

robustness of an implementation of a cryptographic primitive

(e.g., RSA encryption) against fault attacks by modeling the

primitive as a program that runs on a given virtual machine

model. One can then determine the fault resilience and cost

of the cryptographic primitive implementation where the re-

silience can be defined in one of the following ways:

• Being able to return the correct result despite a fault, or

• Detecting the fault and discontinuing the process, or

• Returning an incorrect result making it difficult for the

attacker to recover either the secret key or the plaintext.

The overhead (cost) of the given implementation can be

measured in terms of the execution time or the code size of

the program implementing the primitive. A number of possible

virtual machines can serve as a framework for the above model

ranging from the theoretical Turing Machine to more practical

ones.

Clearly, exploring the solution space with respect to these

resilience and cost parameters for crypto-primitives implemen-

tations that incorporate countermeasures, would have theo-

retical and practical significance. Such analysis can then be

extended to complete implementations of cryptographic pro-

tocols consisting of a set of crypto-primitives (e.g., Transport

Layer Security [83]).

Determining the resilience versus cost trade-offs in a the-

oretical way may prove to be difficult. Instead, successive

approximations can be obtained by using known attacks pro-

cedures. Such procedures could be used to compare primitives

and different virtual machine models, and thus progressively

refine the analysis.

Besides the above described new research direction, there is

still a need to keep developing countermeasures against fault

attacks and new ways to make implementations more immune

to attacks, and improve the techniques to test the robustness

of cryptographic primitives and the robustness provided by

technological advancements.

To illustrate the need for the development of new counter-

measure consider the following scenario. Assume a message

m1 is encrypted into a ciphertext c1 using RSA. Injecting a

one-bit fault into m1 during a second encryption will result in

the encryption of the message m2 = m1 xor 2i = m ± 2i =
m+ b, for a b predictable by the attacker; hence z = m1 is a

common root of the two equations below:

ze − c1 = 0 mod n
(z + b)

e
− c2 = 0 mod n

Thus m1 will be retrieved with a high probability by the

operation below:

gcd (ze − c1, (z + b)
e
− c2) = z −m1 mod n

The complexity is quadratic in e and the attack will hence

work only for small public exponents. This attack is derived

from a non-fault (i.e., algorithmic) attack on RSA [84] and

uncovers an unexpected relationship.

In addition, a number of recently developed crypto-

primitives deserve more extensive theoretical and practical in-

vestigations. Examples include elliptic curve pairing or lattice-

based operations, which are currently of considerable interest.

Furthermore, the number of known countermeasures is as

large as the number of different fault attacks that have been

developed and quite often, a countermeasure has been finely

tuned to a specific attack. There is a need to design more

general countermeasures that will be effective against many

fault attacks and yet be inexpensive. Developing theoretical

generic countermeasures may be too ambitious, and a more

promising approach seems to be that of unifying the existing

ones (e.g., [70], [85]). The results in this field are still limited

to a couple of primitives, thus a deeper insight is required.

A further research direction is represented by the advent of

multi-core processors in mobile environments. Since crypto-

primitives have been mainly designed and implemented on

serial processors, there is an ongoing transition to their imple-

mentation on multi-core platforms. Currently, it is unclear how

to extend the known fault attack methodologies and techniques

to a parallel algorithm, which may be processing several keys

simultaneously or several plaintexts using one key. Another

related question is whether fault injection attacks (and more

generally, side-channel attacks) on parallel implementations

will retain their feasibility on these modern platforms.

REFERENCES

[1] A. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of

Applied Cryptography. CRC Press, 1996.
[2] R. J. Anderson and M. G. Kuhn, “Low cost attacks on tamper resistant

devices,” in Proc. International Workshop on Security Protocols, pp.
125–136, 1998.

[3] D. Boneh, R. DeMillo, and R. Lipton, “On the importance of eliminating
errors in cryptographic computations,” Journal of Cryptology, vol. 14,
no. 2, pp. 101–119, Nov. 2001.

[4] E. Biham and A. Shamir, “Differential fault analysis of secret key
cryptosystems,” in Proc. CRYPTO, pp. 513–525, 1997.

[5] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the Importance of
Checking Cryptographic Protocols for Faults,” in Proc. EUROCRYPT,
pp. 37–51, 1997.

[6] F. Bao, R. H. Deng, Y. Han, A. B. Jeng, A. D. Narasimhalu, and T.-
H. Ngair, “Breaking Public Key Cryptosystems on Tamper Resistant
Devices in the Presence of Transient Faults,” in Proc. International

Workshop on Security Protocols, pp. 115–124, 1998.
[7] A. K. Lenstra, “Memo on RSA Signature Generation in the Presence of

Faults,” September 1996, unpublished memo.
[8] L. Breveglieri, I. Koren, D. Naccache, and J.-P. Seifert, Eds., Pro-

ceedings of the Third International Workshop in Fault Diagnosis and

Tolerance in Cryptography, 10 October 2006, ser. Lecture Notes in
Computer Science. Springer, 2006, vol. 4236.

[9] L. Breveglieri, S. Gueron, I. Koren, D. Naccache, and J.-P. Seifert, Eds.,
Proceedings of the Fourth International Workshop on Fault Diagnosis

and Tolerance in Cryptography, 10 September 2007. IEEE Computer
Society, 2007.

[10] ——, Proceedings of the Fifth International Workshop on Fault Diag-

nosis and Tolerance in Cryptography, 10 August 2008. IEEE Computer
Society, 2008.

[11] SNOW 3G Specifications, European Telecommunications Standards In-
stitute Std., September 2006.

[12] P. Ekdahl and T. Johansson, “A New Version of the Stream Cipher
SNOW,” in Proc. Selected Areas in Cryptography, vol. 2595, pp. 47–
61, 2003.

[13] ISO/IEC 18033-4:2005 Information technology – Security techniques –

Encryption algorithms – Part 4: Stream ciphers, ISO Std., 2005.

[14] FIPS-46-3: Data Encryption Standard (DES), National Institute of
Standards and Technology (NIST) Std., 1999.

[15] M. Curtin, Brute force: cracking the data encryption standard. Springer,
2005.

[16] FIPS-197: Advanced Encryption Standard, National Institute of Stan-
dards and Technology (NIST) Std., 2001.

[17] J. Daemen and V. Rijmen, The design of Rijndael: AES–the Advanced

Encryption Standard. Springer Verlag, 2002.

[18] IEEE P-1619 Standard for Cryptographic Protection of Data on Block-

Oriented Storage Devices, IEEE Std., 2008.

[19] IEEE Standard for Information Technology-Telecommunications and

Information Exchange Between Systems-Local and Metropolitan Area

Networks-Specific Requirements-Part 11: Wireless LAN Medium Access

Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std.,
1997.

[20] I. Koren and C. M. Krishna, Fault Tolerant Systems. San Francisco,
CA, USA: Morgan-Kaufman, 2007.

[21] R. Rivest, A. Shamir, and L. Adleman, “Method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, pp. 120–126, 1978.

[22] P. Montgomery, “Modular multiplication without trial division,” Math-

ematics of computation, vol. 44, pp. 519–521, 1985.

[23] STMicroelectronics, “ST23 highly secure smartcard ICs,” January
2010. [Online]. Available: http://www.st.com/stonline/products/families/
smartcard/sc st23.htm

[24] D. J. Bernstein, “DNSCurve: Usable security for DNS,” January 2009.
[Online]. Available: http://dnscurve.org/

[25] A. Barenghi, G. Bertoni, E. Parrinello, and G. Pelosi, “Low Voltage
Fault Attacks on the RSA Cryptosystem,” in Proc. Workshop on Fault

Diagnosis and Tolerance in Cryptography, pp. 23–31, 2009.

[26] A. Barenghi, G. M. Bertoni, L. Breveglieri, M. Pellicioli, and G. Pelosi,
“Low Voltage Fault Attacks to AES,” in Proc. International Symposium

on Hardware-Oriented Security and Trust, pp. 7–12, 2010.

[27] N. Selmane, S. Guilley, and J.-L. Danger, “Practical Setup Time Vi-
olation Attacks on AES,” in Proc. European Dependable Computing

Conference, pp. 91–96, 2008.

[28] A. Barenghi, C. Hocquet, D. Bol, F.-X. Standaert, F. Regazzoni, and
I. Koren, “Exploring the Feasibility of Low Cost Fault Injection At-
tacks on Sub-threshold Devices through an Example of a 65nm AES
Implementation,” in Proc. Workshop on RFID Security and Privacy, pp.
48–60, 2011.

[29] J.-M. Schmidt and C. Herbst, “A Practical Fault Attack on Square
and Multiply,” in Proc. Workshop on Fault Diagnosis and Tolerance

in Cryptography, pp. 53–58, 2008.

[30] M. Hutter, T. Plos, and J.-M. Schmidt, “Contact-Based Fault Injections
and Power Analysis on RFID Tags,” in Proc. IEEE European Conference

on Circuit Theory and Design, pp. 409–412, 2009.

[31] F. Amiel, C. Clavier, and M. Tunstall, “Fault Analysis of DPA-Resistant
Algorithms,” in Proc. Workshop on Fault Diagnosis and Tolerance in

Cryptography, vol. 4236, pp. 223–236, 2006.

[32] S. Govindavajhala and A. Appel, “Using memory errors to attack a
virtual machine,” in Proc. IEEE Symposium on Security and Privacy,
pp. 154–165, 2003.

[33] J.-M. Schmidt and M. Hutter, “Optical and EM Fault-Attacks on
CRT-based RSA: Concrete Results,” in Proc. Austrian Workhop on

Microelectronics (Austrochip), pp. 61–67, 2007.

[34] J.-M. Schmidt, M. Hutter, and T. Plos, “Optical Fault Attacks on AES: A
Threat in Violet,” in Proc. Workshop on Fault Diagnosis and Tolerance

in Cryptography, pp. 13–22, 2009.

[35] S. Skorobogatov, “Semi-invasive attacks-a new approach to hardware
security analysis,” University of Cambridge, Computer Laboratory, Tech.
Rep. UCAM-CL-TR-630, 2005.

[36] S. P. Skorobogatov and R. J. Anderson, “Optical Fault Induction
Attacks,” in Proc. Workshop on Cryptographic Hardware and Embedded

Systems, pp. 2–12, 2002.
[37] M. Agoyan, J.-M. Dutertre, A.-P. Mirbaha, D. Naccache, A.-L. Ribotta,

and A. Tria, “How to flip a bit?” in Proc. IEEE 16th International On-

Line Testing Symposium (IOLTS), pp. 235 –239, 2010.
[38] R. Torrance and D. James, “The State-of-the-Art in IC Reverse Engi-

neering,” in Proc. Workshop on Cryptographic Hardware and Embedded

Systems, p. 381, 2009.
[39] B. Debraize and I. M. Corbella, “Fault Analysis of the Stream Cipher

Snow 3G,” in Proc. Workshop on Fault Diagnosis and Tolerance in

Cryptography, pp. 103–110, 2009.
[40] F. Armknecht and W. Meier, “Fault attacks on combiners with memory,”

in Proc. Selected Areas in Cryptography, vol. 3897, pp. 36–50, 2006.
[41] J. Bloemer and J.-P. Seifert, “Fault Based Cryptanalysis of the Advanced

Encryption Standard (AES),” in Proc. Financial Cryptography, pp. 162–
181, 2003.

[42] C. Giraud, “DFA on AES,” in Proc. International Conference on the

Advanced Encryption Standard, vol. 3373, pp. 27–41, 2005.
[43] A. Barenghi, G. M. Bertoni, L. Breveglieri, M. Pellicioli, and G. Pelosi,

“Fault attack on AES with single-bit induced faults,” in Proc. Sixth

International Conference on Information Assurance and Security, pp.
7–13, 2010.

[44] P. Dusart, G. Letourneux, and O. Vivolo, “Differential Fault Analysis
on A.E.S.” Applied Cryptography and Network Security, vol. 2846, pp.
293–306, 2003.

[45] A. Moradi, M. T. M. Shalmani, and M. Salmasizadeh, “A generalized
method of differential fault attack against AES cryptosystem,” in Proc.

International Workshop on Cryptographic Hardware and Embedded

Systems, pp. 91–100, 2006.
[46] C.-N. Chen and S.-M. Yen, “Differential fault analysis on aes key

schedule and some countermeasures,” in Proc. Information Security and

Privacy, pp. 217–217, 2003.
[47] D. Peacham and B. Thomas, “A DFA attack against the AES key

schedule,” SiVenture Whitepaper, October 2006.
[48] C. H. Kim and J.-J. Quisquater, “New Differential Fault Analysis on

AES Key Schedule: Two Faults Are Enough,” in Proc. International

Conference on Smart Card Research and Advanced Applications, pp.
48–60, 2008.

[49] C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and J.-P. Seifert, “Fault
Attacks on RSA with CRT: Concrete Results and Practical Countermea-
sures,” in Proc. Workshop on Cryptographic Hardware and Embedded

Systems, pp. 81–95, 2003.
[50] S.-M. Yen and M. Joye, “Checking before output may not be enough

against fault-based cryptanalysis,” IEEE Transaction on Computers,
vol. 49, no. 9, pp. 967–970, 2000.

[51] G. Hardy, An Introduction to the Theory of Numbers, 5th ed., ser. Oxford
Science Publications. Oxford Press, 1979.

[52] D. E. Knuth, Art of Computer Programming, Volume 2: Seminumerical

Algorithms, 3rd ed. Addison-Wesley Professional, November 1997.
[53] J. Blomer, M. Otto, and J. P. Seifert, “Sign change fault attacks on

elliptic curve cryptosystems,” in Proc. Workshop on Fault Diagnosis

and Tolerance in Cryptography, pp. 25–40, 2005.
[54] I. Biehl, B. Meyer, and V. Müller, “Differential Fault Attacks on Elliptic

Curve Cryptosystems,” in Proc. CRYPTO, pp. 131–146, 2000.
[55] P.-A. Fouque, R. Lercier, D. Réal, and F. Valette, “Fault attack on elliptic

curve montgomery ladder implementation,” in Proc. Workshop on Fault

Diagnosis and Tolerance in Cryptography, pp. 92–98, 2008.
[56] FIPS-186-3: Digital Signature Standard (DSS), National Institute of

Standards and Technology (NIST) Std., 2009.
[57] IEEE Standard Specifications for Password-Based Public-Key Crypto-

graphic Techniques, IEEE Std., 2009.
[58] A. Barenghi, G. Bertoni, A. Palomba, and R. Susella, “A novel fault

attack against ECDSA,” in Proc. IEEE International Symposium on

Hardware-Oriented Security and Trust, pp. 161 –166, 2011.
[59] A. Barenghi, G. M. Bertoni, L. Breveglieri, G. Pelosi, and A. Palomba,

“Fault attack to the elliptic curve digital signature algorithm with
multiple bit faults,” in Proc International Conference on Security of

Information and Networks, pp. 63–72, 2011.
[60] IBM, “Ibm 4764 pci-x cryptographic coprocessor specifications,” [On-

line] http://www.ibm.com/security/cryptocards/pdfs/bs330.pdf.

[61] M. Karpovsky and A. Taubin, “New class of nonlinear systematic error
detecting codes,” IEEE Transactions on Information Theory, vol. 50,
no. 8, pp. 1818–1820, 2004.

[62] R. Karri, K. Wu, P. Mishra, and Y. Kim, “Fault-based side-channel
cryptanalysis tolerant Rijndael symmetric block cipher architecture,” in

Proc. IEEE International Symposium on Defect and Fault Tolerance in

VLSI Systems, pp. 427–435, 2001.

[63] P. Maistri, P. Vanhauwaert, and R. Leveugle, “A Novel Double-Data-
Rate AES Architecture Resistant against Fault Injection,” in Proc.

Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 54–
61, 2007.

[64] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri, “Error
analysis and detection procedures for a hardware implementation of
the advanced encryption standard,” IEEE Transactions on Computers,
vol. 52, no. 4, pp. 492–505, 2003.

[65] G. Bertoni, L. Breveglieri, I. Koren, and P. Maistri, “An efficient
hardware-based fault diagnosis scheme for AES: performances and
cost,” in Proc. IEEE International Symposium on Defect and Fault

Tolerance in VLSI Systems, pp. 130–138, 2004.

[66] A. Butter, C. Kao, and J. Kuruts, “DES encryption and decryption unit
with error checking,” US Patent 5,432,848, July 1995.

[67] A. Shamir, “Method and apparatus for protecting public key schemes
from timing and fault attacks,” US Patent 5,991,415, 1999.

[68] M. Ciet and M. Joye, “Practical Fault Countermeasures for Chinese
Remaindering Based RSA,” in Proc. Workshop on Fault Diagnosis and

Tolerance in Cryptography, pp. 124–131, 2005.

[69] M. Joye, “Protecting RSA against Fault Attacks: The Embedding
Method,” in Proc. Workshop on Fault Diagnosis and Tolerance in

Cryptography, pp. 41–45, 2009.

[70] A. Boscher, H. Handschuh, and E. Trichina, “Fault Resistant RSA
Signatures: Chinese Remaindering in Both Directions,” Cryptology
ePrint Archive, Report 2010/038, 2010.

[71] M. Joye and S.-M. Yen, “The montgomery powering ladder,” in Proc.

Workshop on Cryptographic Hardware and Embedded Systems, pp. 291–
302, 2003.

[72] C. Giraud, “An RSA Implementation Resistant to Fault Attacks and
to Simple Power Analysis,” IEEE Transactions on Computers, vol. 55,
no. 9, pp. 1116–1120, 2006.

[73] G. Fumaroli and D. Vigilant, “Blinded Fault Resistant Exponentiation,”
in Proc. Workshop on Fault Diagnosis and Tolerance in Cryptography,
p. 62, 2006.

[74] C. H. Kim and J.-J. Quisquater, “How can we overcome both side
channel analysis and fault attacks on RSA-CRT?” in Proc. Workshop

on Fault Diagnosis and Tolerance in Cryptography, pp. 21–29, 2007.

[75] A. Boscher, H. Handschuh, and E. Trichina, “Blinded Fault Resistant
Exponentiation Revisited,” in Proc. Workshop on Fault Diagnosis and

Tolerance in Cryptography, pp. 3–9, 2009.

[76] S.-M. Yen, S. Kim, S. Lim, and S.-J. Moon, “Rsa speedup with chinese
remainder theorem immune against hardware fault cryptanalysis,” IEEE

Transactions on Computers, vol. 52, no. 4, pp. 461 – 472, april 2003.

[77] S. Guilley, L. Sauvage, J.-L. Danger, and N. Selmane, “Fault injection
resilience,” 2010, pp. 51–65.

[78] M. Ciet and M. Joye, “Elliptic curve cryptosystems in the presence
of permanent and transient faults,” Designs, Codes and Cryptography,
vol. 36, no. 1, pp. 33–43, 2005.

[79] A. Dominguez-Oviedo and M. Hasan, “Error Detection and Fault
Tolerance in ECSM Using Input Randomization,” IEEE Transactions on

Dependable and Secure Computing, vol. 6, no. 3, pp. 175–187, 2009.

[80] F. Amiel, K. Villegas, B. Feix, and L. Marcel, “Passive and Active Com-
bined Attacks: Combining Fault Attacks and Side Channel Analysis,”
in Proc. Workshop on Fault Diagnosis and Tolerance in Cryptography,
pp. 92–102, 2007.

[81] F. Regazzoni, T. Eisenbarth, J. Großschädl, L. Breveglieri, P. Ienne,
I. Koren, and C. Paar, “Power attacks resistance of cryptographic s-
boxes with added error detection circuits,” in Proc. IEEE International

Symposium on Defect and Fault Tolerance in VLSI, pp. 508–516, 2007.

[82] F. Regazzoni, T. Eisenbarth, L. Breveglieri, P. Ienne, and I. Koren,
“Can knowledge regarding the presence of countermeasures against fault
attacks simplify power attacks on cryptographic devices?” in Proc. IEEE

International Symposium on Defect and Fault-Tolerancein VLSI Systems,
pp. 202–210, 2008.

[83] The Transport Layer Security (TLS) Protocol Version 1.2, Internet
Engineering Task Force (IETF) Std., 2008.

[84] D. Coppersmitsh, M. Franklin, J. Patarin, and M. Reiter, “Low-exponent
rsa with related messages,” in Proc. EUROCRYPT, pp. 1–9, 1996.

[85] M. Joye, “On the security of a unified countermeasure,” in Proc.

Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 87–
91, 2008.

